Phytochromes mediate germination inhibition under red, far-red, and white light in Aethionema arabicum
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
I 3979
Austrian Science Fund FWF - Austria
PubMed
36861637
PubMed Central
PMC10231562
DOI
10.1093/plphys/kiad138
PII: 7067346
Knihovny.cz E-zdroje
- MeSH
- Arabidopsis * metabolismus MeSH
- Brassicaceae * genetika MeSH
- fytochrom * genetika metabolismus MeSH
- hormony metabolismus MeSH
- klíčení genetika MeSH
- proteiny huseníčku * genetika metabolismus MeSH
- semena rostlinná genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fytochrom * MeSH
- hormony MeSH
- proteiny huseníčku * MeSH
The view on the role of light during seed germination stems mainly from studies with Arabidopsis (Arabidopsis thaliana), where light is required to initiate this process. In contrast, white light is a strong inhibitor of germination in other plants, exemplified by accessions of Aethionema arabicum, another member of Brassicaceae. Their seeds respond to light with gene expression changes of key regulators converse to that of Arabidopsis, resulting in opposite hormone regulation and prevention of germination. However, the photoreceptors involved in this process in A. arabicum remain unknown. Here, we screened a mutant collection of A. arabicum and identified koy-1, a mutant that lost light inhibition of germination due to a deletion in the promoter of HEME OXYGENASE 1, the gene for a key enzyme in the biosynthesis of the phytochrome chromophore. koy-1 seeds were unresponsive to red- and far-red light and hyposensitive under white light. Comparison of hormone and gene expression between wild type and koy-1 revealed that very low light fluence stimulates germination, while high irradiance of red and far-red light is inhibitory, indicating a dual role of phytochromes in light-regulated seed germination. The mutation also affects the ratio between the 2 fruit morphs of A. arabicum, suggesting that light reception via phytochromes can fine-tune several parameters of propagation in adaptation to conditions in the habitat.
Gregor Mendel Institute of Molecular Plant Biology Vienna 1030 Austria
Institute of Biology 2 University of Freiburg Freiburg D 79104 Germany
Technical University of Vienna TRIGA Center Atominstitut Vienna 1020 Austria
Zobrazit více v PubMed
Ahmad M, Cashmore AR. The blue-light receptor cryptochrome 1 shows functional dependence on phytochrome A or phytochrome B in Arabidopsis thaliana. Plant J. 1997:11(3):421–427. 10.1046/j.1365-313X.1997.11030421.x PubMed DOI
Appenroth KJ, Lenk G, Goldau L, Sharma R. Tomato seed germination: regulation of different response modes by phytochrome B2 and phytochrome A. Plant Cell Environ. 2006:29(4):701–709. 10.1111/j.1365-3040.2005.01455.x PubMed DOI
Arana MV, Burgin MJ, de Miguel LC, Sánchez RA. The very-low-fluence and high-irradiance responses of the phytochromes have antagonistic effects on germination, mannan-degrading activities, and DfGA3ox transcript levels in Datura ferox seeds. J Exp Bot. 2007:58(14):3997–4004. 10.1093/jxb/erm256 PubMed DOI
Arshad W, Sperber K, Steinbrecher T, Nichols B, Jansen VAA, Leubner-Metzger G, Mummenhoff K. Dispersal biophysics and adaptive significance of dimorphic diaspores in the annual Aethionema arabicum (Brassicaceae). New Phytol. 2019:221(3):1434–1446. 10.1111/nph.15490 PubMed DOI PMC
Auge GA, Perelman S, Crocco CD, Sánchez RA, Botto JF. Gene expression analysis of light-modulated germination in tomato seeds. New Phytol. 2009:183(2):301–314. 10.1111/j.1469-8137.2009.02867.x PubMed DOI
Barragan CA, Collenberg M, Schwab R, Kerstens M, Bezrukov I, Bemm F, Požárová D, Kolář F, Weigel D. Homozygosity at its limit: inbreeding depression in wild Arabidopsis arenosa populations. bioRxiv 2021.01.24.427284. 10.1101/2021.01.24.427284, preprint: not peer reviewed. PubMed DOI PMC
Barrero JM, Downie AB, Xu Q, Gubler F. A role for barley CRYPTOCHROME1 in light regulation of grain dormancy and germination. Plant Cell. 2014:26(3):1094–1104. 10.1105/tpc.113.121830 PubMed DOI PMC
Barrero JM, Jacobsen JV, Talbot MJ, White RG, Swain SM, Garvin DF, Gubler F. Grain dormancy and light quality effects on germination in the model grass Brachypodium distachyon. New Phytol. 2012:193(2):376–386. 10.1111/j.1469-8137.2011.03938.x PubMed DOI
Baskin JM, Baskin CC, Tan DY, Wang L. Diaspore dispersal ability and degree of dormancy in heteromorphic species of cold deserts of northwest China: a review. Perspect Plant Ecol Evol Syst. 2014:16(2):93–99. 10.1016/j.ppees.2014.02.004 DOI
Bhattacharya S, Sperber K, Özüdoğru B, Leubner-Metzger G, Mummenhoff K. Naturally-primed life strategy plasticity of dimorphic Aethionema arabicum facilitates optimal habitat colonization. Sci Rep. 2019:9(1):16108. 10.1038/s41598-019-52520-y PubMed DOI PMC
Botha FC, Small JGC. The germination response of the negatively photoblastic seeds of Citrullus lanatus to light of different spectral compositions. J Plant Physiol. 1988:132(6):750–753. 10.1016/S0176-1617(88)80240-2 DOI
Botto JF, Sanchez RA, Whitelam GC, Casal JJ. Phytochrome A mediates the promotion of seed germination by very low fluences of light and canopy shade light in Arabidopsis. Plant Physiol. 1996:110(2):439–444. 10.1104/pp.110.2.439 PubMed DOI PMC
Brown SB, Houghton JD, Vernon DI. Biosynthesis of phycobilins. Formation of the chromophore of phytochrome, phycocyanin and phycoerythrin. J Photochem Photobiol B. 1990:5(1):3–23. 10.1016/1011-1344(90)85002-E PubMed DOI
Carta A, Skourti E, Mattana E, Vandelook F, Thanos CA. Photoinhibition of seed germination: occurrence, ecology and phylogeny. Seed Sci Res. 2017:27(2):131–153. 10.1017/S0960258517000137 DOI
Casal JJ, Boccalandro H. Co-action between phytochrome B and HY4 in Arabidopsis thaliana. Planta. 1995:197(2):213–218. 10.1007/BF00202639 PubMed DOI
Casal JJ, Sanchez RA. Phytochromes and seed germination. Seed Sci Res. 1998:8(3):3. 10.1017/S0960258500004256 DOI
Casal JJ, Sanchez RA, Botto JF. Modes of action of phytochromes. J Exp Bot. 1998:49(319):127–138. 10.1093/jxb/49.319.127 DOI
Chen M, MacGregor DR, Dave A, Florance H, Moore K, Paszkiewicz K, Smirnoff N, Graham IA, Penfield S. Maternal temperature history activates Flowering Locus T in fruits to control progeny dormancy according to time of year. Proc Natl Acad Sci U S A. 2014:111(52):18787–18792. 10.1073/pnas.1412274111 PubMed DOI PMC
Chory J, Peto C, Feinbaum R, Pratt L, Ausubel F. Arabidopsis thaliana mutant that develops as a light-grown plant in the absence of light. Cell. 1989:58(5):991–999. 10.1016/0092-8674(89)90950-1 PubMed DOI
Christie JM, Blackwood L, Petersen J, Sullivan S. Plant flavoprotein photoreceptors. Plant Cell Physiol. 2015:56(3):401–413. 10.1093/pcp/pcu196 PubMed DOI PMC
Costa A, Soveral Dias A, Grenho MG, Silva Dias L. Effects of dark or of red, blue or white light on germination of subterranean clover seeds. Emirates J Food Agric. 2016:28(12):853–864. 10.9755/ejfa.2016-06-774 DOI
Dehesh K, Franci C, Parks BM, Seeley KA, Short TW, Tepperman JM, Quail PH. Arabidopsis HY8 locus encodes phytochrome A. Plant Cell. 1993:5(9):1081–1088. 10.1105/tpc.5.9.1081 PubMed DOI PMC
Emborg TJ, Walker JM, Noh B, Vierstra RD. Multiple heme oxygenase family members contribute to the biosynthesis of the phytochrome chromophore in Arabidopsis. Plant Physiol. 2006:140(3):856–868. 10.1104/pp.105.074211 PubMed DOI PMC
Fernandez-Pozo N, Metz T, Chandler JO, Gramzow L, Mérai Z, Maumus F, Mittelsten Scheid O, Theißen G, Schranz ME, Leubner-Metzger G, et al. . Aethionema arabicum genome annotation using PacBio full-length transcripts provides a valuable resource for seed dormancy and Brassicaceae evolution research. Plant J. 2021:106(1):275–293. 10.1111/tpj.15161 PubMed DOI PMC
Finch-Savage WE, Leubner-Metzger G. Seed dormancy and the control of germination. New Phytol. 2006:171(3):501–523. 10.1111/j.1469-8137.2006.01787.x PubMed DOI
Franklin KA, Quail PH. Phytochrome functions in Arabidopsis development. J Exp Bot. 2010:61(1):11–24. 10.1093/jxb/erp304 PubMed DOI PMC
Furuya M, Schäfer E. Photoperception and signalling of induction reactions by different phytochromes. Trends Plant Sci. 1996:1(9):301–307. 10.1016/S1360-1385(96)88176-0 DOI
Goggin DE, Steadman KJ, Powles SB. Green and blue light photoreceptors are involved in maintenance of dormancy in imbibed annual ryegrass (Lolium rigidum) seeds. New Phytol. 2008:180(1):81–89. 10.1111/j.1469-8137.2008.02570.x PubMed DOI
Goldthwaite JJ, Bristol JC, Gentile AC, Klein RM. Light-suppressed germination of California poppy seed. Can J Bot. 1971:49(9):1655–1659. 10.1139/b71-233 DOI
Gubler F, Hughes T, Waterhouse P, Jacobsen J. Regulation of dormancy in barley by blue light and after-ripening: effects on abscisic acid and gibberellin metabolism. Plant Physiol. 2008:147(2):886–896. 10.1104/pp.107.115469 PubMed DOI PMC
Gyula N, Schafer E, Nagy F. Light perception and signalling in higher plants. Curr Opin Plant Biol. 2003:6(5):446–452. 10.1016/S1369-5266(03)00082-7 PubMed DOI
Haudry A, Platts AE, Vello E, Hoen DR, Leclercq M, Williamson RJ, Forczek E, Joly-Lopez Z, Steffen JG, Hazzouri KM, et al. . An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions. Nat Genet. 2013:45(8):891–898. 10.1038/ng.2684 PubMed DOI
Hilton JR. An unusual effect of the far-red absorbing form of phytochrome: photoinhibition of seed germination in Bromus sterilis L. Planta. 1982:155(6):524–528. 10.1007/BF01607578 PubMed DOI
Hofmeister BT, Denkena J, Colomé-Tatché M, Shahryary Y, Hazarika R, Grimwood J, Mamidi S, Jenkins J, Grabowski PP, Sreedasyam A, et al. . A genome assembly and the somatic genetic and epigenetic mutation rate in a wild long-lived perennial Populus trichocarpa. Genome Biol. 2020:21(1):259. 10.1186/s13059-020-02162-5 PubMed DOI PMC
Holm M, Ma L-G, Qu L-J, Deng X-W. Two interacting bZIP proteins are direct targets of COP1-mediated control of light-dependent gene expression in Arabidopsis. Genes Dev. 2002:16(10):1247–1259. 10.1101/gad.969702 PubMed DOI PMC
Izawa T, Oikawa T, Tokutomi S, Okuno K, Shimamoto K. Phytochromes confer the photoperiodic control of flowering in rice (a short-day plant). Plant J. 2000:22(5):391–399. 10.1046/j.1365-313X.2000.00753.x PubMed DOI
Keuskamp DH, Pollmann S, Voesenek LA, Peeters AJ, Pierik R. Auxin transport through PIN-FORMED 3 (PIN3) controls shade avoidance and fitness during competition. Proc Natl Acad Sci U S A. 2010:107(52):22740–22744. 10.1073/pnas.1013457108 PubMed DOI PMC
Klose C. In vivo spectroscopy. Methods Mol Biol. 2019:2026:113–120. 10.1007/978-1-4939-9612-4_8 PubMed DOI
Kohchi T, Mukougawa K, Frankenberg N, Masuda M, Yokota A, Lagarias JC. The Arabidopsis HY2 gene encodes phytochromobilin synthase, a ferredoxin-dependent biliverdin reductase. Plant Cell. 2001:13(2):425–436. 10.1105/tpc.13.2.425 PubMed DOI PMC
Koller D. Germination-regulating mechanisms in some desert seeds. IV. Atriplex dimorphostegia Kar. et Kir. Ecology. 1957:38(1):1–13. 10.2307/1932120 DOI
Konomi K, Abe H, Furuya M. Changes in the content of phytochrome I and II apoproteins in embryonic axes of pea seeds during imbibition. Plant Cell Physiol. 1987:28(8):1443–1451. 10.1093/oxfordjournals.pcp.a077437 DOI
Koornneef M, Cone JW, Dekens RG, O’Herne-Robers EG, Spruit CJP, Kendrick RE. Photomorphogenic responses of long hypocotyl mutants of tomato. J Plant Physiol. 1985:120(2):153–165. 10.1016/S0176-1617(85)80019-5 DOI
Koornneef M, Rolff E, Spruit CJP. Genetic control of light-inhibited hypocotyl elongation in Arabidopsis thaliana (L. Heynh). Z Pflanzenphysiol. 1980:100(2):147–160. 10.1016/S0044-328X(80)80208-X DOI
Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017:27(5):722–736. 10.1101/gr.215087.116 PubMed DOI PMC
Kraepiel Y, Jullien M, Cordonnier-Pratt MM, Pratt L. Identification of two loci involved in phytochrome expression in Nicotiana plumbaginifolia and lethality of the corresponding double mutant. Mol Gen Genet. 1994:242(5):559–565. 10.1007/BF00285279 PubMed DOI
Lai LM, Chen LJ, Jiang LH, Zhou JH, Zheng YR, Shimizu H. Seed germination of seven desert plants and implications for vegetation restoration. AOB Plants. 2016:8:plw031. 10.1093/aobpla/plw031 PubMed DOI PMC
Lamparter T. Evolution of cyanobacterial and plant phytochromes. FEBS Lett. 2004:573(1–3):1–5. 10.1016/j.febslet.2004.07.050 PubMed DOI
Lamparter T, Esch H, Cove D, Hughes J, Hartmann E. Aphototropic mutants of the moss Ceratodon purpureus with spectrally normal and with spectrally dysfunctional phytochrome. Plant Cell Environ. 1996:19(5):560–568. 10.1111/j.1365-3040.1996.tb00389.x DOI
Lenser T, Graeber K, Cevik ZS, Adiguzel N, Donmez AA, Grosche C, Kettermann M, Mayland-Quellhorst S, Merai Z, Mohammadin S, et al. . Developmental control and plasticity of fruit and seed dimorphism in Aethionema arabicum. Plant Physiol. 2016:172(3):1691–1707. 10.1104/pp.16.00838 PubMed DOI PMC
Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S. PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res. 2002:30(1):325–327. 10.1093/nar/30.1.325 PubMed DOI PMC
Li J, Li G, Wang H, Wang Deng X. Phytochrome signaling mechanisms. Arabidopsis Book. 2011:9:e0148. 10.1199/tab.0148 PubMed DOI PMC
Mahawar L, Shekhawat GS. Haem oxygenase: a functionally diverse enzyme of photosynthetic organisms and its role in phytochrome chromophore biosynthesis, cellular signalling and defence mechanisms. Plant Cell Environ. 2018:41(3):483–500. 10.1111/pce.13116 PubMed DOI
Mancinelli AL. The physiology of phytochrome action. In: Kendrick RE, Kronenberg GHM, editors. Photomorphogenesis in plants. Dordrecht: (The Netherlands: ): Kluwer Academic Publishers; 1994. p. 211–269.
Mérai Z, Graeber K, Wilhelmsson P, Ullrich KK, Arshad W, Grosche C, Tarkowská D, Turečková V, Strnad M, Rensing SA, et al. . Aethionema arabicum: a novel model plant to study the light control of seed germination. J Exp Bot. 2019:70(12):3313–3328. 10.1093/jxb/erz146 PubMed DOI PMC
Mohammadin S, Peterse K, van de Kerke SJ, Chatrou LW, Dönmez AA, Mummenhoff K, Pires JC, Edger PP, Al-Shehbaz IA, Schranz ME. Anatolian origins and diversification of Aethionema, the sister lineage of the core Brassicaceae. Am J Bot. 2017:104(7):1042–1054. 10.3732/ajb.1700091 PubMed DOI
Nagatani A, Reed JW, Chory J. Isolation and initial characterization of Arabidopsis mutants that are deficient in phytochrome A. Plant Physiol. 1993:102(1):269–277. 10.1104/pp.102.1.269 PubMed DOI PMC
Neff MM, Chory J. Genetic interactions between phytochrome A, phytochrome B, and cryptochrome 1 during Arabidopsis development. Plant Physiol. 1998:118(1):27–35. 10.1104/pp.118.1.27 PubMed DOI PMC
Oh E, Yamaguchi S, Hu JH, Yusuke J, Jung B, Paik I, Lee HS, Sun TP, Kamiya Y, Choi G. PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds. Plant Cell. 2007:19(4):1192–1208. 10.1105/tpc.107.050153 PubMed DOI PMC
Pons TL. Light-mediated germination. In: Gallagher RS, editor. Seeds: the ecology of regeneration in plant communities. 3rd ed. Boston: CAB International; 2014. p. 111–134.
Quail PH. The phytochromes: a biochemical mechanism of signaling in sight? Bioessays. 1997:19(7):571–579. 10.1002/bies.950190708 PubMed DOI
Quail PH, Boylan MT, Parks BM, Short TW, Xu Y, Wagner D. Phytochromes: photosensory perception and signal transduction. Science. 1995:268(5211):675–680. 10.1126/science.7732376 PubMed DOI
Rancurel C, van Tran T, Elie C, Hilliou F. SATQPCR: website for statistical analysis of real-time quantitative PCR data. Mol Cell Probes 2019:46:101418. 10.1016/j.mcp.2019.07.001 PubMed DOI
Rizzini L, Favory J-J, Cloix C, Faggionato D, O'Hara A, Kaiserli E, Baumeister R, Schäfer E, Nagy F, Jenkins GI, et al. . Perception of UV-B by the Arabidopsis UVR8 protein. Science. 2011:332(6025):103–106. 10.1126/science.1200660 PubMed DOI
Saatkamp A, Cochrane A, Commander L, Guja LK, Jimenez-Alfaro B, Larson J, Nicotra A, Poschlod P, Silveira FAO, Cross AT, et al. . A research agenda for seed-trait functional ecology. New Phytol. 2019:221(4):1764–1775. 10.1111/nph.15502 PubMed DOI
Sawers RJ, Linley PJ, Gutierrez-Marcos JF, Delli-Bovi T, Farmer PR, Kohchi T, Terry MJ, Brutnell TP. The Elm1 (ZmHy2) gene of maize encodes a phytochromobilin synthase. Plant Physiol. 2004:136(1):2771–2781. 10.1104/pp.104.046417 PubMed DOI PMC
Schulz OP, Klein RM. Effects of visible and ultraviolet radiation on the germination of Phacelia tanacetifolia. Am J Bot. 1963:50(5):430–434. 10.1002/j.1537-2197.1963.tb07211.x DOI
Seo M, Hanada A, Kuwahara A, Endo A, Okamoto M, Yamauchi Y, North H, Marion-Poll A, Sun TP, Koshiba T, et al. . Regulation of hormone metabolism in Arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism. Plant J. 2006:48(3):354–366. 10.1111/j.1365-313X.2006.02881.x PubMed DOI
Seo M, Nambara E, Choi G, Yamaguchi S. Interaction of light and hormone signals in germinating seeds. Plant Mol Biol. 2009:69(4):463–472. 10.1007/s11103-008-9429-y PubMed DOI
Shinomura T, Nagatani A, Chory J, Furuya M. The induction of seed germination in Arabidopsis thaliana is regulated principally by phytochrome B and secondarily by phytochrome A. Plant Physiol. 1994:104(2):363–371. 10.1104/pp.104.2.363 PubMed DOI PMC
Shinomura T, Nagatani A, Hanzawa H, Kubota M, Watanabe M, Furuya M. Action spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis thaliana. Proc Natl Acad Sci U S A. 1996:93(15):8129–8133. 10.1073/pnas.93.15.8129 PubMed DOI PMC
Shropshire W, Klein WH, Elstad VB. Action spectra of photomorphogenic induction and photoinactivation of germination in Arabidopsis thaliana. Plant Cell Physiol. 1961:2(1):63–69. 10.1093/oxfordjournals.pcp.a077664 DOI
Stawska M, Oracz K. Phyb and HY5 are involved in the blue light-mediated alleviation of dormancy of Arabidopsis seeds possibly via the modulation of expression of genes related to light, GA, and ABA. Int J Mol Sci. 2019:20(23):5882. 10.3390/ijms20235882 PubMed DOI PMC
Takaki M. New proposal of classification of seeds based on forms of phytochrome instead of photoblastism. Rev Bras Fisiol Veg. 2001:13(1):104–108. 10.1590/S0103-31312001000100011 DOI
Tanno N. Blue light induced inhibition of seed germination: the necessity of the fruit coats for the blue light response. Physiol Plant. 1983:58(1):18–20. 10.1111/j.1399-3054.1983.tb04136.x DOI
Terry MJ. Phytochrome chromophore-deficient mutants. Plant Cell Environ. 1997:20(6):740–745. 10.1046/j.1365-3040.1997.d01-102.x DOI
Terry MJ, Linley PJ, Kohchi T. Making light of it: the role of plant haem oxygenases in phytochrome chromophore synthesis. Biochem Soc Trans. 2002:30(4):604–609. 10.1042/bst0300604 PubMed DOI
Thanos CA, Georghiou K, Delipetrou P. Photoinhibition of seed germination in the maritime plant Matthiola tricuspidata. Ann Bot. 1994:73(6):639–644. 10.1006/anbo.1994.1080 DOI
Thanos CA, Georghiou K, Douma DJ, Marangaki CJ. Photoinhibition of seed germination in Mediterranean maritime plants. Ann Bot. 1991:68(5):469–475. 10.1093/oxfordjournals.aob.a088280 DOI
Thanos CA, Mitrakos K. Watermelon seed germination. Osmomanipulation of photosensitivity. Seed Sci Res. 1992:2(3):163–168. 10.1017/S096025850000129X DOI
Turecková V, Novák O, Strnad M. Profiling ABA metabolites in Nicotiana tabacum L. leaves by ultra-performance liquid chromatography-electrospray tandem mass spectrometry. Talanta. 2009:80(1):390–399. 10.1016/j.talanta.2009.06.027 PubMed DOI
Urbanová T, Tarkowská D, Novák O, Hedden P, Strnad M. Analysis of gibberellins as free acids by ultra performance liquid chromatography-tandem mass spectrometry. Talanta 2013:112:85–94. 10.1016/j.talanta.2013.03.068 PubMed DOI
Vandelook F, Newton RJ, Carta A. Photophobia in Lilioid monocots: photoinhibition of seed germination explained by seed traits, habitat adaptation and phylogenetic inertia. Ann Bot. 2018:121(3):405–413. 10.1093/aob/mcx147 PubMed DOI PMC
van Tuinen A, Hanhart CJ, Kerckhoffs LHJ, Nagatani A, Boylan MT, Quail PH, Kendrick RE, Koornneef M. Analysis of phytochrome-deficient yellow-green-2 and aurea mutants of tomato. Plant J. 1996:9(2):173–182. 10.1046/j.1365-313X.1996.09020173.x DOI
Venable DL, Brown JS. The selective interactions of dispersal, dormancy, and seed size as adaptations for reducing risk in variable environments. Am Nat. 1988:131(3):360–384. 10.1086/284795 DOI
Venable DL, Lawlor L. Delayed germination and dispersal in desert annuals: escape in space and time. Oecologia. 1980:46(2):272–282. 10.1007/BF00540137 PubMed DOI
Vleeshouwers IM, Bouwmeester HJ, Karssen CM. Redefining seed dormancy: an attempt to integrate physiology and ecology. J Ecol. 1995:83(6):1031–1037. 10.2307/2261184 DOI
Weller JL, Murfet IC, Reid JB. Pea mutants with reduced sensitivity to far-red light define an important role for phytochrome A in day-length detection. Plant Physiol. 1997:114(4):1225–1236. 10.1104/pp.114.4.1225 PubMed DOI PMC
Weller JL, Terry MJ, Rameau C, Reid JB, Kendrick RE. The phytochrome-deficient pcd1 mutant of pea is unable to convert heme to biliverdin IX alpha. Plant Cell. 1996:8(1):55–67. 10.2307/3870068 PubMed DOI PMC
Wu TD, Watanabe CK. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics. 2005:21(9):1859–1875. 10.1093/bioinformatics/bti310 PubMed DOI
Yang L, Liu S, Lin R. The role of light in regulating seed dormancy and germination. J Integr Plant Biol. 2020:62(9):1310–1326. 10.1111/jipb.13001 PubMed DOI
Yaniv Z, Mancinelli AL. Phytochrome and seed germination. IV. Action of light sources with different spectral energy distribution on the germination of tomato seeds. Plant Physiol. 1968:43(1):117–120. 10.1104/pp.43.1.117 PubMed DOI PMC