Aethionema arabicum: a novel model plant to study the light control of seed germination

. 2019 Jun 28 ; 70 (12) : 3313-3328.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30949700

Grantová podpora
I 1477 Austrian Science Fund FWF - Austria
I 3979 Austrian Science Fund FWF - Austria
BB/M00192X/1 Biotechnology and Biological Sciences Research Council - United Kingdom

The timing of seed germination is crucial for seed plants and is coordinated by internal and external cues, reflecting adaptations to different habitats. Physiological and molecular studies with lettuce and Arabidopsis thaliana have documented a strict requirement for light to initiate germination and identified many receptors, signaling cascades, and hormonal control elements. In contrast, seed germination in several other plants is inhibited by light, but the molecular basis of this alternative response is unknown. We describe Aethionema arabicum (Brassicaceae) as a suitable model plant to investigate the mechanism of germination inhibition by light, as this species has accessions with natural variation between light-sensitive and light-neutral responses. Inhibition of germination occurs in red, blue, or far-red light and increases with light intensity and duration. Gibberellins and abscisic acid are involved in the control of germination, as in Arabidopsis, but transcriptome comparisons of light- and dark-exposed A. arabicum seeds revealed that, upon light exposure, the expression of genes for key regulators undergo converse changes, resulting in antipodal hormone regulation. These findings illustrate that similar modular components of a pathway in light-inhibited, light-neutral, and light-requiring germination among the Brassicaceae have been assembled in the course of evolution to produce divergent pathways, likely as adaptive traits.

Zobrazit více v PubMed

Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. Journal of Molecular Biology 215, 403–410. PubMed

Anders S, Pyl PT, Huber W. 2015. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169. PubMed PMC

Argyris J, Dahal P, Hayashi E, Still DW, Bradford KJ. 2008. Genetic variation for lettuce seed thermoinhibition is associated with temperature-sensitive expression of abscisic acid, gibberellin, and ethylene biosynthesis, metabolism, and response genes. Plant Physiology 148, 926–947. PubMed PMC

Barrero JM, Downie AB, Xu Q, Gubler F. 2014. A role for barley CRYPTOCHROME1 in light regulation of grain dormancy and germination. The Plant Cell 26, 1094–1104. PubMed PMC

Barrero JM, Jacobsen JV, Talbot MJ, White RG, Swain SM, Garvin DF, Gubler F. 2012. Grain dormancy and light quality effects on germination in the model grass Brachypodium distachyon. New Phytologist 193, 376–386. PubMed

Bartels PG, Watson CW. 1978. Inhibition of carotenoid synthesis by fluridone and norflurazon. Weed Science 26, 198–203.

Bentsink L, Hanson J, Hanhart CJ, et al. . 2010. Natural variation for seed dormancy in Arabidopsis is regulated by additive genetic and molecular pathways. Proceedings of the National Academy of Sciences, USA 107, 4264–4269. PubMed PMC

Bentsink L, Jowett J, Hanhart CJ, Koornneef M. 2006. Cloning of DOG1, a quantitative trait locus controlling seed dormancy in Arabidopsis. Proceedings of the National Academy of Sciences, USA 103, 17042–17047. PubMed PMC

Bewley JD, Bradford K, Hilhorst H, Nonogaki H. 2013. Seeds. Physiology of development, germination and dormancy, 3rd edn. New York: Springer.

Black M, Wareing PF. 1960. Photoperiodism in the light-inhibited seed of Nemophila insignis. Journal of Experimental Botany 11, 28–39.

Boccaccini A, Santopolo S, Capauto D, Lorrai R, Minutello E, Belcram K, Palauqui JC, Costantino P, Vittorioso P. 2014. Independent and interactive effects of DOF affecting germination 1 (DAG1) and the Della proteins GA insensitive (GAI) and Repressor of ga1-3 (RGA) in embryo development and seed germination. BMC Plant Biology 14, 200. PubMed PMC

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120. PubMed PMC

Borthwick HA, Hendricks SB, Parker MW, Toole EH, Toole VK. 1952. A reversible photoreaction controlling seed germination. Proceedings of the National Academy of Sciences, USA 38, 662–666. PubMed PMC

Botha FC, Small JGC. 1988. The germination response of the negatively photoblastic seeds of Citrullus lanatus to light of different spectral compositions. Journal of Plant Physiology 132, 750–753.

Casal JJ, Sanchez RA. 1998. Phytochromes and seed germination. Seed Science Research 8, 3.

Casal JJ, Sanchez RA, Botto JF. 1998. Modes of action of phytochromes. Journal of Experimental Botany 49, 127–138. PubMed

Chang S, Puryear J, Cairney J. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Molecular Biology Reporter 11, 113–116.

Chen SSC. 1968. Germination of light-inhibited seed of Nemophila insignis. American Journal of Botany 55, 1177–1183.

Chen SS. 1970. Influence of factors affecting germination on respiration of Phacelia tanacetifolia seeds. Planta 95, 330–335. PubMed

Chiang GC, Bartsch M, Barua D, Nakabayashi K, Debieu M, Kronholm I, Koornneef M, Soppe WJ, Donohue K, De Meaux J. 2011. DOG1 expression is predicted by the seed-maturation environment and contributes to geographical variation in germination in Arabidopsis thaliana. Molecular Ecology 20, 3336–3349. PubMed

Cho JN, Ryu JY, Jeong YM, Park J, Song JJ, Amasino RM, Noh B, Noh YS. 2012. Control of seed germination by light-induced histone arginine demethylation activity. Developmental Cell 22, 736–748. PubMed

Clamp M, Cuff J, Searle SM, Barton GJ. 2004. The Jalview Java alignment editor. Bioinformatics 20, 426–427. PubMed

Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. 2005. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676. PubMed

Darriba D, Taboada GL, Doallo R, Posada D. 2011. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27, 1164–1165. PubMed PMC

Debeaujon I, Koornneef M. 2000. Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid. Plant Physiology 122, 415–424. PubMed PMC

Dekkers BJ, He H, Hanson J, Willems LA, Jamar DC, Cueff G, Rajjou L, Hilhorst HW, Bentsink L. 2016. The Arabidopsis DELAY OF GERMINATION 1 gene affects ABSCISIC ACID INSENSITIVE 5 (ABI5) expression and genetically interacts with ABI3 during Arabidopsis seed development. The Plant Journal 85, 451–465. PubMed

Densmore R. 1997. Effect of day length on germination of seeds collected in Alaska. American Journal of Botany 84, 274. PubMed

Derkx MPM, Verneer E, Karssen CM. 1994. Gibberellins in seeds of Arabidopsis thaliana: biological activities, identification and effects of light and chilling on endogenous levels. Plant Growth Regulation 15, 223–234.

Fenner M, Thompson K. 2005. The ecology of seeds. Annals of Botany 97, 151–152.

Finch-Savage WE, Footitt S. 2017. Seed dormancy cycling and the regulation of dormancy mechanisms to time germination in variable field environments. Journal of Experimental Botany 68, 843–856. PubMed

Finch-Savage WE, Leubner-Metzger G. 2006. Seed dormancy and the control of germination. New Phytologist 171, 501–523. PubMed

Footitt S, Douterelo-Soler I, Clay H, Finch-Savage WE. 2011. Dormancy cycling in Arabidopsis seeds is controlled by seasonally distinct hormone-signaling pathways. Proceedings of the National Academy of Sciences, USA 108, 20236–20241. PubMed PMC

Franzke A, Lysak MA, Al-Shehbaz IA, Koch MA, Mummenhoff K. 2011. Cabbage family affairs: the evolutionary history of Brassicaceae. Trends in Plant Science 16, 108–116. PubMed

Gabriele S, Rizza A, Martone J, Circelli P, Costantino P, Vittorioso P. 2010. The Dof protein DAG1 mediates PIL5 activity on seed germination by negatively regulating GA biosynthetic gene AtGA3ox1. The Plant Journal 61, 312–323. PubMed

Graeber K, Linkies A, Steinbrecher T, et al. . 2014. DELAY OF GERMINATION 1 mediates a conserved coat-dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination. Proceedings of the National Academy of Sciences, USA 111, E3571–E3580. PubMed PMC

Grime JP, Mason G, Curtis AV, Rodman J, Band SR. 1981. A comparative study of germination characteristics in a local flora. Journal of Ecology 69, 1017–1059.

Guindon S, Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52, 696–704. PubMed

Haudry A, Platts AE, Vello E, et al. . 2013. An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions. Nature Genetics 45, 891–898. PubMed

Hoang HH, Sechet J, Bailly C, Leymarie J, Corbineau F. 2014. Inhibition of germination of dormant barley (Hordeum vulgare L.) grains by blue light as related to oxygen and hormonal regulation. Plant, Cell & Environment 37, 1393–1403. PubMed

Hradecká V, Novák O, Havlícek L, Strnad M. 2007. Immunoaffinity chromatography of abscisic acid combined with electrospray liquid chromatography-mass spectrometry. Journal of Chromatography 847, 162–173. PubMed

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780. PubMed PMC

Kendall SL, Hellwege A, Marriot P, Whalley C, Graham IA, Penfield S. 2011. Induction of dormancy in Arabidopsis summer annuals requires parallel regulation of DOG1 and hormone metabolism by low temperature and CBF transcription factors. The Plant Cell 23, 2568–2580. PubMed PMC

Kerdaffrec E, Filiault DL, Korte A, Sasaki E, Nizhynska V, Seren U, Nordborg M. 2016. Multiple alleles at a single locus control seed dormancy in Swedish Arabidopsis. eLife 5, e22502. PubMed PMC

Kim DH, Yamaguchi S, Lim S, Oh E, Park J, Hanada A, Kamiya Y, Choi G. 2008. SOMNUS, a CCCH-type zinc finger protein in Arabidopsis, negatively regulates light-dependent seed germination downstream of PIL5. The Plant Cell 20, 1260–1277. PubMed PMC

Kinzel W. 1913. Frost und Licht als beeinflussende Kräfte bei der Samenkeimung. Stuttgart: Ulmer.

Koller D. 1956. Germination-regulating mechanisms in some desert seeds. Ecology 37, 430–433.

Koller D, Negbi M. 1959. The regulation of germination in Oryzopsis miliacea. Ecology 40, 20–36.

Lai LM, Chen LJ, Jiang LH, Zhou JH, Zheng YR, Shimizu H. 2016. Seed germination of seven desert plants and implications for vegetation restoration. AoB Plants 8, plw031. PubMed PMC

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods 9, 357–359. PubMed PMC

Lee KP, Piskurewicz U, Tureckova V, Carat S, Chappuis R, Strnad M, Fankhauser C, Lopez-Molina L. 2012. Spatially and genetically distinct control of seed germination by phytochromes A and B. Genes and Development 26, 1984–1996. PubMed PMC

Lenser T, Graeber K, Cevik ÖS, et al. . 2016. Developmental control and plasticity of fruit and seed dimorphism in Aethionema arabicum. Plant Physiology 172, 1691–1707. PubMed PMC

Li WQ, Khan MA, Yamaguchi S, Liu XJ. 2015. Hormonal and environmental regulation of seed germination in salt cress (Thellungiella halophila). Plant Growth Regulation 76, 41–49.

Linkies A, Leubner-Metzger G. 2012. Beyond gibberellins and abscisic acid: how ethylene and jasmonates control seed germination. Plant Cell Reports 31, 253–270. PubMed

Love MI, Huber W, Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology 15, 550. PubMed PMC

Meng YJ, Chen F, Shuai HW, et al. . 2016. Karrikins delay soybean seed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions. Scientific Reports 6, 22073. PubMed PMC

Mohammadin S, Peterse K, van de Kerke SJ, Chatrou LW, Dönmez AA, Mummenhoff K, Pires JC, Edger PP, Al-Shehbaz IA, Schranz ME. 2017. Anatolian origins and diversification of Aethionema, the sister lineage of the core Brassicaceae. American Journal of Botany 104, 1042–1054. PubMed

Mohammadin S, Wang W, Liu T, et al. . 2018. Genome-wide nucleotide diversity and associations with geography, ploidy level and glucosinolate profiles in Aethionema arabicum (Brassicaceae). Plant Systematics and Evolution 304, 619–630.

Negbi M, Koller D. 1964. Dual action of white light in the photocontrol of germination of Oryzopsis miliacea. Plant Physiology 39, 247–253. PubMed PMC

Oh E, Kang H, Yamaguchi S, Park J, Lee D, Kamiya Y, Choi G. 2009. Genome-wide analysis of genes targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during seed germination in Arabidopsis. The Plant Cell 21, 403–419. PubMed PMC

Oh E, Kim J, Park E, Kim JI, Kang C, Choi G. 2004. PIL5, a phytochrome-interacting basic helix-loop-helix protein, is a key negative regulator of seed germination in Arabidopsis thaliana. The Plant Cell 16, 3045–3058. PubMed PMC

Oh E, Yamaguchi S, Hu J, Yusuke J, Jung B, Paik I, Lee HS, Sun TP, Kamiya Y, Choi G. 2007. PIL5, a phytochrome-interacting bHLH protein, regulates gibberellin responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds. The Plant Cell 19, 1192–1208. PubMed PMC

Oñate-Sánchez L, Vicente-Carbajosa J. 2008. DNA-free RNA isolation protocols for Arabidopsis thaliana, including seeds and siliques. BMC Research Notes 1, 93. PubMed PMC

Piskurewicz U, Turecková V, Lacombe E, Lopez-Molina L. 2009. Far-red light inhibits germination through DELLA-dependent stimulation of ABA synthesis and ABI3 activity. The EMBO Journal 28, 2259–2271. PubMed PMC

Pons TL. 1984. Possible significance of the light requirement of Cirsium palustre seeds after dispersal in ash coppice. Plant, Cell & Environment 7, 263–268.

Rittenberg D, Foster GL. 1940. A new procedure for quantitative analysis by isotope dilution, with application to the determination of amino acids and fatty acids. Journal of Biological Chemistry 133, 737–744.

Robinson MD, McCarthy DJ, Smyth GK. 2010. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140. PubMed PMC

Roig-Villanova I, Bou-Torrent J, Galstyan A, Carretero-Paulet L, Portolés S, Rodríguez-Concepción M, Martínez-García JF. 2007. Interaction of shade avoidance and auxin responses: a role for two novel atypical bHLH proteins. The EMBO Journal 26, 4756–4767. PubMed PMC

Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539–542. PubMed PMC

Rost B. 1999. Twilight zone of protein sequence alignments. Protein Engineering 12, 85–94. PubMed

Santopolo S, Boccaccini A, Lorrai R, Ruta V, Capauto D, Minutello E, Serino G, Costantino P, Vittorioso P. 2015. DOF AFFECTING GERMINATION 2 is a positive regulator of light-mediated seed germination and is repressed by DOF AFFECTING GERMINATION 1. BMC Plant Biology 15, 72. PubMed PMC

Seo M, Hanada A, Kuwahara A, et al. . 2006. Regulation of hormone metabolism in Arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism. The Plant Journal 48, 354–366. PubMed

Seo M, Nambara E, Choi G, Yamaguchi S. 2009. Interaction of light and hormone signals in germinating seeds. Plant Molecular Biology 69, 463–472. PubMed

Shen H, Zhu L, Castillon A, Majee M, Downie B, Huq E. 2008. Light-induced phosphorylation and degradation of the negative regulator PHYTOCHROME-INTERACTING FACTOR1 from Arabidopsis depend upon its direct physical interactions with photoactivated phytochromes. The Plant Cell 20, 1586–1602. PubMed PMC

Shi H, Zhong S, Mo X, Liu N, Nezames CD, Deng XW. 2013. HFR1 sequesters PIF1 to govern the transcriptional network underlying light-initiated seed germination in Arabidopsis. The Plant Cell 25, 3770–3784. PubMed PMC

Shinomura T, Nagatani A, Chory J, Furuya M. 1994. The induction of seed germination in Arabidopsis thaliana is regulated principally by phytochrome B and secondarily by phytochrome A. Plant Physiology 104, 363–371. PubMed PMC

Shropshire W, Klein WH, Elstad VB. 1961. Action spectra of photomorphogenic induction and photoinactivation of germination in Arabidopsis thaliana. Plant & Cell Physiology 2, 63–69.

Shu K, Liu XD, Xie Q, He ZH. 2016. Two faces of one seed: hormonal regulation of dormancy and germination. Molecular Plant 9, 34–45. PubMed

Shu K, Zhang H, Wang S, Chen M, Wu Y, Tang S, Liu C, Feng Y, Cao X, Xie Q. 2013. ABI4 regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in Arabidopsis. PLoS Genetics 9, e1003577. PubMed PMC

Stawska M, Oracz K. 2015. Network of signal transduction pathways mediated by phytochromes, cryptochromes and regulators of growth and development in seed biology. Postepy Biologii Komorki 42, 687–706.

Takaki M. 2001. New proposal of classification of seeds based on forms of phytochrome instead of photoblastism. Revista Brasileira de Fisiologia Vegetal 13, 104–108.

Tarazona S, García-Alcalde F, Dopazo J, Ferrer A, Conesa A. 2011. Differential expression in RNA-seq: a matter of depth. Genome Research 21, 2213–2223. PubMed PMC

Thanos CA, Georghiou K, Douma DJ, Marangaki CJ. 1991. Photoinhibition of seed germination in Mediterranean maritime plants. Annals of Botany 68, 469–475.

Turecková V, Novák O, Strnad M. 2009. Profiling ABA metabolites in Nicotiana tabacum L. leaves by ultra-performance liquid chromatography–electrospray tandem mass spectrometry. Talanta 80, 390–399. PubMed

Urbanová T, Tarkowská D, Novák O, Hedden P, Strnad M. 2013. Analysis of gibberellins as free acids by ultra performance liquid chromatography–tandem mass spectrometry. Talanta 112, 85–94. PubMed

Vandelook F, Newton RJ, Carta A. 2018. Photophobia in Lilioid monocots: photoinhibition of seed germination explained by seed traits, habitat adaptation and phylogenetic inertia. Annals of Botany 121, 405–413. PubMed PMC

Woolley JT, Stoller EW. 1978. Light penetration and light-induced seed germination in soil. Plant Physiology 61, 597–600. PubMed PMC

Wray GA, Hahn MW, Abouheif E, Balhoff JP, Pizer M, Rockman MV, Romano LA. 2003. The evolution of transcriptional regulation in eukaryotes. Molecular Biology and Evolution 20, 1377–1419. PubMed

Yamaguchi S, Smith MW, Brown RG, Kamiya Y, Sun T. 1998. Phytochrome regulation and differential expression of gibberellin 3β-hydroxylase genes in germinating Arabidopsis seeds. The Plant Cell 10, 2115–2126. PubMed PMC

Yan DW, Duermeyer L, Leoveanu C, Nambara E. 2014. The functions of the endosperm during seed germination. Plant and Cell Physiology 55, 1521–1533. PubMed

Yoshioka T, Endo T, Satoh S. 1998. Restoration of seed germination at supraoptimal temperatures by fluridone, an inhibitor of abscisic acid biosynthesis. Plant and Cell Physiology 39, 307–312.

Zhou P, Song M, Yang Q, et al. . 2014. Both PHYTOCHROME RAPIDLY REGULATED1 (PAR1) and PAR2 promote seedling photomorphogenesis in multiple light signaling pathways. Plant Physiology 164, 841–852. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A DOF transcriptional repressor-gibberellin feedback loop plays a crucial role in modulating light-independent seed germination

. 2025 Apr 14 ; 6 (4) : 101262. [epub] 20250128

The dimorphic diaspore model Aethionema arabicum (Brassicaceae): Distinct molecular and morphological control of responses to parental and germination temperatures

. 2024 Jul 02 ; 36 (7) : 2465-2490.

Aethionema arabicum dimorphic seed trait resetting during transition to seedlings

. 2024 ; 15 () : 1358312. [epub] 20240308

Phytochromes mediate germination inhibition under red, far-red, and white light in Aethionema arabicum

. 2023 May 31 ; 192 (2) : 1584-1602.

Gas-Plasma-Activated Water Impact on Photo-Dependent Dormancy Mechanisms in Nicotiana tabacum Seeds

. 2022 Jun 16 ; 23 (12) : . [epub] 20220616

Aethionema arabicum genome annotation using PacBio full-length transcripts provides a valuable resource for seed dormancy and Brassicaceae evolution research

. 2021 Apr ; 106 (1) : 275-293. [epub] 20210208

Genomic Blocks in Aethionema arabicum Support Arabideae as Next Diverging Clade in Brassicaceae

. 2020 ; 11 () : 719. [epub] 20200603

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...