Naturally-primed life strategy plasticity of dimorphic Aethionema arabicum facilitates optimal habitat colonization

. 2019 Nov 06 ; 9 (1) : 16108. [epub] 20191106

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31695083

Grantová podpora
BB/M00192X/1 RCUK | Biotechnology and Biological Sciences Research Council (BBSRC) - International

Odkazy

PubMed 31695083
PubMed Central PMC6834856
DOI 10.1038/s41598-019-52520-y
PII: 10.1038/s41598-019-52520-y
Knihovny.cz E-zdroje

Plasticity in plant dispersal traits can maximise the ability of a plant species to survive in stressful environments during colonization. Aethionema arabicum (Brassicaceae) is a dimorphic annual species that is hypothesized to survive stressful conditions during colonization due to adaptive plasticity in life-phase (vegetative vs sexual) and fruit morph (dehiscent [DEH] vs indehiscent fruits [IND]). We tested for adaptive plasticity in life-phase and fruit morphs along laboratory environmental stress gradients found in the natural habitats of Ae. arabicum. We considered optimal environmental conditions (750-2000 m above sea level) to be those that resulted in the following fitness parameters: higher biomass and a higher total number of fruits compared to stressful habitats. We found evidence of plasticity in life-phase and fruit-morph along a stressful environmental gradient. High hydrothermal stress proportionally increased the number of dehiscent morphs and non-dormant seeds germinating in autumn. This offsets natural phenology towards dry and cold winter (less hydrothermal stress), yielding fewer fruits that dehisce in the next generation. We conclude that the plastic responses of Ae. arabicum to natural stress gradients constitute a strategy of long-term adaptive benefits and favouring potential pathways of colonisation of the optimal habitat.

Zobrazit více v PubMed

Lomolino MV, Pijanowski BC, Gasc A. The silence of biogeography. J. Biogeogr. 2015;42:1187–1196. doi: 10.1111/jbi.12525. DOI

Darwin, C. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. (Murrey, London; 1859). PubMed PMC

Wallace, A. R. The geographical distribution of animals: with a study of the relations of living and extinct faunas as elucidating the past changes of the earth’s surface, Vol. 1. (Harper & Brothers, New York; 1876).

Arendt JD. Effects of dispersal plasticity on population divergence and speciation. Heredity (Edinb) 2015;115:306–311. doi: 10.1038/hdy.2015.21. PubMed DOI PMC

Liu, R., Wang, L., Tanveer, M. & Song, J. Seed heteromorphism: an important adaptation of halophytes for habitat heterogeneity. Front. Pl. Sc. 9 (2018). PubMed PMC

Simpson GG. The Baldwin Effect. Evolution. 1953;7:110–117. doi: 10.1111/j.1558-5646.1953.tb00069.x. DOI

Morris MR. Plasticity-mediated persistence in new and changing environments. International journal of evolutionary biology. 2014;2014:416497. doi: 10.1155/2014/416497. PubMed DOI PMC

Guisan A, Thuiller W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 2005;8:993–1009. doi: 10.1111/j.1461-0248.2005.00792.x. PubMed DOI

He Q, Bertness MD, Altieri AH. Global shifts towards positive species interactions with increasing environmental stress. Ecol. Lett. 2013;16:695–706. doi: 10.1111/ele.12080. PubMed DOI

Steinbrecher T, Leubner-Metzger G. The biomechanics of seed germination. Journal of Experimental Botany. 2017;68:765–783. PubMed

Baskin JM, Lu JJ, Baskin CC, Tan DY, Wang L. Diaspore dispersal ability and degree of dormancy in heteromorphic species of cold deserts of northwest China: a review. Perspectives in Plant Ecology, Evolution and Systematics. 2014;16:93–99. doi: 10.1016/j.ppees.2014.02.004. DOI

Venable DL, Brown JS. The population-dynamic functions of seed dispersal. Vegetatio. 1993;108:31–55.

Imbert E, Ronce O. Phenotypic plasticity for dispersal ability in the seed heteromorphic Crepis sancta (Asteraceae) Oikos. 2001;93:126–134. doi: 10.1034/j.1600-0706.2001.930114.x. DOI

Rubio de Casas R, Donohue K, Venable DL, Cheptou P-O. Gene-flow through space and time: dispersal, dormancy and adaptation to changing environments. Evolutionary Ecology. 2015;29:813–831. doi: 10.1007/s10682-015-9791-6. DOI

Grime, J. P. Plant strategies and vegetation processes. (Wiley, New York; 1979).

Grime JP. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 1977;111:1169–1194. doi: 10.1086/283244. DOI

van Straalen, N. M. In Environmental Science & Technology 325–330 (ACS Publications, 2003).

Roelofs D, Aarts MGM, Schat H, Van Straalen NM. Functional ecological genomics to demonstrate general and specific responses to abiotic stress. Funct. Ecol. 2008;22:8–18.

Lu JJ, Ma WB, Tan DY, Baskin JM, Baskin CC. Effects of environmental stress and nutlet morph on proportion and within-flower number-combination of morphs produced by the fruit-dimorphic species Lappula duplicicarpa (Boraginaceae) Plant Ecol. 2013;214:351–362. doi: 10.1007/s11258-013-0171-4. DOI

Mandák B, Pyšek P. How does density and nutrient stress affect allometry and fruit production in the heterocarpic species Atriplex sagittata (Chenopodiaceae)? Can. J. Bot. 1999;77:1106–1119.

Sadeh A, Guterman H, Gersani M, Ovadia O. Plastic bet-hedging in an amphicarpic annual: an integrated strategy under variable conditions. Evol. Ecol. 2009;23:373–388. doi: 10.1007/s10682-007-9232-2. DOI

Lu JJ, Tan DY, Baskin JM, Baskin CC. Phenotypic plasticity and bet-hedging in a heterocarpic winter annual/spring ephemeral cold desert species of Brassicaceae. Oikos. 2012;121:357–366. doi: 10.1111/j.1600-0706.2011.19800.x. DOI

Imbert E. Ecological consequences and ontogeny of seed heteromorphism. Perspect. Plant Ecol. Evol. Syst. 2002;5:13–36. doi: 10.1078/1433-8319-00021. DOI

Venable DL, Dyreson E, Morales E. Population dynamic consequences and evolution of seed traits of Heterosperma pinnatum (Asteraceae) Am. J. Bot. 1995;82:410–420. doi: 10.1002/j.1537-2197.1995.tb12646.x. DOI

Moazzeni H, et al. A taxonomic revision of the genus Aethionema s.l. (Brassicaceae) in Iran. Phytotaxa. 2018;356:241–266. doi: 10.11646/phytotaxa.356.4.1. DOI

Franzke A, Lysak MA, Al-Shehbaz IA, Koch MA, Mummenhoff K. Cabbage family affairs: the evolutionary history of Brassicaceae. Trends Plant Sci. 2011;16:108–116. doi: 10.1016/j.tplants.2010.11.005. PubMed DOI

Al-Shehbaz IA, Beilstein MA, Kellogg EA. Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Plant Syst. Evol. 2006;259:89–120. doi: 10.1007/s00606-006-0415-z. DOI

Akhani H, Mahdavi P, Noroozi J, Zarrinpour V. Vegetation patterns of the Irano-Turanian steppe along a 3,000 m altitudinal gradient in the Alborz Mountains of Northern Iran. Folia Geobot. 2013;48:229–255. doi: 10.1007/s12224-012-9147-8. DOI

Lenser T, et al. Developmental control and plasticity of fruit and seed dimorphism in Aethionema arabicum. Plant Physiol. (Rockv.) 2016;172:1691–1707. doi: 10.1104/pp.16.00838. PubMed DOI PMC

Solms-Laubach, H. G. Z. Cruciferenstudien II.: Über die Arten des Genus Aethionema, die Schließfrüchte hervorbringen. (Verlag von Arthur Felix, Leibzig; 1901).

Arshad W, et al. Dispersal biophysics and adaptive significance of dimorphic diaspores in the annual Aethionema arabicum (Brassicaceae) New Phytol. 2019;221:1434–1446. doi: 10.1111/nph.15490. PubMed DOI PMC

Dubois J, Cheptou PO. Competition/colonization syndrome mediated by early germination in non-dispersing achenes in the heteromorphic species Crepis sancta. Ann. Bot. (Lond.) 2012;110:1245–1251. doi: 10.1093/aob/mcs203. PubMed DOI PMC

Lenser T, et al. When the BRANCHED network bears fruit: how carpic dominance causes fruit dimorphism in Aethionema. Plant J. 2018;94:352–371. doi: 10.1111/tpj.13861. PubMed DOI

Zohary M, Fahn A. On the heterocarpy of Aethionema. Palest. J. Bot. Jer. Ser. 1950;5:28–31.

Bhattacharya S, Mayland-Quellhorst S, Muller C, Mummenhoff K. Two-tier morpho-chemical defence tactic in Aethionema via fruit morph plasticity and glucosinolates allocation in diaspores. Plant Cell Environ. 2019;42:1381–1392. doi: 10.1111/pce.13462. PubMed DOI

Manafzadeh S, Staedler YM, Conti E. Visions of the past and dreams of the future in the Orient: the Irano-Turanian region from classical botany to evolutionary studies. Biol. Rev. Camb. Philos. Soc. 2017;92:1365–1388. doi: 10.1111/brv.12287. PubMed DOI

Thuiller W, Lavorel S, Midgley G, Lavergne S, Rebelo T. Relating plant traits and species distributions along bioclimatic gradients for 88 Leucadendron taxa. Ecology. 2004;85:1688–1699. doi: 10.1890/03-0148. DOI

Rumpf SB, et al. Range dynamics of mountain plants decrease with elevation. Proc. Natl. Acad. Sci. USA. 2018;115:1848. doi: 10.1073/pnas.1713936115. PubMed DOI PMC

Körner C. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 2007;22:569–574. doi: 10.1016/j.tree.2007.09.006. PubMed DOI

Manafzadeh S, Salvo G, Conti E, Ebach M. A tale of migrations from east to west: the Irano-Turanian floristic region as a source of Mediterranean xerophytes. J. Biogeogr. 2014;41:366–379. doi: 10.1111/jbi.12185. DOI

Parolly, G. The high-mountain flora and vegetation of the western and central Taurus Mts.(Turkey) in the times of climate change, In Climate Change Impacts on High-Altitude Ecosystems 99–133 (Springer, 2015).

Younginger BS, Sirova D, Cruzan MB, Ballhorn DJ. Is biomass a reliable estimate of plant fitness? Appl. Pl. Sc. 2017;5:1600094. doi: 10.3732/apps.1600094. PubMed DOI PMC

Wang L, et al. Seed dimorphism, nutrients and salinity differentially affect seed traits of the desert halophyte Suaeda aralocaspica via multiple maternal effects. BMC Plant Biol. 2012;12:1–11. doi: 10.1186/1471-2229-12-1. PubMed DOI PMC

Wang G, et al. Timing of seed germination in two alpine herbs on the southeastern Tibetan plateau: the role of seed dormancy and annual dormancy cycling in soil. Plant Soil. 2017;421:465–476. doi: 10.1007/s11104-017-3400-0. DOI

Halbritter AH, et al. Trait differentiation and adaptation of plants along elevation gradients. J. Evol. Biol. 2018;31:784–800. doi: 10.1111/jeb.13262. PubMed DOI

Neuffer B, Hurka H. Variation of development time until flowering in natural populations of Capsella bursa-pastoris (Cruciferae) Plant Syst. Evol. 1986;152:277–296. doi: 10.1007/BF00989433. DOI

Fitzpatrick BM. Underappreciated consequences of phenotypic plasticity for ecological speciation. Int. J. Ecol. 2012;2012:1–12. doi: 10.1155/2012/256017. DOI

Mummenhoff K, Franzke A. Gone with the bird: late tertiary and quaternary intercontinental long‐distance dispersal and allopolyploidization in plants. Syst. Biodivers. 2007;5:255–260. doi: 10.1017/S1477200007002393. DOI

Norton DA, Delange PJ, GarnockJones PJ, Given DR. The role of seabirds and seals in the survival of coastal plants: Lessons from New Zealand Lepidium (Brassicaceae) Biodivers. Conserv. 1997;6:765–785. doi: 10.1023/B:BIOC.0000010401.93153.29. DOI

GBIF.org (16th March 2018, GBIF Occurrence Downloads, 10.15468/dl.itlbpu, 10.15468/dl.abzqvw).

R Development Core Team (R Foundation for Statistical Computing, Vienna, Austria.; 2016).

Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. Plos One12 (2017). PubMed PMC

Hengl, T. et al. SoilGrids1km-Global Soil Information Based on Automated Mapping. Plos One9 (2014). PubMed PMC

Shangguan W, Hengl T, Mendes de Jesus J, Yuan H, Dai Y. Mapping the global depth to bedrock for land surface modeling. Journal of Advances in Modeling Earth Systems. 2017;9:65–88. doi: 10.1002/2016MS000686. DOI

Mohammadin S, et al. Genome-wide nucleotide diversity and associations with geography, ploidy level and glucosinolate profiles in Aethionema arabicum (Brassicaceae) Plant Syst. Evol. 2018;304:619–630. doi: 10.1007/s00606-018-1494-3. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...