Copper Metabolism in Naegleria gruberi and Its Deadly Relative Naegleria fowleri

. 2022 ; 10 () : 853463. [epub] 20220411

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35478954

Although copper is an essential nutrient crucial for many biological processes, an excessive concentration can be toxic and lead to cell death. The metabolism of this two-faced metal must be strictly regulated at the cell level. In this study, we investigated copper homeostasis in two related unicellular organisms: nonpathogenic Naegleria gruberi and the "brain-eating amoeba" Naegleria fowleri. We identified and confirmed the function of their specific copper transporters securing the main pathway of copper acquisition. Adjusting to different environments with varying copper levels during the life cycle of these organisms requires various metabolic adaptations. Using comparative proteomic analyses, measuring oxygen consumption, and enzymatic determination of NADH dehydrogenase, we showed that both amoebas respond to copper deprivation by upregulating the components of the branched electron transport chain: the alternative oxidase and alternative NADH dehydrogenase. Interestingly, analysis of iron acquisition indicated that this system is copper-dependent in N. gruberi but not in its pathogenic relative. Importantly, we identified a potential key protein of copper metabolism of N. gruberi, the homolog of human DJ-1 protein, which is known to be linked to Parkinson's disease. Altogether, our study reveals the mechanisms underlying copper metabolism in the model amoeba N. gruberi and the fatal pathogen N. fowleri and highlights the differences between the two amoebas.

Zobrazit více v PubMed

Almagro Armenteros J. J., Tsirigos K. D., Sønderby C. K., Petersen T. N., Winther O., Brunak S., et al. (2019). SignalP 5.0 Improves Signal Peptide Predictions Using Deep Neural Networks. Nat. Biotechnol. 37, 420–423. 10.1038/s41587-019-0036-z PubMed DOI

Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. (1990). Basic Local Alignment Search Tool. J. Mol. Biol. 215, 403–410. 10.1016/s0022-2836(05)80360-2 PubMed DOI

Amos B., Aurrecoechea C., Barba M., Barreto A., Basenko E. Y., Ba˙ Zant W., et al. (2021). VEuPathDB: The Eukaryotic Pathogen, Vector and Host Bioinformatics Resource center. Nucleic Acids Res. 50, D898–D911. 10.1093/nar/gkab929 PubMed DOI PMC

Andreini C., Bertini I., Cavallaro G., Holliday G. L., Thornton J. M. (2008). Metal Ions in Biological Catalysis: From Enzyme Databases to General Principles. J. Biol. Inorg. Chem. 13, 1205–1218. 10.1007/s00775-008-0404-5 PubMed DOI

Arbon D., Ženíšková K., Mach J., Grechnikova M., Malych R., Talacko P., et al. (2020). Adaptive Iron Utilization Compensates for the Lack of an Inducible Uptake System in Naegleria Fowleri and Represents a Potential Target for Therapeutic Intervention. Plos Negl. Trop. Dis. 14, e0007759. 10.1371/journal.pntd.0007759 PubMed DOI PMC

Askwith C., Eide D., Van Ho A., Bernard P. S., Li L., Davis-Kaplan S., et al. (1994). The FET3 Gene of S. Cerevisiae Encodes a Multicopper Oxidase Required for Ferrous Iron Uptake. Cell 76, 403–410. 10.1016/0092-8674(94)90346-8 PubMed DOI

Bandyopadhyay S., Cookson M. R. (2004). Evolutionary and Functional Relationships within the DJ-1 Superfamily. BMC Evol. Biol. 4, 6. 10.1186/1471-2148-4-6 PubMed DOI PMC

Besold A. N., Culbertson E. M., Culotta V. C. (2016). The Yin and Yang of Copper during Infection. J. Biol. Inorg. Chem. 21, 137–144. 10.1007/s00775-016-1335-1 PubMed DOI PMC

Bonifati V., Rizzu P., van Baren M. J., Schaap O., Breedveld G. J., Krieger E., et al. (2003). Mutations in the DJ-1 Gene Associated with Autosomal Recessive Early-Onset Parkinsonism. Science 299, 256–259. 10.1126/science.1077209 PubMed DOI

Broxton C. N., Culotta V. C. (2016). An Adaptation to Low Copper in Candida Albicans Involving SOD Enzymes and the Alternative Oxidase. PLoS One 11, e0168400. 10.1371/journal.pone.0168400 PubMed DOI PMC

Cantoni D., Osborne A., Taib N., Thompson G., Kazana E., Edrich E., et al. (2020). Localization and Functional Characterization of the Alternative Oxidase in Naegleria . bioRxiv. 10.1101/2020.09.26.314807 PubMed DOI PMC

Cassat J. E., Skaar E. P. (2013). Iron in Infection and Immunity. Cell Host Microbe 13, 509–519. 10.1016/j.chom.2013.04.010 PubMed DOI PMC

Chaturvedi K. S., Henderson J. P. (2014). Pathogenic Adaptations to Host-Derived Antibacterial Copper. Front. Cel. Infect. Microbiol. 4, 3. 10.3389/fcimb.2014.00003 PubMed DOI PMC

Chen J., Li L., Chin L.-S. (2010). Parkinson Disease Protein DJ-1 Converts from a Zymogen to a Protease by Carboxyl-Terminal Cleavage. Hum. Mol. Genet. 19, 2395–2408. 10.1093/hmg/ddq113 PubMed DOI PMC

Chen R., Park H. A., Mnatsakanyan N., Niu Y., Licznerski P., Wu J., et al. (2019). Parkinson's Disease Protein DJ-1 Regulates ATP Synthase Protein Components to Increase Neuronal Process Outgrowth. Cell Death Dis 10 (6), 469. 10.1038/s41419-019-1679-x PubMed DOI PMC

Choveaux D. L., Przyborski J. M., Goldring J. P. (2012). A Plasmodium Falciparum Copper-Binding Membrane Protein with Copper Transport Motifs. Malar. J. 11, 397. 10.1186/1475-2875-11-397 PubMed DOI PMC

Cookson M. R. (2003). Pathways to Parkinsonism. Neuron 37, 7–10. 10.1016/s0896-6273(02)01166-2 PubMed DOI

Cox J., Hein M. Y., Luber C. A., Paron I., Nagaraj N., Mann M. (2014). Accurate Proteome-Wide Label-Free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ. Mol. Cel. Proteomics 13, 2513–2526. 10.1074/mcp.m113.031591 PubMed DOI PMC

Cvetkovska M., Vanlerberghe G. C. (2012). Coordination of a Mitochondrial Superoxide Burst during the Hypersensitive Response to Bacterial Pathogen in Nicotiana Tabacum . Plant Cel Environ. 35, 1121–1136. 10.1111/j.1365-3040.2011.02477.x PubMed DOI

Dahal K., Vanlerberghe G. C. (2017). Alternative Oxidase Respiration Maintains Both Mitochondrial and Chloroplast Function during Drought. New Phytol. 213, 560–571. 10.1111/nph.14169 PubMed DOI

Dancis A., Haile D., Yuan D. S., Klausner R. D. (1994b). The Saccharomyces Cerevisiae Copper Transport Protein (Ctr1p). Biochemical Characterization, Regulation by Copper, and Physiologic Role in Copper Uptake. J. Biol. Chem. 269, 25660–25667. 10.1016/s0021-9258(18)47300-0 PubMed DOI

Dancis A., Yuan D. S., Haile D., Askwith C., Eide D., Moehle C., et al. (1994a). Molecular Characterization of a Copper Transport Protein in S. Cerevisiae: An Unexpected Role for Copper in Iron Transport. Cell 76, 393–402. 10.1016/0092-8674(94)90345-x PubMed DOI

De Jonckheere J. F. (2004). Molecular Definition and the Ubiquity of Species in the Genus. Protist 155, 89–103. 10.1078/1434461000167 PubMed DOI

Ding C., Festa R. A., Chen Y.-L., Espart A., Palacios Ò., Espín J., et al. (2013). Cryptococcus Neoformans Copper Detoxification Machinery Is Critical for Fungal Virulence. Cell Host Microbe 13, 265–276. 10.1016/j.chom.2013.02.002 PubMed DOI PMC

Fan J., Yu H., Lv Y., Yin L. (2015). Diagnostic and Prognostic Value of Serum Thioredoxin and DJ-1 in Non-Small Cell Lung Carcinoma Patients. Tumor Biol. 37 (2), 1949–1958. 10.1007/s13277-015-3994-x PubMed DOI

Festa R. A., Thiele D. J. (2012). Copper at the Front Line of the Host-Pathogen Battle. Plos Pathog. 8, e1002887. 10.1371/journal.ppat.1002887 PubMed DOI PMC

Fritz-Laylin L. K., Ginger M. L., Walsh C., Dawson S. C., Fulton C. (2011). The Naegleria Genome: A Free-Living Microbial Eukaryote Lends Unique Insights into Core Eukaryotic Cell Biology. Res. Microbiol. 162, 607–618. 10.1016/j.resmic.2011.03.003 PubMed DOI PMC

Fritz-Laylin L. K., Prochnik S. E., Ginger M. L., Dacks J. B., Carpenter M. L., Field M. C., et al. (2010). The Genome of Naegleria Gruberi Illuminates Early Eukaryotic Versatility. Cell 140, 631–642. 10.1016/j.cell.2010.01.032 PubMed DOI

Fry M., Beesley J. E. (1991). Mitochondria of Mammalian Plasmodium Spp . Parasitology 102 (Pt 1), 17–26. 10.1017/s0031182000060297 PubMed DOI

Fulton C. (1974). Axenic Cultivation of Naegleria Gruberi: Requirement for Methionine. Exp. Cel Res. 88, 365–370. 10.1016/0014-4827(74)90253-5 PubMed DOI

García-Santamarina S., Thiele D. J. (2015). Copper at the Fungal Pathogen-Host Axis. J. Biol. Chem. 290, 18945–18953. 10.1074/jbc.R115.649129 PubMed DOI PMC

Gardner M. J., Hall N., Fung E., White O., Berriman M., Hyman R. W., et al. (2002). Genome Sequence of the Human Malaria Parasite Plasmodium Falciparum . Nature 419, 498–511. 10.1038/nature01097 PubMed DOI PMC

Garí E., Piedrafita L., Aldea M., Herrero E. (1997). A Set of Vectors with a Tetracycline-Regulatable Promoter System for Modulated Gene Expression in Saccharomyces Cerevisiae . Yeast 13, 837–848. 10.1002/(SICI)1097-0061(199707)13:9<837::AID-YEA145>3.0.CO;2-T PubMed DOI

Gietz R. D., Schiestl R. H. (2007). Large-Scale High-Efficiency Yeast Transformation Using the LiAc/SS Carrier DNA/PEG Method. Nat. Protoc. 2, 38–41. 10.1038/nprot.2007.15 PubMed DOI

Girotto S., Cendron L., Bisaglia M., Tessari I., Mammi S., Zanotti G., et al. (2014). DJ-1 Is a Copper Chaperone Acting on SOD1 Activation. J. Biol. Chem. 289, 10887–10899. 10.1074/jbc.m113.535112 PubMed DOI PMC

Grechnikova M., Ženíšková K., Malych R., Mach J., Sutak R. (2020). Copper Detoxification Machinery of the Brain-Eating Amoeba Naegleria Fowleri Involves Copper-Translocating ATPase and the Antioxidant System. Int. J. Parasitol. Drugs Drug Resist. 14, 126–135. 10.1016/j.ijpddr.2020.10.001 PubMed DOI PMC

Grigoriev I. V., Hayes R. D., Calhoun S., Kamel B., Wang A., Ahrendt S., et al. (2021). PhycoCosm, a Comparative Algal Genomics Resource. Nucleic Acids Res. 49, D1004–D1011. 10.1093/nar/gkaa898 PubMed DOI PMC

Hayashi T., Ishimori C., Takahashi-Niki K., Taira T., Kim Y.-C., Maita H., et al. (2009). DJ-1 Binds to Mitochondrial Complex I and Maintains its Activity. Biochem. Biophysical Res. Commun. 390, 667–672. 10.1016/j.bbrc.2009.10.025 PubMed DOI

Herbik A., Bölling C., Buckhout T. J. (2002). The Involvement of a Multicopper Oxidase in Iron Uptake by the Green Algae Chlamydomonas Reinhardtii . Plant Physiol. 130, 2039–2048. 10.1104/pp.013060 PubMed DOI PMC

Herman E. K., Greninger A., van der Giezen M., Ginger M. L., Ramirez-Macias I., Miller H. C., et al. (2021). Genomics and Transcriptomics Yields a System-Level View of the Biology of the Pathogen Naegleria Fowleri . BMC Biol. 19 (1), 142. 10.1186/s12915-021-01078-1 PubMed DOI PMC

Hodgkinson V., Petris M. J. (2012). Copper Homeostasis at the Host-Pathogen Interface. J. Biol. Chem. 287, 13549–13555. 10.1074/jbc.r111.316406 PubMed DOI PMC

Hood M. I., Skaar E. P. (2012). Nutritional Immunity: Transition Metals at the Pathogen-Host Interface. Nat. Rev. Microbiol. 10, 525–537. 10.1038/nrmicro2836 PubMed DOI PMC

Inden M., Kitamura Y., Takahashi K., Takata K., Ito N., Niwa R., et al. (2011). Protection against Dopaminergic Neurodegeneration in Parkinson's Disease-Model Animals by a Modulator of the Oxidized Form of DJ-1, a Wild-type of Familial Parkinson's Disease-Linked PARK7. J. Pharmacol. Sci. 117, 189–203. 10.1254/jphs.11151fp PubMed DOI

Inden M., Taira T., Kitamura Y., Yanagida T., Tsuchiya D., Takata K., et al. (2006). PARK7 DJ-1 Protects against Degeneration of Nigral Dopaminergic Neurons in Parkinson's Disease Rat Model. Neurobiol. Dis. 24, 144–158. 10.1016/j.nbd.2006.06.004 PubMed DOI

Irrcher I., Aleyasin H., Seifert E. L., Hewitt S. J., Chhabra S., Phillips M., et al. (2010). Loss of the Parkinson's Disease-Linked Gene DJ-1 Perturbs Mitochondrial Dynamics. Hum. Mol. Genet. 19, 3734–3746. 10.1093/hmg/ddq288 PubMed DOI

Isah M. B., Goldring J. P. D., Coetzer T. H. T. (2020). Expression and Copper Binding Properties of the N-Terminal Domain of Copper P-type ATPases of African Trypanosomes. Mol. Biochem. Parasitol. 235, 111245. 10.1016/j.molbiopara.2019.111245 PubMed DOI

Joseph-Horne T., Hollomon D. W., Wood P. M. (2001). Fungal Respiration: A Fusion of Standard and Alternative Components. Biochim. Biophys. Acta - Bioenerg. 1504, 179–195. 10.1016/s0005-2728(00)00251-6 PubMed DOI

Jungmann J., Reins H. A., Lee J., Romeo A., Hassett R., Kosman D., et al. (1993). MAC1, a Nuclear Regulatory Protein Related to Cu-Dependent Transcription Factors Is Involved in Cu/Fe Utilization and Stress Resistance in Yeast. EMBO J. 12, 5051–5056. 10.1002/j.1460-2075.1993.tb06198.x PubMed DOI PMC

Käll L., Krogh A., Sonnhammer E. L. L. (2004). A Combined Transmembrane Topology and Signal Peptide Prediction Method. J. Mol. Biol. 338, 1027–1036. 10.1016/j.jmb.2004.03.016 PubMed DOI

Kaplan J., O'Halloran T. V. (1996). Iron Metabolism in Eukaryotes-Mars and Venus at it Again. Science 271, 1510–1512. 10.1126/science.271.5255.1510 PubMed DOI

Kerscher S. J. (2000). Diversity and Origin of Alternative NADH:ubiquinone Oxidoreductases. Biochim. Biophys. Acta - Bioenerg. 1459, 274–283. 10.1016/s0005-2728(00)00162-6 PubMed DOI

Kim S.-J., Park Y.-J., Hwang I.-Y., Youdim M. B. H., Park K.-S., Oh Y. J. (2012). Nuclear Translocation of DJ-1 during Oxidative Stress-Induced Neuronal Cell Death. Free Radic. Biol. Med. 53, 936–950. 10.1016/j.freeradbiomed.2012.05.035 PubMed DOI

Knight S. A., Labbé S., Kwon L. F., Kosman D. J., Thiele D. J. (1996). A Widespread Transposable Element Masks Expression of a Yeast Copper Transport Gene. Genes Dev. 10, 1917–1929. 10.1101/gad.10.15.1917 PubMed DOI

Kozlowski H., Janicka-Klos A., Brasun J., Gaggelli E., Valensin D., Valensin G. (2009). Copper, Iron, and Zinc Ions Homeostasis and Their Role in Neurodegenerative Disorders (Metal Uptake, Transport, Distribution and Regulation). Coord. Chem. Rev. 253, 2665–2685. 10.1016/j.ccr.2009.05.011 DOI

Kropat J., Gallaher S. D., Urzica E. I., Nakamoto S. S., Strenkert D., Tottey S., et al. (2015). Copper Economy in Chlamydomonas: Prioritized Allocation and Reallocation of Copper to Respiration vs. Photosynthesis. Proc. Natl. Acad. Sci. U.S.A. 112, 2644–2651. 10.1073/pnas.1422492112 PubMed DOI PMC

Lee S.-J., Kim S. J., Kim I.-K., Ko J., Jeong C.-S., Kim G.-H., et al. (2003). Crystal Structures of Human DJ-1 and Escherichia coli Hsp31, Which Share an Evolutionarily Conserved Domain. J. Biol. Chem. 278, 44552–44559. 10.1074/jbc.m304517200 PubMed DOI

Li C. X., Gleason J. E., Zhang S. X., Bruno V. M., Cormack B. P., Culotta V. C. (2015a). Candida Albicans Adapts to Host Copper during Infection by Swapping Metal Cofactors for Superoxide Dismutase. Proc. Natl. Acad. Sci. U. S. A. 112, E5336–E5342. 10.1073/pnas.1513447112 PubMed DOI PMC

Li X., Li J., Hu X., Huang L., Xiao J., Chan J., et al. (2015b). Differential Roles of the Hemerythrin-Like Proteins of Mycobacterium Smegmatis in Hydrogen Peroxide and Erythromycin Susceptibility. Sci. Rep. 5, 16130. 10.1038/srep16130 PubMed DOI PMC

Liechti N., Schürch N., Bruggmann R., Wittwer M. (2019). Nanopore Sequencing Improves the Draft Genome of the Human Pathogenic Amoeba Naegleria Fowleri . Sci. Rep. 9, 16040. 10.1038/s41598-019-52572-0 PubMed DOI PMC

Lin S. S., Gross U., Bohne W. (2011). Two Internal Type II NADH Dehydrogenases of Toxoplasma Gondii Are Both Required for Optimal Tachyzoite Growth. Mol. Microbiol. 82, 209–221. 10.1111/j.1365-2958.2011.07807.x PubMed DOI

Liu L., Qi J., Yang Z., Peng L., Li C. (2012). Low-Affinity Copper Transporter CTR2 Is Regulated by Copper-Sensing Transcription Factor Mac1p in Saccharomyces Cerevisiae . Biochem. Biophys. Res. Commun. 420, 600–604. 10.1016/j.bbrc.2012.03.040 PubMed DOI

Luttik M. A. H., Overkamp K. M., Kötter P., de Vries S., van Dijken J. P., Pronk J. T. (1998). The Saccharomyces Cerevisiae NDE1 and NDE2 Genes Encode Separate Mitochondrial NADH Dehydrogenases Catalyzing the Oxidation of Cytosolic NADH. J. Biol. Chem. 273, 24529–24534. 10.1074/jbc.273.38.24529 PubMed DOI

Ma Z., Strickland K. T., Cherne M. D., Sehanobish E., Rohde K. H., Self W. T., et al. (2018). The Rv2633c Protein of Mycobacterium Tuberculosis Is a Non-heme Di-iron Catalase with a Possible Role in Defenses against Oxidative Stress. J. Biol. Chem. 293, 1590–1595. 10.1074/jbc.ra117.000421 PubMed DOI PMC

Mach J., Bíla J., Ženíšková K., Arbon D., Malych R., Glavanakovová M., et al. (2018). Iron Economy in Naegleria Gruberi Reflects its Metabolic Flexibility. Int. J. Parasitol. 48 (9-10), 719–727. 10.1016/j.ijpara.2018.03.005 PubMed DOI

Macomber L., Imlay J. A. (2009). The Iron-Sulfur Clusters of Dehydratases Are Primary Intracellular Targets of Copper Toxicity. Proc. Natl. Acad. Sci. U.S.A. 106, 8344–8349. 10.1073/pnas.0812808106 PubMed DOI PMC

Marres C. A. M., Vries S., Grivell L. A. (1991). Isolation and Inactivation of the Nuclear Gene Encoding the Rotenone-Insensitive Internal NADH: Ubiquinone Oxidoreductase of Mitochondria from Saccharomyces Cerevisiae . Eur. J. Biochem. 195, 857–862. 10.1111/j.1432-1033.1991.tb15775.x PubMed DOI

Marvin M. E., Williams P. H., Cashmore A. M. (2003). Tha Candida Albicans CTR1 Gene Encodes a Functional Copper Transporter. Microbiology 149, 1461–1474. 10.1099/mic.0.26172-0 PubMed DOI

Maryon E. B., Molloy S. A., Zimnicka A. M., Kaplan J. H. (2007). Copper Entry into Human Cells: Progress and Unanswered Questions. Biometals 20, 355–364. 10.1007/s10534-006-9066-3 PubMed DOI

Maxwell D. P., Wang Y., McIntosh L. (1999). The Alternative Oxidase Lowers Mitochondrial Reactive Oxygen Production in Plant Cells. Proc. Natl. Acad. Sci. U.S.A. 96, 8271–8276. 10.1073/pnas.96.14.8271 PubMed DOI PMC

Melo A. M. P., Bandeiras T. M., Teixeira M. (2004). New Insights into Type II NAD(P)H:quinone Oxidoreductases. Microbiol. Mol. Biol. Rev. 68, 603–616. 10.1128/mmbr.68.4.603-616.2004 PubMed DOI PMC

Meulener M. C., Graves C. L., Sampathu D. M., Armstrong-Gold C. E., Bonini N. M., Giasson B. I. (2005). DJ-1 Is Present in a Large Molecular Complex in Human Brain Tissue and Interacts with α-synuclein. J. Neurochem. 93, 1524–1532. 10.1111/j.1471-4159.2005.03145.x PubMed DOI

Mistry J., Chuguransky S., Williams L., Qureshi M., Salazar G. A., Sonnhammer E. L. L., et al. (2021). Pfam: The Protein Families Database in 2021. Nucleic Acids Res. 49, D412–D419. 10.1093/nar/gkaa913 PubMed DOI PMC

Mull B. J., Narayanan J., Hill V. R. (2013). Improved Method for the Detection and Quantification of Naegleria Fowleri in Water and Sediment Using Immunomagnetic Separation and Real-Time PCR. J. Parasitol. Res. 2013, 608367. 10.1155/2013/608367 PubMed DOI PMC

Mullett S. J., Hinkle D. A. (2011). DJ-1 Deficiency in Astrocytes Selectively Enhances Mitochondrial Complex I Inhibitor-Induced Neurotoxicity. J. Neurochem. 117, 375–387. 10.1111/j.1471-4159.2011.07175.x PubMed DOI PMC

Mungroo M. R., Khan N. A., Maciver S., Siddiqui R. (2021). Opportunistic Free-Living Amoebal Pathogens. Pathog. Glob. Health 49, 1–15. 10.1080/21548331.2020.1828888 PubMed DOI PMC

Nagakubo D., Taira T., Kitaura H., Ikeda M., Tamai K., Iguchi-Ariga S. M. M., et al. (1997). DJ-1, a Novel Oncogene Which Transforms Mouse NIH3T3 Cells in Cooperation Withras. Biochem. Biophys. Res. Commun. 231, 509–513. 10.1006/bbrc.1997.6132 PubMed DOI

Nose Y., Rees E. M., Thiele D. J. (2006). Structure of the Ctr1 Copper trans'PORE'ter Reveals Novel Architecture. Trends Biochem. Sci. 31, 604–607. 10.1016/j.tibs.2006.09.003 PubMed DOI

Overkamp K. M., Bakker B. M., Kötter P., van Tuijl A., de Vries S., van Dijken J. P., et al. (2000). In Vivo analysis of the Mechanisms for Oxidation of Cytosolic NADH by Saccharomyces Cerevisiae Mitochondria. J. Bacteriol. 182, 2823–2830. 10.1128/jb.182.10.2823-2830.2000 PubMed DOI PMC

Paul R., Banerjee S., Sen S., Dubey P., Maji S., Bachhawat A. K., et al. (2021). The Novel Leishmanial Copper P-type ATPase Plays a Vital Role in Intracellular Parasite Survival. J. Biol. Chem. 298 (2), 101539. 10.1016/j.jbc.2021.101539 PubMed DOI PMC

Perez-Riverol Y., Bai J., Bandla C., García-Seisdedos D., Hewapathirana S., Kamatchinathan S., et al. (2022). The PRIDE Database Resources in 2022: a Hub for Mass Spectrometry-Based Proteomics Evidences. Nucleic Acids Res. 50, D543. PubMed PMC

Petito G., de Curcio J. S., Pereira M., Bailão A. M., Paccez J. D., Tristão G. B., et al. (2020). Metabolic Adaptation of Paracoccidioides Brasiliensis in Response to In Vitro Copper Deprivation. Front. Microbiol. 11, 1834. 10.3389/fmicb.2020.01834 PubMed DOI PMC

Posey J. E., Gherardini F. C. (2000). Lack of a Role for Iron in the Lyme Disease Pathogen. Science 288, 1651–1653. 10.1126/science.288.5471.1651 PubMed DOI

Rasmusson A. G., Soole K. L., Elthon T. E. (2004). Alternative NAD(P)H Dehydrogenases of Plant Mitochondria. Annu. Rev. Plant Biol. 55, 23–39. 10.1146/annurev.arplant.55.031903.141720 PubMed DOI

Rasoloson D., Shi L., Chong C. R., Kafsack B. F., Sullivan D. J. (2004). Copper Pathways in Plasmodium Falciparum Infected Erythrocytes Indicate an Efflux Role for the Copper P-ATPase. Biochem. J. 381, 803–811. 10.1042/bj20040335 PubMed DOI PMC

Rees E. M., Lee J., Thiele D. J. (2004). Mobilization of Intracellular Copper Stores by the Ctr2 Vacuolar Copper Transporter. J. Biol. Chem. 279, 54221–54229. 10.1074/jbc.m411669200 PubMed DOI

Ribas-Carbo M., Taylor N. L., Giles L., Busquets S., Finnegan P. M., Day D. A., et al. (2005). Effects of Water Stress on Respiration in Soybean Leaves. Plant Physiol. 139, 466–473. 10.1104/pp.105.065565 PubMed DOI PMC

Roberts C. W., Roberts F., Henriquez F. L., Akiyoshi D., Samuel B. U., Richards T. A., et al. (2004). Evidence for Mitochondrial-Derived Alternative Oxidase in the Apicomplexan Parasite Cryptosporidium Parvum: A Potential Anti-Microbial Agent Target. Int. J. Parasitol. 34, 297–308. 10.1016/j.ijpara.2003.11.002 PubMed DOI

Schneider C. A., Rasband W. S., Eliceiri K. W. (2012). NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 9 (7), 671–675. 10.1038/nmeth.2089 PubMed DOI PMC

Sieger S. M., Kristensen B. K., Robson C. A., Amirsadeghi S., Eng E. W. Y., Abdel-Mesih A., et al. (2005). The Role of Alternative Oxidase in Modulating Carbon Use Efficiency and Growth during Macronutrient Stress in Tobacco Cells. J. Exp. Bot. 56, 1499–1515. 10.1093/jxb/eri146 PubMed DOI

Sluse F. E., Jarmuszkiewicz W. (1998). Alternative Oxidase in the Branched Mitochondrial Respiratory Network: an Overview on Structure, Function, Regulation, and Role. Braz. J. Med. Biol. Res. 31, 733–747. 10.1590/s0100-879x1998000600003 PubMed DOI

Smith C. A., Melino V. J., Sweetman C., Soole K. L. (2009). Manipulation of Alternative Oxidase Can Influence Salt Tolerance in Arabidopsis Thaliana . Physiol. Plant 137, 459–472. 10.1111/j.1399-3054.2009.01305.x PubMed DOI

Solomon E. I., Heppner D. E., Johnston E. M., Ginsbach J. W., Cirera J., Qayyum M., et al. (2014). Copper Active Sites in Biology. Chem. Rev. 114, 3659–3853. 10.1021/cr400327t PubMed DOI PMC

Stafford S. L., Bokil N. J., Achard M. E., Kapetanovic R., Schembri M. A., Mcewan A. G., et al. (2013). Metal Ions in Macrophage Antimicrobial Pathways: Emerging Roles for Zinc and Copper. Biosci. Rep. 33, 541–554. 10.1042/BSR20130014 PubMed DOI PMC

Stearman R., Yuan D. S., Yamaguchi-Iwai Y., Klausner R. D., Dancis A. (1996). A Permease-Oxidase Complex Involved in High-Affinity Iron Uptake in Yeast. Science 271, 1552–1557. 10.1126/science.271.5255.1552 PubMed DOI

Sun T. S., Ju X., Gao H. L., Wang T., Thiele D. J., Li J. Y., et al. (2014). Reciprocal Functions of Cryptococcus Neoformans Copper Homeostasis Machinery during Pulmonary Infection and Meningoencephalitis. Nat. Commun. 5, 5550. 10.1038/ncomms6550 PubMed DOI

Taira T., Saito Y., Niki T., Iguchi‐Ariga S. M. M., Takahashi K., Ariga H. (2004). DJ‐1 Has a Role in Antioxidative Stress to Prevent Cell Death. EMBO Rep. 5, 213–218. 10.1038/sj.embor.7400074 PubMed DOI PMC

Thomas P. D., Campbell M. J., Kejariwal A., Mi H., Karlak B., Daverman R., et al. (2003). PANTHER: A Library of Protein Families and Subfamilies Indexed by Function. Genome Res. 13, 2129–2141. 10.1101/gr.772403 PubMed DOI PMC

Trempe J.-F., Fon E. A. (2013). Structure and Function of Parkin, PINK1, and DJ-1, the Three Musketeers of Neuroprotection. Front. Neurol. 4, 38. 10.3389/fneur.2013.00038 PubMed DOI PMC

Tsaousis A. D., Nývltová E., Šuták R., Hrdý I., Tachezy J. (2014). A Nonmitochondrial Hydrogen Production in Naegleria Gruberi . Genome Biol. Evol. 6, 792–799. 10.1093/gbe/evu065 PubMed DOI PMC

Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M. Y., Geiger T., et al. (2016). The Perseus Computational Platform for Comprehensive Analysis of (Prote)omics Data. Nat. Methods 13, 731–740. 10.1038/nmeth.3901 PubMed DOI

Uyemura S. A., Luo S., Vieira M., Moreno S. N. J., Docampo R. (2004). Oxidative Phosphorylation and Rotenone-Insensitive Malate- and NADH-Quinone Oxidoreductases in Plasmodium Yoelii Yoelii Mitochondria In Situ . J. Biol. Chem. 279, 385–393. 10.1074/jbc.m307264200 PubMed DOI

Vishwakarma A., Tetali S. D., Selinski J., Scheibe R., Padmasree K. (2015). Importance of the Alternative Oxidase (AOX) Pathway in Regulating Cellular Redox and ROS Homeostasis to Optimize Photosynthesis during Restriction of the Cytochrome Oxidase Pathway in Arabidopsis Thaliana . Ann. Bot. 116, 555–569. 10.1093/aob/mcv122 PubMed DOI PMC

Wang H., Li Y.-Y., Qiu L.-Y., Yan Y.-F., Liao Z.-P., Chen H.-P. (2017). Involvement of DJ-1 in Ischemic Preconditioning-Induced Delayed Cardioprotection In Vivo . Mol. Med. Rep. 15, 995–1001. 10.3892/mmr.2016.6091 PubMed DOI

Waterman S. R., Hacham M., Hu G., Zhu X., Park Y.-D., Shin S., et al. (2007). Role of a CUF1/CTR4 Copper Regulatory axis in the Virulence of Cryptococcus Neoformans . J. Clin. Invest. 117, 794–802. 10.1172/jci30006 PubMed DOI PMC

Wei Y., Ringe D., Wilson M. A., Ondrechen M. J. (2007). Identification of Functional Subclasses in the DJ-1 Superfamily Proteins. PLOS Comput. Biol. 3, e15. 10.1371/journal.pcbi.0030010 PubMed DOI

Weinberg E. D. (1975). Nutritional Immunity. Host's Attempt to Withold Iron from Microbial Invaders. JAMA J. Am. Med. Assoc. 231, 39–41. 10.1001/jama.231.1.39 PubMed DOI

Winge D. R., Jensen L. T., Srinivasan C. (1998). Metal-Ion Regulation of Gene Expression in Yeast. Curr. Opin. Chem. Biol. 2, 216–221. 10.1016/s1367-5931(98)80063-x PubMed DOI

Yagi T. (1991). Bacterial NADH-Quinone Oxidoreductases. J. Bioenerg. Biomembr. 23, 211–225. 10.1007/bf00762218 PubMed DOI

Yu D., Pan H., Zhang R., Li Y., Nie X. (2017). Nucleus DJ-1/Park7 Acts as a Favorable Prognostic Factor and Involves Mucin Secretion in Invasive Breast Carcinoma in Chinese Population. Int. J. Clin. Exp. Med. 10 (4), 6558–6567.

Zhang L., Wang J., Wang J., Yang B., He Q., Weng Q. (2020). Role of DJ-1 in Immune and Inflammatory Diseases. Front. Immunol. 11, 994. 10.3389/fimmu.2020.00994 PubMed DOI PMC

Zhou B., Gitschier J. (1997). hCTR1: A Human Gene for Copper Uptake Identified by Complementation in Yeast. Proc. Natl. Acad. Sci. U. S. A. 94, 7481–7486. 10.1073/pnas.94.14.7481 PubMed DOI PMC

Zimmermann L., Stephens A., Nam S.-Z., Rau D., Kübler J., Lozajic M., et al. (2018). A Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at its Core. J. Mol. Biol. 430, 2237–2243. 10.1016/j.jmb.2017.12.007 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...