Eating the brain - A multidisciplinary study provides new insights into the mechanisms underlying the cytopathogenicity of Naegleria fowleri
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40096149
PubMed Central
PMC11964265
DOI
10.1371/journal.ppat.1012995
PII: PPATHOGENS-D-24-02198
Knihovny.cz E-zdroje
- MeSH
- faktory virulence metabolismus MeSH
- kokultivační techniky MeSH
- lidé MeSH
- meningoencefalitida parazitologie patologie metabolismus MeSH
- mozek * parazitologie metabolismus patologie MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- Naegleria fowleri * patogenita MeSH
- proteomika MeSH
- protozoální proteiny metabolismus MeSH
- protozoární infekce centrálního nervového systému * parazitologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- faktory virulence MeSH
- protozoální proteiny MeSH
Naegleria fowleri, the causative agent of primary amoebic meningoencephalitis (PAM), requires increased research attention due to its high lethality and the potential for increased incidence as a result of global warming. The aim of this study was to investigate the interactions between N. fowleri and host cells in order to elucidate the mechanisms underlying the pathogenicity of this amoeba. A co-culture system comprising human fibrosarcoma cells was established to study both contact-dependent and contact-independent cytopathogenicity. Proteomic analyses of the amoebas exposed to human cell cultures or passaged through mouse brain were used to identify novel virulence factors. Our results indicate that actin dynamics, regulated by Arp2/3 and Src kinase, play a considerable role in ingestion of host cells by amoebae. We have identified three promising candidate virulence factors, namely lysozyme, cystatin and hemerythrin, which may be critical in facilitating N. fowleri evasion of host defenses, migration to the brain and induction of a lethal infection. Long-term co-culture secretome analysis revealed an increase in protease secretion, which enhances N. fowleri cytopathogenicity. Raman microspectroscopy revealed significant metabolic differences between axenic and brain-isolated amoebae, particularly in lipid storage and utilization. Taken together, our findings provide important new insights into the pathogenic mechanisms of N. fowleri and highlight potential targets for therapeutic intervention against PAM.
Department of Parasitology Faculty of Science Charles University BIOCEV Vestec Czech Republic
Department of Parasitology Faculty of Science Charles University Prague Czech Republic
Faculty of Mathematics and Physics Institute of Physics Charles University Praha Czech Republic
Intitute of Parasitology Biology Centre Czech Academy of Science České Budějovice Czech Republic
Lawrence Berkeley National Laboratory Molecular foundry Berkeley California United States of America
Zobrazit více v PubMed
Gharpure R, Gleason M, Salah Z, Blackstock AJ, Hess-Homeier D, Yoder JS, et al.. Geographic range of recreational water-associated primary amebic meningoencephalitis, United States, 1978–2018. Emerg Infect Dis. 2021;27(1):271–4. doi: 10.3201/eid2701.202119 PubMed DOI PMC
Dey R, Dlusskaya E, Oloroso M, Ashbolt NJ. First evidence of free-living Naegleria species in recreational lakes of Alberta, Canada. J Water Health. 2023;21(3):439–42. doi: 10.2166/wh.2023.325 PubMed DOI
Martínez-Castillo M, Cárdenas-Guerra RE, Arroyo R, Debnath A, Rodríguez MA, Sabanero M, et al.. Nf-GH, a glycosidase secreted by Naegleria fowleri, causes mucin degradation: an in vitro and in vivo study. Future Microbiol. 2017;12(9):781–99. doi: 10.2217/fmb-2016-0230 PubMed DOI PMC
Cervantes-Sandoval I, Jesús Serrano-Luna J, Pacheco-Yépez J, Silva-Olivares A, Tsutsumi V, Shibayama M. Differences between Naegleria fowleri and Naegleria gruberi in expression of mannose and fucose glycoconjugates. Parasitol Res. 2010;106(3):695–701. doi: 10.1007/s00436-010-1727-z PubMed DOI
Carrasco-Yepez M, Campos-Rodriguez R, Godinez-Victoria M, Rodriguez-Monroy MA, Jarillo-Luna A, Bonilla-Lemus P, et al.. Naegleria fowleri glycoconjugates with residues of α-D-mannose are involved in adherence of trophozoites to mouse nasal mucosa. Parasitol Res. 2013;112(10):3615–25. doi: 10.1007/s00436-013-3549-2 PubMed DOI
Shibayama M, Martínez-Castillo M, Silva-Olivares A, Galindo-Gómez S, Navarro-García F, Escobar-Herrera J, et al.. Disruption of MDCK cell tight junctions by the free-living amoeba Naegleria fowleri. Microbiology (Reading). 2013;159(Pt 2):392–401. doi: 10.1099/mic.0.063255-0 PubMed DOI
Coronado-Velázquez D, Betanzos A, Serrano-Luna J, Shibayama M. an in vitro model of the blood-brain barrier: Naegleria fowleri affects the tight junction proteins and activates the microvascular endothelial cells. J Eukaryot Microbiol. 2018;65(6):804–19. doi: 10.1111/jeu.12522 PubMed DOI
Jamerson M, da Rocha-Azevedo B, Cabral GA, Marciano-Cabral F. Pathogenic Naegleria fowleri and non-pathogenic Naegleria lovaniensis exhibit differential adhesion to, and invasion of, extracellular matrix proteins. Microbiology (Reading). 2012;158(Pt 3):791–803. doi: 10.1099/mic.0.055020-0 PubMed DOI PMC
Aldape K, Huizinga H, Bouvier J, Mckerrow J. Naegleria fowleri: characterization of a secreted histolytic cysteine protease. Exp Parasitol. 1994;78(2):230–41. PubMed
Vyas IK, Jamerson M, Cabral GA, Marciano-Cabral F. Identification of peptidases in highly pathogenic vs. weakly pathogenic Naegleria fowleri amebae. J Eukaryot Microbiol. 2015;62(1):51–9. doi: 10.1111/jeu.12152 PubMed DOI
Lam C, Jamerson M, Cabral G, Carlesso AM, Marciano-Cabral F. Expression of matrix metalloproteinases in Naegleria fowleri and their role in invasion of the central nervous system. Microbiology (Reading). 2017;163(10):1436–44. doi: 10.1099/mic.0.000537 PubMed DOI
Carrasco-Yepez MM, Contis-Montes de Oca A, Campos-Rodriguez R, Falcon-Acosta D, Pacheco-Yepez J, Rodriguez-Mera IB, et al.. Mouse neutrophils release extracellular traps in response to Naegleria fowleri. Parasite Immunol. 2019;41(2):e12610. doi: 10.1111/pim.12610 PubMed DOI
Flores-Huerta N, Pacheco-Yépez J, Sánchez-Monroy V, Rosales-Hernández MC, Silva-Olivares A, Serrano-Luna J, et al.. The MPO system participates actively in the formation of an oxidative environment produced by neutrophils and activates the antioxidant mechanism of Naegleria fowleri. J Leukoc Biol. 2020;108(3):895–908. doi: 10.1002/JLB.4MA0520-565RR PubMed DOI
Cleary S, Marciano-Cabral F. Activated macrophages demonstrate direct cytotoxicity, antibody-dependent cellular cytotoxicity, and enhanced binding of Naegleria fowleri amoebae. Cell Immunol. 1986;98(1):125–36. PubMed
Fischer-Stenger K, Cabral GA, Marciano-Cabral F. The interaction of Naegleria fowleri amoebae with murine macrophage cell lines. J Protozool. 1990;37(3):168–73. doi: 10.1111/j.1550-7408.1990.tb01122.x PubMed DOI
Herbst R, Ott C, Jacobs T, Marti T, Marciano-Cabral F, Leippe M. Pore-forming polypeptides of the pathogenic protozoon Naegleria fowleri. J Biol Chem. 2002;277(25):22353–60. doi: 10.1074/jbc.M201475200 PubMed DOI
Serrano-Luna J, Cervantes-Sandoval I, Tsutsumi V, Shibayama M. A biochemical comparison of proteases from pathogenic Naegleria fowleri and non-pathogenic Naegleria gruberi. J Eukaryot Microbiol. 2007;54(5):411–7. doi: 10.1111/j.1550-7408.2007.00280.x PubMed DOI
Sohn H-J, Kim J-H, Shin M-H, Song K-J, Shin H-J. The Nf-actin gene is an important factor for food-cup formation and cytotoxicity of pathogenic Naegleria fowleri. Parasitol Res. 2010;106(4):917–24. doi: 10.1007/s00436-010-1760-y PubMed DOI
Russell AC, Bush P, Grigorean G, Kyle DE. Characterization of the extracellular vesicles, ultrastructural morphology, and intercellular interactions of multiple clinical isolates of the brain-eating amoeba, Naegleria fowleri. Front Microbiol. 2023;14:1264348. PubMed PMC
John DT, John RA. Enhancement of virulence of Naegleria fowleri by growth in Vero-cell cultures. J Parasitol. 1994;80(1):149–51. doi: 10.2307/3283359 PubMed DOI
Herman EK, Greninger A, van der Giezen M, Ginger ML, Ramirez-Macias I, Miller HC, et al.. Genomics and transcriptomics yields a system-level view of the biology of the pathogen Naegleria fowleri. BMC Biol. 2021;19(1):142. doi: 10.1186/s12915-021-01078-1 PubMed DOI PMC
Joseph S, Park S, Kelley A, Roy S, Cope J, Ali I. Comparative genomic and transcriptomic analysis of Naegleria fowleri clinical and environmental isolates. mSphere. 2021;6(4):e0063721. doi: 10.1128/msphere.00637-21 PubMed DOI PMC
Arbon D, Ženíšková K, Mach J, Grechnikova M, Malych R, Talacko P, et al.. Adaptive iron utilization compensates for the lack of an inducible uptake system in Naegleria fowleri and represents a potential target for therapeutic intervention. PLoS Negl Trop Dis. 2020;14(6):e0007759. PubMed PMC
Aucher A, Magdeleine E, Joly E, Hudrisier D. Capture of plasma membrane fragments from target cells by trogocytosis requires signaling in T cells but not in B cells. Blood. 2008;111(12):5621–8. doi: 10.1182/blood-2008-01-134155 PubMed DOI PMC
Nakada-Tsukui K, Nozaki T. AGC family kinase 1 participates in trogocytosis but not in phagocytosis in Entamoeba histolytica. Nat Commun. 2017;8(1):101. PubMed PMC
Ralston KS, Solga MD, Mackey-Lawrence NM, , Bhattacharya A, Petri WA Jr. Trogocytosis by Entamoeba histolytica contributes to cell killing and tissue invasion. Nature. 2014;508(7497):526–30. doi: 10.1038/nature13242 PubMed DOI PMC
Velle KB, Fritz-Laylin LK. Conserved actin machinery drives microtubule-independent motility and phagocytosis in Naegleria. J Cell Biol. 2020;219(11):e202007158. doi: 10.1083/jcb.202007158 PubMed DOI PMC
Destaing O, Sanjay A, Itzstein C, Horne WC, Toomre D, De Camilli P, et al.. The tyrosine kinase activity of c-Src regulates actin dynamics and organization of podosomes in osteoclasts. Mol Biol Cell. 2008;19(1):394–404. doi: 10.1091/mbc.e07-03-0227 PubMed DOI PMC
Olivares MJ, González-Jamett AM, Guerra MJ, Baez-Matus X, Haro-Acuña V, Martínez-Quiles N, et al.. Src kinases regulate de novo actin polymerization during exocytosis in neuroendocrine chromaffin cells. PLoS One. 2014;9(6):e99001. doi: 10.1371/journal.pone.0099001 PubMed DOI PMC
Thái TL, Kang J-M, Lê HG, Lee J, Yoo WG, Shin H-J, et al.. Fowlerstefin, a cysteine protease inhibitor of Naegleria fowleri, induces inflammatory responses in BV-2 microglial cells in vitro. Parasit Vectors. 2020;13(1):41. doi: 10.1186/s13071-020-3909-6 PubMed DOI PMC
Lê HG, Ham A-J, Kang J-M, Võ TC, Naw H, Sohn H-J, et al.. A novel cysteine protease inhibitor of Naegleria fowleri that is specifically expressed during encystation and at mature cysts. Pathogens. 2021;10(4):388. doi: 10.3390/pathogens10040388 PubMed DOI PMC
Jung S-Y, Kim J-H, Song K-J, Lee Y-J, Kwon M-H, Kim K, et al.. Gene silencing of nfa1 affects the in vitro cytotoxicity of Naegleria fowleri in murine macrophages. Mol Biochem Parasitol. 2009;165(1):87–93. doi: 10.1016/j.molbiopara.2009.01.007 PubMed DOI
Réveiller FL, Suh SJ, Sullivan K, Cabanes PA, Marciano-Cabral F. Isolation of a unique membrane protein from Naegleria fowleri. J Eukaryot Microbiol. 2001;48(6):676–82. doi: 10.1111/j.1550-7408.2001.tb00208.x PubMed DOI
Malych R, Füssy Z, Ženíšková K, Arbon D, Hampl V, Hrdý I, et al.. The response of Naegleria gruberi to oxidative stress. Metallomics. 2022;14(3):mfac009. doi: 10.1093/mtomcs/mfac009 PubMed DOI
Ma Z, Holland AA, Szlamkowicz I, Anagnostopoulos V, Caldas Nogueira ML, Caranto JD, et al.. The hemerythrin-like diiron protein from Mycobacterium kansasii is a nitric oxide peroxidase. J Biol Chem. 2022;298(3):101696. doi: 10.1016/j.jbc.2022.101696 PubMed DOI PMC
Albert T, Moënne-Loccoz P. Spectroscopic characterization of a diferric mycobacterial hemerythrin-like protein with unprecedented reactivity toward nitric oxide. J Am Chem Soc. 2022;144(38):17611–21. PubMed
Brunold TC, Solomon EI. Reversible dioxygen binding to hemerythrin. 1. Electronic structures of deoxy- and oxyhemerythrin. J Am Chem Soc. 1999;121(36):8277–87
Solomon EI, Park K. Structure/function correlations over binuclear non-heme iron active sites. J Biol Inorg Chem. 2016;21(5–6):575–88. doi: 10.1007/s00775-016-1372-9 PubMed DOI PMC
Enemark J, Feltham R. Principles of structure, bonding, and reactivity for metal nitrosyl complexes. Coord Chem Rev. 1974;13(4):339–406.
Martins MC, Alves CM, Teixeira M, Folgosa F. The flavodiiron protein from Syntrophomonas wolfei has five domains and acts both as an NADH:O2 or an NADH:H2 O2 oxidoreductase. FEBS J. 2024;291(6):1275–94. doi: 10.1111/febs.17040 PubMed DOI
Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, et al.. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 2024;630(8016):493–500. doi: 10.1038/s41586-024-07487-w PubMed DOI PMC
Sheriff S, Hendrickson W, Smith J. Structure of myohemerythrin in the azidomet state at 1.71.3Å resolution. J Mol Biol. 1987;197(2):273–96. PubMed
Holmes M, Le Trong I, Turley S, Sieker L, Stenkamp R. Structures of deoxy and oxy hemerythrin at 2.0 Å resolution. J Mol Biol. 1991;218(3):583–93. PubMed
Chen K, Chuankhayan P, Wu H, Chen C, Fukuda M, Yu S. The bacteriohemerythrin from Methylococcus capsulatus (Bath): crystal structures reveal that Leu114 regulates a water tunnel. J Inorg Biochem. 2015;150:81–9. PubMed
Kopecký V Jr, Ettrich R, Pazderka T, Hofbauerová K, Řeha D, Baumruk V. Influence of ligand binding on structure and thermostability of human α1-acid glycoprotein. J Mol Recognit. 2016;29(2):70–9. doi: 10.1002/jmr.2496 PubMed DOI
Movasaghi Z, Rehman S, Rehman I. Raman spectroscopy of biological tissues. Appl Spectrosc Rev. 2007;42(5):493–541.
Rygula A, Majzner K, Marzec KM, Kaczor A, Pilarczyk M, Baranska M. Raman spectroscopy of proteins: a review. J Raman Spectrosc. 2013;44(8):1061–76. doi: 10.1002/jrs.4335 DOI
Falamas A, Kalra S, Chis V, Notingher I. Monitoring the RNA distribution in human embryonic stem cells using Raman micro-spectroscopy and fluorescence imaging. AIP Conf Proc. 2013;1565(1):43–7.
Palacký J, Vorlíčková M, Kejnovská I, Mojzeš P. Polymorphism of human telomeric quadruplex structure controlled by DNA concentration: a Raman study. Nucleic Acids Res. 2013;41(2):1005–16. doi: 10.1093/nar/gks1135 PubMed DOI PMC
Murugappan S, Tofail SAM, Thorat ND. Raman spectroscopy: a tool for molecular fingerprinting of brain cancer. ACS Omega. 2023;8(31):27845–61. doi: 10.1021/acsomega.3c01848 PubMed DOI PMC
Atkins CG, Buckley K, Blades MW, Turner RFB. Raman spectroscopy of blood and blood components. Appl Spectrosc. 2017;71(5):767–93. doi: 10.1177/0003702816686593 PubMed DOI
Czamara K, Majzner K, Pacia MZ, Kochan K, Kaczor A, Baranska M. Raman spectroscopy of lipids: a review. J Raman Spectrosc. 2014;46(1):4–20. doi: 10.1002/jrs.4607 DOI
Lendeckel U, Kähne T, Ten Have S, Bukowska A, Wolke C, Bogerts B, et al.. Cathepsin K generates enkephalin from β-endorphin: a new mechanism with possible relevance for schizophrenia. Neurochem Int. 2009;54(7):410–7. PubMed
Gu Y, Kanazawa M, Hung S, Wang X, Fukuda S, Koziol J, et al.. Cathepsin L acutely alters microvessel integrity within the neurovascular unit during focal cerebral ischemia. J Cereb Blood Flow Metab. 2015;35(11):1888–900. PubMed PMC
Godat E, Lecaille F, Desmazes C, Duchêne S, Weidauer E, Saftig P. Cathepsin K: a cysteine protease with unique kinin-degrading properties. Biochem J. 2004;383(3):501–6. PubMed PMC
Liu J, Hong Z, Ding J, Liu J, Zhang J, Chen S. Predominant release of lysosomal enzymes by newborn rat microglia after LPS treatment revealed by proteomic studies. J Proteome Res. 2008;7(5):2033–49. PubMed
Fischer-Stenger K, Marciano-Cabral F. The arginine-dependent cytolytic mechanism plays a role in destruction of Naegleria fowleri amoebae by activated macrophages. Infect Immun. 1992;60(12):5126–31. doi: 10.1128/iai.60.12.5126-5131.1992 PubMed DOI PMC
Weiss J, Elsbach P, Olsson I, Odeberg H. Purification and characterization of a potent bactericidal and membrane active protein from the granules of human polymorphonuclear leukocytes. J Biol Chem. 1978;253(8):2664–72. doi: 10.1016/s0021-9258(17)40872-6 PubMed DOI
Theprungsirikul J, Skopelja-Gardner S, Burns AS, Wierzbicki RM, Rigby WFC. Bactericidal/Permeability-increasing protein preeminently mediates clearance of Pseudomonas aeruginosa in vivo via CD18-dependent phagocytosis. Front Immunol. 2021;12:659523. doi: 10.3389/fimmu.2021.659523 PubMed DOI PMC
Bolaños J, Betanzos A, Javier-Reyna R, Rivera G, Huerta M, Pais-Morales J. EhNPC1 and EhNPC2 proteins participate in trafficking of exogenous cholesterol in Entamoeba histolytica trophozoites: relevance for phagocytosis. PLoS Pathogens. 2016;12(12):e1006089. doi: 10.1371/journal.ppat.1006089 PubMed DOI PMC
Rodríguez-Mera IB, Carrasco-Yépez MM, Vásquez-Moctezuma I, Correa-Basurto J, Salinas GR-, Castillo-Ramírez DA, et al.. Role of cathepsin B of Naegleria fowleri during primary amebic meningoencephalitis. Parasitol Res. 2022;121(11):3287–303. doi: 10.1007/s00436-022-07660-y PubMed DOI PMC
Lê H, Kang J, Võ T, Na B. Naegleria fowleri cathepsin B induces a pro-inflammatory immune response in BV-2 microglial cells via NF-κB and AP-1 dependent-MAPK signaling pathway. Int J Mol Sci. 2022;23(15):8388. doi: 10.3390/ijms23158388 PubMed DOI PMC
Stepánek J, Kopecký V Jr, Mezzetti A, Turpin P-Y, Paulin D, Alpert B, et al.. Structural and dynamic changes of the serum response element and the core domain of serum response factor induced by their association. Biochem Biophys Res Commun. 2010;391(1):203–8. doi: 10.1016/j.bbrc.2009.11.032 PubMed DOI
Pilát Z, Jonáš A, Pilátová J, Klementová T, Bernatová S, Šiler M. Analysis of bacteriophage–host interaction by Raman tweezers. Anal Chem. 2020;92(18):12304–11. PubMed
Bexkens M, Zimorski V, Sarink M, Wienk H, Brouwers J, De Jonckheere J, et al.. Lipids are the preferred substrate of the protist Naegleria gruberi, relative of a human brain pathogen. Cell Rep. 2018;25(3):537-543.e3. doi: 10.1016/j.celrep.2018.09.086 PubMed DOI PMC
Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al.. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82. doi: 10.1038/nmeth.2019 PubMed DOI PMC
Mach J, Bíla J, Ženíšková K, Arbon D, Malych R, Glavanakovová M, et al.. Iron economy in Naegleria gruberi reflects its metabolic flexibility. Int J Parasitol. 2018;48(9):719–27. PubMed
Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics. 2014;13(9):2513–26. doi: 10.1074/mcp.M113.031591 PubMed DOI PMC
Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al.. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13(9):731–40. doi: 10.1038/nmeth.3901 PubMed DOI
Zimmermann L, Stephens A, Nam S-Z, Rau D, Kübler J, Lozajic M, et al.. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol. 2018;430(15):2237–43. doi: 10.1016/j.jmb.2017.12.007 PubMed DOI
Perez-Riverol Y, Bai J, Bandla C, García-Seisdedos D, Hewapathirana S, Kamatchinathan S, et al.. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2021;50(D1):D543–52. doi: 10.1093/nar/gkab1060 PubMed DOI PMC
Meng E, Goddard T, Pettersen E, Couch G, Pearson Z, Morris J. UCSF ChimeraX: tools for structure building and analysis. Prot Sci. 2023;32(11):e4792. doi: 10.1002/pro.4792 PubMed DOI PMC
Petasis DT, Hendrich MP. Quantitative interpretation of multifrequency multimode EPR spectra of metal containing proteins, enzymes, and biomimetic complexes. Methods Enzymol. 2015;563:171–208. doi: 10.1016/bs.mie.2015.06.025 PubMed DOI PMC
Lertjuthaporn S, Somkird J, Lekmanee K, Atipimonpat A, Sukapirom K, Sawasdipokin H, et al.. Extracellular vesicles from Naegleria fowleri Induce IL-8 response in THP-1 macrophage. Pathogens. 2022;11(6):632. doi: 10.3390/pathogens11060632 PubMed DOI PMC
Goedhart J, Luijsterburg M. VolcaNoseR is a web app for creating, exploring, labeling and sharing volcano plots. Sci Rep. 2020;10(1):20560. PubMed PMC
Mojzeš P, Gao L, Ismagulova T, Pilátová J, Moudříková Š, Gorelova O. Guanine, a high-capacity and rapid-turnover nitrogen reserve in microalgal cells. Proc Natl Acad Sci. 2020;117(51):32722–30. PubMed PMC
Pilátová J, Tashyreva D, Týč J, Vancová M, Bokhari SNH, Skoupý R, et al.. Massive accumulation of strontium and barium in diplonemid protists. mBio. 2023;14(1):e0327922. doi: 10.1128/mbio.03279-22 PubMed DOI PMC
Pilátová J, Pánek T, Oborník M, Čepička I, Mojzeš P. Revisiting biocrystallization: purine crystalline inclusions are widespread in eukaryotes. ISME J. 2022;16(9):2290–4. doi: 10.1038/s41396-022-01264-1 PubMed DOI PMC
Barcytė D, Pilátová J, Mojzeš P, Nedbalová L. The arctic cylindrocystis (Zygnematophyceae, Streptophyta) green algae are genetically and morphologically diverse and exhibit effective accumulation of polyphosphate. J Phycol. 2020;56(1):217–32. doi: 10.1111/jpy.12931 PubMed DOI