Naturally-primed life strategy plasticity of dimorphic Aethionema arabicum facilitates optimal habitat colonization
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BB/M00192X/1
RCUK | Biotechnology and Biological Sciences Research Council (BBSRC) - International
PubMed
31695083
PubMed Central
PMC6834856
DOI
10.1038/s41598-019-52520-y
PII: 10.1038/s41598-019-52520-y
Knihovny.cz E-zdroje
- MeSH
- Brassicaceae růst a vývoj fyziologie MeSH
- ekosystém MeSH
- fyziologická adaptace MeSH
- fyziologický stres MeSH
- klíčení MeSH
- ovoce růst a vývoj MeSH
- semena rostlinná růst a vývoj fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Plasticity in plant dispersal traits can maximise the ability of a plant species to survive in stressful environments during colonization. Aethionema arabicum (Brassicaceae) is a dimorphic annual species that is hypothesized to survive stressful conditions during colonization due to adaptive plasticity in life-phase (vegetative vs sexual) and fruit morph (dehiscent [DEH] vs indehiscent fruits [IND]). We tested for adaptive plasticity in life-phase and fruit morphs along laboratory environmental stress gradients found in the natural habitats of Ae. arabicum. We considered optimal environmental conditions (750-2000 m above sea level) to be those that resulted in the following fitness parameters: higher biomass and a higher total number of fruits compared to stressful habitats. We found evidence of plasticity in life-phase and fruit-morph along a stressful environmental gradient. High hydrothermal stress proportionally increased the number of dehiscent morphs and non-dormant seeds germinating in autumn. This offsets natural phenology towards dry and cold winter (less hydrothermal stress), yielding fewer fruits that dehisce in the next generation. We conclude that the plastic responses of Ae. arabicum to natural stress gradients constitute a strategy of long-term adaptive benefits and favouring potential pathways of colonisation of the optimal habitat.
Department of Biology Botany University of Osnabrück Barbarastraße 11 D 49076 Osnabrück Germany
Department of Biology Faculty of Science Hacettepe University Beytepe Ankara 06800 Turkey
Zobrazit více v PubMed
Lomolino MV, Pijanowski BC, Gasc A. The silence of biogeography. J. Biogeogr. 2015;42:1187–1196. doi: 10.1111/jbi.12525. DOI
Darwin, C. On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. (Murrey, London; 1859). PubMed PMC
Wallace, A. R. The geographical distribution of animals: with a study of the relations of living and extinct faunas as elucidating the past changes of the earth’s surface, Vol. 1. (Harper & Brothers, New York; 1876).
Arendt JD. Effects of dispersal plasticity on population divergence and speciation. Heredity (Edinb) 2015;115:306–311. doi: 10.1038/hdy.2015.21. PubMed DOI PMC
Liu, R., Wang, L., Tanveer, M. & Song, J. Seed heteromorphism: an important adaptation of halophytes for habitat heterogeneity. Front. Pl. Sc. 9 (2018). PubMed PMC
Simpson GG. The Baldwin Effect. Evolution. 1953;7:110–117. doi: 10.1111/j.1558-5646.1953.tb00069.x. DOI
Morris MR. Plasticity-mediated persistence in new and changing environments. International journal of evolutionary biology. 2014;2014:416497. doi: 10.1155/2014/416497. PubMed DOI PMC
Guisan A, Thuiller W. Predicting species distribution: offering more than simple habitat models. Ecol. Lett. 2005;8:993–1009. doi: 10.1111/j.1461-0248.2005.00792.x. PubMed DOI
He Q, Bertness MD, Altieri AH. Global shifts towards positive species interactions with increasing environmental stress. Ecol. Lett. 2013;16:695–706. doi: 10.1111/ele.12080. PubMed DOI
Steinbrecher T, Leubner-Metzger G. The biomechanics of seed germination. Journal of Experimental Botany. 2017;68:765–783. PubMed
Baskin JM, Lu JJ, Baskin CC, Tan DY, Wang L. Diaspore dispersal ability and degree of dormancy in heteromorphic species of cold deserts of northwest China: a review. Perspectives in Plant Ecology, Evolution and Systematics. 2014;16:93–99. doi: 10.1016/j.ppees.2014.02.004. DOI
Venable DL, Brown JS. The population-dynamic functions of seed dispersal. Vegetatio. 1993;108:31–55.
Imbert E, Ronce O. Phenotypic plasticity for dispersal ability in the seed heteromorphic Crepis sancta (Asteraceae) Oikos. 2001;93:126–134. doi: 10.1034/j.1600-0706.2001.930114.x. DOI
Rubio de Casas R, Donohue K, Venable DL, Cheptou P-O. Gene-flow through space and time: dispersal, dormancy and adaptation to changing environments. Evolutionary Ecology. 2015;29:813–831. doi: 10.1007/s10682-015-9791-6. DOI
Grime, J. P. Plant strategies and vegetation processes. (Wiley, New York; 1979).
Grime JP. Evidence for the existence of three primary strategies in plants and its relevance to ecological and evolutionary theory. Am. Nat. 1977;111:1169–1194. doi: 10.1086/283244. DOI
van Straalen, N. M. In Environmental Science & Technology 325–330 (ACS Publications, 2003).
Roelofs D, Aarts MGM, Schat H, Van Straalen NM. Functional ecological genomics to demonstrate general and specific responses to abiotic stress. Funct. Ecol. 2008;22:8–18.
Lu JJ, Ma WB, Tan DY, Baskin JM, Baskin CC. Effects of environmental stress and nutlet morph on proportion and within-flower number-combination of morphs produced by the fruit-dimorphic species Lappula duplicicarpa (Boraginaceae) Plant Ecol. 2013;214:351–362. doi: 10.1007/s11258-013-0171-4. DOI
Mandák B, Pyšek P. How does density and nutrient stress affect allometry and fruit production in the heterocarpic species Atriplex sagittata (Chenopodiaceae)? Can. J. Bot. 1999;77:1106–1119.
Sadeh A, Guterman H, Gersani M, Ovadia O. Plastic bet-hedging in an amphicarpic annual: an integrated strategy under variable conditions. Evol. Ecol. 2009;23:373–388. doi: 10.1007/s10682-007-9232-2. DOI
Lu JJ, Tan DY, Baskin JM, Baskin CC. Phenotypic plasticity and bet-hedging in a heterocarpic winter annual/spring ephemeral cold desert species of Brassicaceae. Oikos. 2012;121:357–366. doi: 10.1111/j.1600-0706.2011.19800.x. DOI
Imbert E. Ecological consequences and ontogeny of seed heteromorphism. Perspect. Plant Ecol. Evol. Syst. 2002;5:13–36. doi: 10.1078/1433-8319-00021. DOI
Venable DL, Dyreson E, Morales E. Population dynamic consequences and evolution of seed traits of Heterosperma pinnatum (Asteraceae) Am. J. Bot. 1995;82:410–420. doi: 10.1002/j.1537-2197.1995.tb12646.x. DOI
Moazzeni H, et al. A taxonomic revision of the genus Aethionema s.l. (Brassicaceae) in Iran. Phytotaxa. 2018;356:241–266. doi: 10.11646/phytotaxa.356.4.1. DOI
Franzke A, Lysak MA, Al-Shehbaz IA, Koch MA, Mummenhoff K. Cabbage family affairs: the evolutionary history of Brassicaceae. Trends Plant Sci. 2011;16:108–116. doi: 10.1016/j.tplants.2010.11.005. PubMed DOI
Al-Shehbaz IA, Beilstein MA, Kellogg EA. Systematics and phylogeny of the Brassicaceae (Cruciferae): an overview. Plant Syst. Evol. 2006;259:89–120. doi: 10.1007/s00606-006-0415-z. DOI
Akhani H, Mahdavi P, Noroozi J, Zarrinpour V. Vegetation patterns of the Irano-Turanian steppe along a 3,000 m altitudinal gradient in the Alborz Mountains of Northern Iran. Folia Geobot. 2013;48:229–255. doi: 10.1007/s12224-012-9147-8. DOI
Lenser T, et al. Developmental control and plasticity of fruit and seed dimorphism in Aethionema arabicum. Plant Physiol. (Rockv.) 2016;172:1691–1707. doi: 10.1104/pp.16.00838. PubMed DOI PMC
Solms-Laubach, H. G. Z. Cruciferenstudien II.: Über die Arten des Genus Aethionema, die Schließfrüchte hervorbringen. (Verlag von Arthur Felix, Leibzig; 1901).
Arshad W, et al. Dispersal biophysics and adaptive significance of dimorphic diaspores in the annual Aethionema arabicum (Brassicaceae) New Phytol. 2019;221:1434–1446. doi: 10.1111/nph.15490. PubMed DOI PMC
Dubois J, Cheptou PO. Competition/colonization syndrome mediated by early germination in non-dispersing achenes in the heteromorphic species Crepis sancta. Ann. Bot. (Lond.) 2012;110:1245–1251. doi: 10.1093/aob/mcs203. PubMed DOI PMC
Lenser T, et al. When the BRANCHED network bears fruit: how carpic dominance causes fruit dimorphism in Aethionema. Plant J. 2018;94:352–371. doi: 10.1111/tpj.13861. PubMed DOI
Zohary M, Fahn A. On the heterocarpy of Aethionema. Palest. J. Bot. Jer. Ser. 1950;5:28–31.
Bhattacharya S, Mayland-Quellhorst S, Muller C, Mummenhoff K. Two-tier morpho-chemical defence tactic in Aethionema via fruit morph plasticity and glucosinolates allocation in diaspores. Plant Cell Environ. 2019;42:1381–1392. doi: 10.1111/pce.13462. PubMed DOI
Manafzadeh S, Staedler YM, Conti E. Visions of the past and dreams of the future in the Orient: the Irano-Turanian region from classical botany to evolutionary studies. Biol. Rev. Camb. Philos. Soc. 2017;92:1365–1388. doi: 10.1111/brv.12287. PubMed DOI
Thuiller W, Lavorel S, Midgley G, Lavergne S, Rebelo T. Relating plant traits and species distributions along bioclimatic gradients for 88 Leucadendron taxa. Ecology. 2004;85:1688–1699. doi: 10.1890/03-0148. DOI
Rumpf SB, et al. Range dynamics of mountain plants decrease with elevation. Proc. Natl. Acad. Sci. USA. 2018;115:1848. doi: 10.1073/pnas.1713936115. PubMed DOI PMC
Körner C. The use of ‘altitude’ in ecological research. Trends Ecol. Evol. 2007;22:569–574. doi: 10.1016/j.tree.2007.09.006. PubMed DOI
Manafzadeh S, Salvo G, Conti E, Ebach M. A tale of migrations from east to west: the Irano-Turanian floristic region as a source of Mediterranean xerophytes. J. Biogeogr. 2014;41:366–379. doi: 10.1111/jbi.12185. DOI
Parolly, G. The high-mountain flora and vegetation of the western and central Taurus Mts.(Turkey) in the times of climate change, In Climate Change Impacts on High-Altitude Ecosystems 99–133 (Springer, 2015).
Younginger BS, Sirova D, Cruzan MB, Ballhorn DJ. Is biomass a reliable estimate of plant fitness? Appl. Pl. Sc. 2017;5:1600094. doi: 10.3732/apps.1600094. PubMed DOI PMC
Wang L, et al. Seed dimorphism, nutrients and salinity differentially affect seed traits of the desert halophyte Suaeda aralocaspica via multiple maternal effects. BMC Plant Biol. 2012;12:1–11. doi: 10.1186/1471-2229-12-1. PubMed DOI PMC
Wang G, et al. Timing of seed germination in two alpine herbs on the southeastern Tibetan plateau: the role of seed dormancy and annual dormancy cycling in soil. Plant Soil. 2017;421:465–476. doi: 10.1007/s11104-017-3400-0. DOI
Halbritter AH, et al. Trait differentiation and adaptation of plants along elevation gradients. J. Evol. Biol. 2018;31:784–800. doi: 10.1111/jeb.13262. PubMed DOI
Neuffer B, Hurka H. Variation of development time until flowering in natural populations of Capsella bursa-pastoris (Cruciferae) Plant Syst. Evol. 1986;152:277–296. doi: 10.1007/BF00989433. DOI
Fitzpatrick BM. Underappreciated consequences of phenotypic plasticity for ecological speciation. Int. J. Ecol. 2012;2012:1–12. doi: 10.1155/2012/256017. DOI
Mummenhoff K, Franzke A. Gone with the bird: late tertiary and quaternary intercontinental long‐distance dispersal and allopolyploidization in plants. Syst. Biodivers. 2007;5:255–260. doi: 10.1017/S1477200007002393. DOI
Norton DA, Delange PJ, GarnockJones PJ, Given DR. The role of seabirds and seals in the survival of coastal plants: Lessons from New Zealand Lepidium (Brassicaceae) Biodivers. Conserv. 1997;6:765–785. doi: 10.1023/B:BIOC.0000010401.93153.29. DOI
GBIF.org (16th March 2018, GBIF Occurrence Downloads, 10.15468/dl.itlbpu, 10.15468/dl.abzqvw).
R Development Core Team (R Foundation for Statistical Computing, Vienna, Austria.; 2016).
Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. Plos One12 (2017). PubMed PMC
Hengl, T. et al. SoilGrids1km-Global Soil Information Based on Automated Mapping. Plos One9 (2014). PubMed PMC
Shangguan W, Hengl T, Mendes de Jesus J, Yuan H, Dai Y. Mapping the global depth to bedrock for land surface modeling. Journal of Advances in Modeling Earth Systems. 2017;9:65–88. doi: 10.1002/2016MS000686. DOI
Mohammadin S, et al. Genome-wide nucleotide diversity and associations with geography, ploidy level and glucosinolate profiles in Aethionema arabicum (Brassicaceae) Plant Syst. Evol. 2018;304:619–630. doi: 10.1007/s00606-018-1494-3. DOI
Complementing model species with model clades
Aethionema arabicum dimorphic seed trait resetting during transition to seedlings