Adaptive iron utilization compensates for the lack of an inducible uptake system in Naegleria fowleri and represents a potential target for therapeutic intervention

. 2020 Jun ; 14 (6) : e0007759. [epub] 20200618

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32555641

Naegleria fowleri is a single-cell organism living in warm freshwater that can become a deadly human pathogen known as a brain-eating amoeba. The condition caused by N. fowleri, primary amoebic meningoencephalitis, is usually a fatal infection of the brain with rapid and severe onset. Iron is a common element on earth and a crucial cofactor for all living organisms. However, its bioavailable form can be scarce in certain niches, where it becomes a factor that limits growth. To obtain iron, many pathogens use different machineries to exploit an iron-withholding strategy that has evolved in mammals and is important to host-parasite interactions. The present study demonstrates the importance of iron in the biology of N. fowleri and explores the plausibility of exploiting iron as a potential target for therapeutic intervention. We used different biochemical and analytical methods to explore the effect of decreased iron availability on the cellular processes of the amoeba. We show that, under iron starvation, nonessential, iron-dependent, mostly cytosolic pathways in N. fowleri are downregulated, while the metal is utilized in the mitochondria to maintain vital respiratory processes. Surprisingly, N. fowleri fails to respond to acute shortages of iron by inducing the reductive iron uptake system that seems to be the main iron-obtaining strategy of the parasite. Our findings suggest that iron restriction may be used to slow the progression of infection, which may make the difference between life and death for patients.

Zobrazit více v PubMed

De Jonckheere JF. What do we know by now about the genus Naegleria? Exp Parasitol. 2014. November;145(S):S2–9. PubMed

Kelly RB, Francine M-C, Charles PG. Occurrence of Naegleria fowleri in Arizona drinking water supply wells. J Am Water Works Assoc. 2009. November;101(11):43–50.

Visvesvara GS, Moura H, Schuster FL. Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunol Med Microbiol. 2007. June;50(1):1–26. 10.1111/j.1574-695X.2007.00232.x PubMed DOI

Grace E, Asbill S, Virga K. Naegleria fowleri: Pathogenesis, diagnosis, and treatment options. Antimicrob Agents Chemother. 2015. November 1;59(11):6677–81. 10.1128/AAC.01293-15 PubMed DOI PMC

Ma P, Visvesvara GS, Martinez AJ, Theodore FH, Daggett PM, Sawyer TK. Naegleria and acanthamoeba infections: Review. Clin Infect Dis. 1990. May 1;12(3):490–513. PubMed

Centers for Disease Control and Prevention, Naegleria fowleri general information. Available at: https://www.cdc.gov/parasites/naegleria/general.html, last modified July 17/7/2018, accessed 15/3/2019 [Internet].

Linam WM, Ahmed M, Cope JR, Chu C, Visvesvara GS, Da Silva AJ, et al. Successful treatment of an adolescent with Naegleria fowleri primary amebic meningoencephalitis. Pediatrics. 2015. March 1;135(3):e744–8. 10.1542/peds.2014-2292 PubMed DOI PMC

Pana A, Vijayan V, Anilkumar AC. Amebic meningoencephalitis [Internet]. StatPearls. 2019. PubMed

Cabello‐Vílchez AM, Chura‐Araujo MA, Anicama Lima WE, Vela C, Asencio AY, García H, et al. Fatal granulomatous amoebic encephalitis due to free‐living amoebae in two boys in two different hospitals in Lima, Perú. Neuropathology. 2019. November 22;neup.12617. PubMed

Crichton R. Iron metabolism: From molecular mechanisms to clinical consequences: Fourth edition. Chichester, UK: John Wiley & Sons, Ltd; 2016. 1–556 p.

Lill R, Broderick JB, Dean DR. Special issue on iron-sulfur proteins: Structure, function, biogenesis and diseases. Biochim Biophys Acta—Mol Cell Res. 2015. June 1;1853(6):1251–2. PubMed PMC

Boyd PW, Jickells T, Law CS, Blain S, Boyle EA, Buesseler KO, et al. Mesoscale iron enrichment experiments 1993–2005: Synthesis and future directions. Science (80-). 2007. February 2;315(5812):612–7. PubMed

Koka S, Föller M, Lamprecht G, Boini KM, Lang C, Huber SM, et al. Iron deficiency influences the course of malaria in Plasmodium berghei infected mice. Biochem Biophys Res Commun. 2007. June;357(3):608–14. 10.1016/j.bbrc.2007.03.175 PubMed DOI

Kabyemela ER, Fried M, Kurtis JD, Mutabingwa TK, Duffy PE. Decreased susceptibility to Plasmodium falciparum infection in pregnant women with iron deficiency. J Infect Dis. 2008. July 15;198(2):163–6. 10.1086/589512 PubMed DOI

Ganz T. Iron in innate immunity: Starve the invaders. Curr Opin Immunol. 2009;21(1):63–7. 10.1016/j.coi.2009.01.011 PubMed DOI PMC

Sutak R, Lesuisse E, Tachezy J, Richardson DR. Crusade for iron: Iron uptake in unicellular eukaryotes and its significance for virulence. Trends Microbiol. 2008. June 1;16(6):261–8. 10.1016/j.tim.2008.03.005 PubMed DOI

Singh N, Haldar S, Tripathi AK, Horback K, Wong J, Sharma D, et al. Brain iron homeostasis: From molecular mechanisms to clinical significance and therapeutic opportunities. Antioxidants Redox Signal. 2014. March 10;20(8):1324–63. PubMed PMC

Leitner DF, Connor JR. Functional roles of transferrin in the brain. Vol. 1820, Biochimica et Biophysica Acta—General Subjects. 2012. p. 393–402. PubMed

Mobarra N, Shanaki M, Ehteram H, Nasiri H, Sahmani M, Saeidi M, et al. A review on iron chelators in treatment of iron overload syndromes. Vol. 10, International Journal of Hematology-Oncology and Stem Cell Research Tehran University of Medical Sciences (TUMS); 2016. p. 239–47. PubMed PMC

Cruz-Castañeda A, López-Casamichana M, Olivares-Trejo JJ. Entamoeba histolytica secretes two haem-binding proteins to scavenge haem. Biochem J. 2011. February 15;434(1):105–11. 10.1042/BJ20100897 PubMed DOI

Basu S, Horáková E, Lukeš J. Iron-associated biology of Trypanosoma brucei. Vol. 1860, Biochimica et Biophysica Acta—General Subjects Elsevier; 2016. p. 363–70. PubMed

Tsaousis AD, Nývltová E, Šuták R, Hrdý I, Tachezy J. A Nonmitochondrial hydrogen production in Naegleria gruberi. Genome Biol Evol. 2014. April;6(4):792–9. 10.1093/gbe/evu065 PubMed DOI PMC

Marciano-Cabral FM, Patterson M, John DT, Bradley SG. Cytopathogenicity of Naegleria fowleri and Naegleria gruberi for established mammalian cell cultures. J Parasitol. 1982. December;68(6):1110–6. PubMed

Martínez-Castillo M, Ramírez-Rico G, Serrano-Luna J, Shibayama M. Iron-binding protein degradation by cysteine proteases of Naegleria fowleri. Biomed Res Int. 2015. May 18;2015:1–8. PubMed PMC

Dancis A, Roman DG, Anderson GJ, Hinnebusch AG, Klausner RD. Ferric reductase of Saccharomyces cerevisiae: Molecular characterization, role in iron uptake, and transcriptional control by iron. Proc Natl Acad Sci U S A. 1992. May 1;89(9):3869–73. 10.1073/pnas.89.9.3869 PubMed DOI PMC

Sutak R, Chamot C, Tachezy J, Camadro JM, Lesuisse E. Siderophore and haem iron use by Tritrichomonas foetus. Microbiology. 2004. December 1;150(12):3979–87. PubMed

Alonso P, Zubiaur E. Phagocytic activity of three Naegleria strains in the presence of erythrocytes of various types. J Protozool. 1985. November;32(4):661–4. 10.1111/j.1550-7408.1985.tb03097.x PubMed DOI

Scaglia M, Gatti S, Brustia R, Chichino G, Rondanelli EG. Phagocytosis of human erythrocytes by Naegleria is not related to species pathogenicity. A phase-contrast cinemicrographic study. Microbiologica. 1991. January;14(1):45–53. PubMed

Létoffé S, Heuck G, Delepelaire P, Lange N, Wandersman C. Bacteria capture iron from heme by keeping tetrapyrrol skeleton intact. Proc Natl Acad Sci U S A. 2009. July 14;106(28):11719–24. 10.1073/pnas.0903842106 PubMed DOI PMC

Bradley SG, Toney DM, Zhang Y, Marciano-Cabral F. Dependence of growth, metabolic expression, and pathogenicity of Naegleria fowleri on exogenous porphyrins. J Parasitol. 1996. October;82(5):763–8. PubMed

Jung SY, Kim JH, Song KJ, Lee YJ, Kwon MH, Kim K, et al. Gene silencing of nfa1 affects the in vitro cytotoxicity of Naegleria fowleri in murine macrophages. Mol Biochem Parasitol. 2009. May 1;165(1):87–93. 10.1016/j.molbiopara.2009.01.007 PubMed DOI

Shakoury-Elizeh M, Protchenko O, Berger A, Cox J, Gable K, Dunn TM, et al. Metabolic response to iron deficiency in Saccharomyces cerevisiae. J Biol Chem. 2010;285(19):14823–33. 10.1074/jbc.M109.091710 PubMed DOI PMC

Bexkens ML, Zimorski V, Sarink MJ, Wienk H, Brouwers JF, De Jonckheere JF, et al. Lipids Are the Preferred Substrate of the Protist Naegleria gruberi, Relative of a Human Brain Pathogen. Cell Rep. 2018. October 16;25(3):537–543.e3. 10.1016/j.celrep.2018.09.055 PubMed DOI PMC

Mach J, Bíla J, Ženíšková K, Arbon D, Malych R, Glavanakovová M, et al. Iron economy in Naegleria gruberi reflects its metabolic flexibility. Int J Parasitol. 2018. May 5;48(9–10):719–27. 10.1016/j.ijpara.2018.03.005 PubMed DOI

Kulda J, Tachezy J, Čerkasovová A. In vitro induced anaerobic resistance to metronidazole In Trichomonas vaginalis. J Eukaryot Microbiol. 1993. May;40(3):262–9. 10.1111/j.1550-7408.1993.tb04915.x PubMed DOI

Li X, Li J, Hu X, Huang L, Xiao J, Chan J, et al. Differential roles of the hemerythrin-like proteins of Mycobacterium smegmatis in hydrogen peroxide and erythromycin susceptibility. Sci Rep. 2015. November 26;5:16130 10.1038/srep16130 PubMed DOI PMC

Ma Z, Strickland KT, Cherne MD, Sehanobish E, Rohde KH, Self WT, et al. The Rv2633c protein of Mycobacterium tuberculosis is a non-heme di-iron catalase with a possible role in defenses against oxidative stress. J Biol Chem. 2018;293(5):1590–5. 10.1074/jbc.RA117.000421 PubMed DOI PMC

Selote D, Samira R, Matthiadis A, Gillikin JW, Long TA. Iron-binding e3 ligase mediates iron response in plants by targeting basic helix-loop-helix transcription factors1[open]. Plant Physiol. 2015. January;167(1):273–86. 10.1104/pp.114.250837 PubMed DOI PMC

Zeng WB, Chen WB, Yan QP, Lin GF, Qin YX. Hemerythrin is required for Aeromonas hydraphlia to survive in the macrophages of Anguilla japonica. Genet Mol Res. 2016;15(2). PubMed

Newsome AL, Wilhelm WE. Inhibition of Naegleria fowleri by microbial iron-chelating agents: Ecological implications. Applied and Environmental Microbiology. 1983;45. PubMed PMC

Romeo AM, Christen L, Niles EG, Kosman DJ. Intracellular chelation of iron by bipyridyl inhibits DNA virus replication: Ribonucleotide reductase maturation as a probe of intracellular iron pools. J Biol Chem. 2001. June 29;276(26):24301–8. 10.1074/jbc.M010806200 PubMed DOI

Megger N, Welte L, Zamora F, Müller J. Metal-mediated aggregation of DNA comprising 2,2′-bipyridine nucleoside, an asymmetrically substituted chiral bidentate ligand. Dalt Trans. 2011. February 8;40(8):1802–7. PubMed

Nyayapati S, Afshan G, Lornitzo F, Byrnes RW, Petering DH. Depletion of cellular iron by BPS and ascorbate: Effect on toxicity of adriamycin. Free Radic Biol Med. 1996. January 1;20(3):319–29. 10.1016/0891-5849(96)02054-0 PubMed DOI

Ihnat PM, Vennerstrom JL, Robinson DH. Synthesis and solution properties of deferoxamine amides. J Pharm Sci. 2000. December;89(12):1525–36. 10.1002/1520-6017(200012)89:12<1525::aid-jps3>3.0.co;2-t PubMed DOI

Kontoghiorghe CN, Kontoghiorghes GJ. Efficacy and safety of iron-chelation therapy with deferoxamine, deferiprone, and deferasirox for the treatment of iron-loaded patients with non-transfusion-dependent thalassemia syndromes. Drug Des Devel Ther. 2016;10:465–81. 10.2147/DDDT.S79458 PubMed DOI PMC

Porter JB. Deferoxamine pharmacokinetics. Semin Hematol. 2001. January;38(1 Suppl 1):63–8. 10.1016/s0037-1963(01)90061-7 PubMed DOI

Crichton RR, Ward RJ, Hider RC. The efficacy of iron chelators for removing iron from specific brain regions and the pituitary—Ironing out the brain. Vol. 12, Pharmaceuticals. MDPI AG; 2019. PubMed PMC

Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nature Methods. Nature Publishing Group; 2016;13 p. 731–40. 10.1038/nmeth.3901 PubMed DOI

Tyanova S, Temu T, Cox J. The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat Protoc. 2016. December 1;11(12):2301–19. 10.1038/nprot.2016.136 PubMed DOI

Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics. 2014. September 1;13(9):2513–26. 10.1074/mcp.M113.031591 PubMed DOI PMC

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al. Fiji: An open-source platform for biological-image analysis. Vol. 9, Nature Methods. 2012. p. 676–82. 10.1038/nmeth.2019 PubMed DOI PMC

Stookey LL. Ferrozine-a new spectrophotometric reagent for iron. Anal Chem. 1970. June;42(7):779–81.

Aurrecoechea C, Barreto A, Brestelli J, Brunk BP, Caler E V., Fischer S, et al. AmoebaDB and MicrosporidiaDB: Functional genomic resources for Amoebozoa and Microsporidia species. Nucleic Acids Res. 2011. January 1;39(SUPPL. 1):D612–9. PubMed PMC

Scheiber IF, Pilátová J, Malych R, Kotabova E, Krijt M, Vyoral D, et al. Copper and iron metabolism in: Ostreococcus tauri -the role of phytotransferrin, plastocyanin and a chloroplast copper-transporting ATPase. Metallomics. 2019. October 1;11(10):1657–66. 10.1039/c9mt00078j PubMed DOI

Zimmermann L, Stephens A, Nam SZ, Rau D, Kübler J, Lozajic M, et al. A Completely Reimplemented MPI Bioinformatics Toolkit with a New HHpred Server at its Core. J Mol Biol. 2018. July 20;430(15):2237–43. 10.1016/j.jmb.2017.12.007 PubMed DOI

Indiveri C, Iacobazzi V, Tonazzi A, Giangregorio N, Infantino V, Convertini P, et al. The mitochondrial carnitine/acylcarnitine carrier: Function, structure and physiopathology. Mol Aspects Med. 2011. August 1;32(4–6):223–33. 10.1016/j.mam.2011.10.008 PubMed DOI

Hamel P, Saint-Georges Y, De Pinto B, Lachacinski N, Altamura N, Dujardin G. Redundancy in the function of mitochondrial phosphate transport in Saccharomyces cerevisiae and Arabidopsis thaliana. Mol Microbiol. 2004. February 23;51(2):307–17. 10.1046/j.1365-2958.2003.03810.x PubMed DOI

Šmíd O, Horáková E, Vilimova V, Hrdý I, Cammack R, Horvath A, et al. Knock-downs of iron-sulfur cluster assembly proteins IscS and IscU down-regulate the active mitochondrion of procyclic Trypanosoma brucei. J Biol Chem. 2006. September 29;281(39):28679–86. 10.1074/jbc.M513781200 PubMed DOI

Hoff KG, Cupp-Vickery JR, Vickery LE. Contributions of the LPPVK motif of the iron-sulfur template protein IscU to interactions with the Hsc66-Hsc20 chaperone system. J Biol Chem. 2003. September 26;278(39):37582–9. 10.1074/jbc.M305292200 PubMed DOI

Mittra B, Laranjeira-Silva MF, Perrone Bezerra de Menezes J, Jensen J, Michailowsky V, Andrews NW. A trypanosomatid iron transporter that regulates mitochondrial function is required for Leishmania amazonensis virulence. Horn D, editor. PLoS Pathog. 2016. January 7;12(1):e1005340 10.1371/journal.ppat.1005340 PubMed DOI PMC

Brazzolotto X, Pierrel F, Pelosi L. Three conserved histidine residues contribute to mitochondrial iron transport through mitoferrins. Biochem J. 2014. May 15;460(1):79–89. 10.1042/BJ20140107 PubMed DOI

Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970. August;227(5259):680–5. 10.1038/227680a0 PubMed DOI

Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010. October 27;11(10):R106 10.1186/gb-2010-11-10-r106 PubMed DOI PMC

MacLean B, Tomazela DM, Shulman N, Chambers M, Finney GL, Frewen B, et al. Skyline: An open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics. 2010. April 1;26(7):966–8. 10.1093/bioinformatics/btq054 PubMed DOI PMC

Rasoloson D, Vaňáčová Š, Tomková E, Rázga J, Hrdý I, Tachezy J, et al. Mechanisms of in vitro development of resistance to metronidazole in Trichomonas vaginalis. Microbiology. 2002;148(8):2467–77. PubMed

Verner Z, Čermáková P, Škodová I, Kriegová E, Horváth A, Lukeš J. Complex I (NADH:ubiquinone oxidoreductase) is active in but non-essential for procyclic Trypanosoma brucei. Mol Biochem Parasitol. 2011. February;175(2):196–200. 10.1016/j.molbiopara.2010.11.003 PubMed DOI

IC50 Calculator, available at: https://www.aatbio.com/tools/ic50-calculator, accessed 07/03/2019 [Internet].

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...