Eating the brain - A multidisciplinary study provides new insights into the mechanisms underlying the cytopathogenicity of Naegleria fowleri

. 2025 Mar ; 21 (3) : e1012995. [epub] 20250317

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40096149
Odkazy

PubMed 40096149
PubMed Central PMC11964265
DOI 10.1371/journal.ppat.1012995
PII: PPATHOGENS-D-24-02198
Knihovny.cz E-zdroje

Naegleria fowleri, the causative agent of primary amoebic meningoencephalitis (PAM), requires increased research attention due to its high lethality and the potential for increased incidence as a result of global warming. The aim of this study was to investigate the interactions between N. fowleri and host cells in order to elucidate the mechanisms underlying the pathogenicity of this amoeba. A co-culture system comprising human fibrosarcoma cells was established to study both contact-dependent and contact-independent cytopathogenicity. Proteomic analyses of the amoebas exposed to human cell cultures or passaged through mouse brain were used to identify novel virulence factors. Our results indicate that actin dynamics, regulated by Arp2/3 and Src kinase, play a considerable role in ingestion of host cells by amoebae. We have identified three promising candidate virulence factors, namely lysozyme, cystatin and hemerythrin, which may be critical in facilitating N. fowleri evasion of host defenses, migration to the brain and induction of a lethal infection. Long-term co-culture secretome analysis revealed an increase in protease secretion, which enhances N. fowleri cytopathogenicity. Raman microspectroscopy revealed significant metabolic differences between axenic and brain-isolated amoebae, particularly in lipid storage and utilization. Taken together, our findings provide important new insights into the pathogenic mechanisms of N. fowleri and highlight potential targets for therapeutic intervention against PAM.

Zobrazit více v PubMed

Gharpure R, Gleason M, Salah Z, Blackstock AJ, Hess-Homeier D, Yoder JS, et al.. Geographic range of recreational water-associated primary amebic meningoencephalitis, United States, 1978–2018. Emerg Infect Dis. 2021;27(1):271–4. doi: 10.3201/eid2701.202119 PubMed DOI PMC

Dey R, Dlusskaya E, Oloroso M, Ashbolt NJ. First evidence of free-living Naegleria species in recreational lakes of Alberta, Canada. J Water Health. 2023;21(3):439–42. doi: 10.2166/wh.2023.325 PubMed DOI

Martínez-Castillo M, Cárdenas-Guerra RE, Arroyo R, Debnath A, Rodríguez MA, Sabanero M, et al.. Nf-GH, a glycosidase secreted by Naegleria fowleri, causes mucin degradation: an in vitro and in vivo study. Future Microbiol. 2017;12(9):781–99. doi: 10.2217/fmb-2016-0230 PubMed DOI PMC

Cervantes-Sandoval I, Jesús Serrano-Luna J, Pacheco-Yépez J, Silva-Olivares A, Tsutsumi V, Shibayama M. Differences between Naegleria fowleri and Naegleria gruberi in expression of mannose and fucose glycoconjugates. Parasitol Res. 2010;106(3):695–701. doi: 10.1007/s00436-010-1727-z PubMed DOI

Carrasco-Yepez M, Campos-Rodriguez R, Godinez-Victoria M, Rodriguez-Monroy MA, Jarillo-Luna A, Bonilla-Lemus P, et al.. Naegleria fowleri glycoconjugates with residues of α-D-mannose are involved in adherence of trophozoites to mouse nasal mucosa. Parasitol Res. 2013;112(10):3615–25. doi: 10.1007/s00436-013-3549-2 PubMed DOI

Shibayama M, Martínez-Castillo M, Silva-Olivares A, Galindo-Gómez S, Navarro-García F, Escobar-Herrera J, et al.. Disruption of MDCK cell tight junctions by the free-living amoeba Naegleria fowleri. Microbiology (Reading). 2013;159(Pt 2):392–401. doi: 10.1099/mic.0.063255-0 PubMed DOI

Coronado-Velázquez D, Betanzos A, Serrano-Luna J, Shibayama M. an in vitro model of the blood-brain barrier: Naegleria fowleri affects the tight junction proteins and activates the microvascular endothelial cells. J Eukaryot Microbiol. 2018;65(6):804–19. doi: 10.1111/jeu.12522 PubMed DOI

Jamerson M, da Rocha-Azevedo B, Cabral GA, Marciano-Cabral F. Pathogenic Naegleria fowleri and non-pathogenic Naegleria lovaniensis exhibit differential adhesion to, and invasion of, extracellular matrix proteins. Microbiology (Reading). 2012;158(Pt 3):791–803. doi: 10.1099/mic.0.055020-0 PubMed DOI PMC

Aldape K, Huizinga H, Bouvier J, Mckerrow J. Naegleria fowleri: characterization of a secreted histolytic cysteine protease. Exp Parasitol. 1994;78(2):230–41. PubMed

Vyas IK, Jamerson M, Cabral GA, Marciano-Cabral F. Identification of peptidases in highly pathogenic vs. weakly pathogenic Naegleria fowleri amebae. J Eukaryot Microbiol. 2015;62(1):51–9. doi: 10.1111/jeu.12152 PubMed DOI

Lam C, Jamerson M, Cabral G, Carlesso AM, Marciano-Cabral F. Expression of matrix metalloproteinases in Naegleria fowleri and their role in invasion of the central nervous system. Microbiology (Reading). 2017;163(10):1436–44. doi: 10.1099/mic.0.000537 PubMed DOI

Carrasco-Yepez MM, Contis-Montes de Oca A, Campos-Rodriguez R, Falcon-Acosta D, Pacheco-Yepez J, Rodriguez-Mera IB, et al.. Mouse neutrophils release extracellular traps in response to Naegleria fowleri. Parasite Immunol. 2019;41(2):e12610. doi: 10.1111/pim.12610 PubMed DOI

Flores-Huerta N, Pacheco-Yépez J, Sánchez-Monroy V, Rosales-Hernández MC, Silva-Olivares A, Serrano-Luna J, et al.. The MPO system participates actively in the formation of an oxidative environment produced by neutrophils and activates the antioxidant mechanism of Naegleria fowleri. J Leukoc Biol. 2020;108(3):895–908. doi: 10.1002/JLB.4MA0520-565RR PubMed DOI

Cleary S, Marciano-Cabral F. Activated macrophages demonstrate direct cytotoxicity, antibody-dependent cellular cytotoxicity, and enhanced binding of Naegleria fowleri amoebae. Cell Immunol. 1986;98(1):125–36. PubMed

Fischer-Stenger K, Cabral GA, Marciano-Cabral F. The interaction of Naegleria fowleri amoebae with murine macrophage cell lines. J Protozool. 1990;37(3):168–73. doi: 10.1111/j.1550-7408.1990.tb01122.x PubMed DOI

Herbst R, Ott C, Jacobs T, Marti T, Marciano-Cabral F, Leippe M. Pore-forming polypeptides of the pathogenic protozoon Naegleria fowleri. J Biol Chem. 2002;277(25):22353–60. doi: 10.1074/jbc.M201475200 PubMed DOI

Serrano-Luna J, Cervantes-Sandoval I, Tsutsumi V, Shibayama M. A biochemical comparison of proteases from pathogenic Naegleria fowleri and non-pathogenic Naegleria gruberi. J Eukaryot Microbiol. 2007;54(5):411–7. doi: 10.1111/j.1550-7408.2007.00280.x PubMed DOI

Sohn H-J, Kim J-H, Shin M-H, Song K-J, Shin H-J. The Nf-actin gene is an important factor for food-cup formation and cytotoxicity of pathogenic Naegleria fowleri. Parasitol Res. 2010;106(4):917–24. doi: 10.1007/s00436-010-1760-y PubMed DOI

Russell AC, Bush P, Grigorean G, Kyle DE. Characterization of the extracellular vesicles, ultrastructural morphology, and intercellular interactions of multiple clinical isolates of the brain-eating amoeba, Naegleria fowleri. Front Microbiol. 2023;14:1264348. PubMed PMC

John DT, John RA. Enhancement of virulence of Naegleria fowleri by growth in Vero-cell cultures. J Parasitol. 1994;80(1):149–51. doi: 10.2307/3283359 PubMed DOI

Herman EK, Greninger A, van der Giezen M, Ginger ML, Ramirez-Macias I, Miller HC, et al.. Genomics and transcriptomics yields a system-level view of the biology of the pathogen Naegleria fowleri. BMC Biol. 2021;19(1):142. doi: 10.1186/s12915-021-01078-1 PubMed DOI PMC

Joseph S, Park S, Kelley A, Roy S, Cope J, Ali I. Comparative genomic and transcriptomic analysis of Naegleria fowleri clinical and environmental isolates. mSphere. 2021;6(4):e0063721. doi: 10.1128/msphere.00637-21 PubMed DOI PMC

Arbon D, Ženíšková K, Mach J, Grechnikova M, Malych R, Talacko P, et al.. Adaptive iron utilization compensates for the lack of an inducible uptake system in Naegleria fowleri and represents a potential target for therapeutic intervention. PLoS Negl Trop Dis. 2020;14(6):e0007759. PubMed PMC

Aucher A, Magdeleine E, Joly E, Hudrisier D. Capture of plasma membrane fragments from target cells by trogocytosis requires signaling in T cells but not in B cells. Blood. 2008;111(12):5621–8. doi: 10.1182/blood-2008-01-134155 PubMed DOI PMC

Nakada-Tsukui K, Nozaki T. AGC family kinase 1 participates in trogocytosis but not in phagocytosis in Entamoeba histolytica. Nat Commun. 2017;8(1):101. PubMed PMC

Ralston KS, Solga MD, Mackey-Lawrence NM, , Bhattacharya A, Petri WA Jr. Trogocytosis by Entamoeba histolytica contributes to cell killing and tissue invasion. Nature. 2014;508(7497):526–30. doi: 10.1038/nature13242 PubMed DOI PMC

Velle KB, Fritz-Laylin LK. Conserved actin machinery drives microtubule-independent motility and phagocytosis in Naegleria. J Cell Biol. 2020;219(11):e202007158. doi: 10.1083/jcb.202007158 PubMed DOI PMC

Destaing O, Sanjay A, Itzstein C, Horne WC, Toomre D, De Camilli P, et al.. The tyrosine kinase activity of c-Src regulates actin dynamics and organization of podosomes in osteoclasts. Mol Biol Cell. 2008;19(1):394–404. doi: 10.1091/mbc.e07-03-0227 PubMed DOI PMC

Olivares MJ, González-Jamett AM, Guerra MJ, Baez-Matus X, Haro-Acuña V, Martínez-Quiles N, et al.. Src kinases regulate de novo actin polymerization during exocytosis in neuroendocrine chromaffin cells. PLoS One. 2014;9(6):e99001. doi: 10.1371/journal.pone.0099001 PubMed DOI PMC

Thái TL, Kang J-M, Lê HG, Lee J, Yoo WG, Shin H-J, et al.. Fowlerstefin, a cysteine protease inhibitor of Naegleria fowleri, induces inflammatory responses in BV-2 microglial cells in vitro. Parasit Vectors. 2020;13(1):41. doi: 10.1186/s13071-020-3909-6 PubMed DOI PMC

Lê HG, Ham A-J, Kang J-M, Võ TC, Naw H, Sohn H-J, et al.. A novel cysteine protease inhibitor of Naegleria fowleri that is specifically expressed during encystation and at mature cysts. Pathogens. 2021;10(4):388. doi: 10.3390/pathogens10040388 PubMed DOI PMC

Jung S-Y, Kim J-H, Song K-J, Lee Y-J, Kwon M-H, Kim K, et al.. Gene silencing of nfa1 affects the in vitro cytotoxicity of Naegleria fowleri in murine macrophages. Mol Biochem Parasitol. 2009;165(1):87–93. doi: 10.1016/j.molbiopara.2009.01.007 PubMed DOI

Réveiller FL, Suh SJ, Sullivan K, Cabanes PA, Marciano-Cabral F. Isolation of a unique membrane protein from Naegleria fowleri. J Eukaryot Microbiol. 2001;48(6):676–82. doi: 10.1111/j.1550-7408.2001.tb00208.x PubMed DOI

Malych R, Füssy Z, Ženíšková K, Arbon D, Hampl V, Hrdý I, et al.. The response of Naegleria gruberi to oxidative stress. Metallomics. 2022;14(3):mfac009. doi: 10.1093/mtomcs/mfac009 PubMed DOI

Ma Z, Holland AA, Szlamkowicz I, Anagnostopoulos V, Caldas Nogueira ML, Caranto JD, et al.. The hemerythrin-like diiron protein from Mycobacterium kansasii is a nitric oxide peroxidase. J Biol Chem. 2022;298(3):101696. doi: 10.1016/j.jbc.2022.101696 PubMed DOI PMC

Albert T, Moënne-Loccoz P. Spectroscopic characterization of a diferric mycobacterial hemerythrin-like protein with unprecedented reactivity toward nitric oxide. J Am Chem Soc. 2022;144(38):17611–21. PubMed

Brunold TC, Solomon EI. Reversible dioxygen binding to hemerythrin. 1. Electronic structures of deoxy- and oxyhemerythrin. J Am Chem Soc. 1999;121(36):8277–87

Solomon EI, Park K. Structure/function correlations over binuclear non-heme iron active sites. J Biol Inorg Chem. 2016;21(5–6):575–88. doi: 10.1007/s00775-016-1372-9 PubMed DOI PMC

Enemark J, Feltham R. Principles of structure, bonding, and reactivity for metal nitrosyl complexes. Coord Chem Rev. 1974;13(4):339–406.

Martins MC, Alves CM, Teixeira M, Folgosa F. The flavodiiron protein from Syntrophomonas wolfei has five domains and acts both as an NADH:O2 or an NADH:H2 O2 oxidoreductase. FEBS J. 2024;291(6):1275–94. doi: 10.1111/febs.17040 PubMed DOI

Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, et al.. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature. 2024;630(8016):493–500. doi: 10.1038/s41586-024-07487-w PubMed DOI PMC

Sheriff S, Hendrickson W, Smith J. Structure of myohemerythrin in the azidomet state at 1.71.3Å resolution. J Mol Biol. 1987;197(2):273–96. PubMed

Holmes M, Le Trong I, Turley S, Sieker L, Stenkamp R. Structures of deoxy and oxy hemerythrin at 2.0 Å resolution. J Mol Biol. 1991;218(3):583–93. PubMed

Chen K, Chuankhayan P, Wu H, Chen C, Fukuda M, Yu S. The bacteriohemerythrin from Methylococcus capsulatus (Bath): crystal structures reveal that Leu114 regulates a water tunnel. J Inorg Biochem. 2015;150:81–9. PubMed

Kopecký V Jr, Ettrich R, Pazderka T, Hofbauerová K, Řeha D, Baumruk V. Influence of ligand binding on structure and thermostability of human α1-acid glycoprotein. J Mol Recognit. 2016;29(2):70–9. doi: 10.1002/jmr.2496 PubMed DOI

Movasaghi Z, Rehman S, Rehman I. Raman spectroscopy of biological tissues. Appl Spectrosc Rev. 2007;42(5):493–541.

Rygula A, Majzner K, Marzec KM, Kaczor A, Pilarczyk M, Baranska M. Raman spectroscopy of proteins: a review. J Raman Spectrosc. 2013;44(8):1061–76. doi: 10.1002/jrs.4335 DOI

Falamas A, Kalra S, Chis V, Notingher I. Monitoring the RNA distribution in human embryonic stem cells using Raman micro-spectroscopy and fluorescence imaging. AIP Conf Proc. 2013;1565(1):43–7.

Palacký J, Vorlíčková M, Kejnovská I, Mojzeš P. Polymorphism of human telomeric quadruplex structure controlled by DNA concentration: a Raman study. Nucleic Acids Res. 2013;41(2):1005–16. doi: 10.1093/nar/gks1135 PubMed DOI PMC

Murugappan S, Tofail SAM, Thorat ND. Raman spectroscopy: a tool for molecular fingerprinting of brain cancer. ACS Omega. 2023;8(31):27845–61. doi: 10.1021/acsomega.3c01848 PubMed DOI PMC

Atkins CG, Buckley K, Blades MW, Turner RFB. Raman spectroscopy of blood and blood components. Appl Spectrosc. 2017;71(5):767–93. doi: 10.1177/0003702816686593 PubMed DOI

Czamara K, Majzner K, Pacia MZ, Kochan K, Kaczor A, Baranska M. Raman spectroscopy of lipids: a review. J Raman Spectrosc. 2014;46(1):4–20. doi: 10.1002/jrs.4607 DOI

Lendeckel U, Kähne T, Ten Have S, Bukowska A, Wolke C, Bogerts B, et al.. Cathepsin K generates enkephalin from β-endorphin: a new mechanism with possible relevance for schizophrenia. Neurochem Int. 2009;54(7):410–7. PubMed

Gu Y, Kanazawa M, Hung S, Wang X, Fukuda S, Koziol J, et al.. Cathepsin L acutely alters microvessel integrity within the neurovascular unit during focal cerebral ischemia. J Cereb Blood Flow Metab. 2015;35(11):1888–900. PubMed PMC

Godat E, Lecaille F, Desmazes C, Duchêne S, Weidauer E, Saftig P. Cathepsin K: a cysteine protease with unique kinin-degrading properties. Biochem J. 2004;383(3):501–6. PubMed PMC

Liu J, Hong Z, Ding J, Liu J, Zhang J, Chen S. Predominant release of lysosomal enzymes by newborn rat microglia after LPS treatment revealed by proteomic studies. J Proteome Res. 2008;7(5):2033–49. PubMed

Fischer-Stenger K, Marciano-Cabral F. The arginine-dependent cytolytic mechanism plays a role in destruction of Naegleria fowleri amoebae by activated macrophages. Infect Immun. 1992;60(12):5126–31. doi: 10.1128/iai.60.12.5126-5131.1992 PubMed DOI PMC

Weiss J, Elsbach P, Olsson I, Odeberg H. Purification and characterization of a potent bactericidal and membrane active protein from the granules of human polymorphonuclear leukocytes. J Biol Chem. 1978;253(8):2664–72. doi: 10.1016/s0021-9258(17)40872-6 PubMed DOI

Theprungsirikul J, Skopelja-Gardner S, Burns AS, Wierzbicki RM, Rigby WFC. Bactericidal/Permeability-increasing protein preeminently mediates clearance of Pseudomonas aeruginosa in vivo via CD18-dependent phagocytosis. Front Immunol. 2021;12:659523. doi: 10.3389/fimmu.2021.659523 PubMed DOI PMC

Bolaños J, Betanzos A, Javier-Reyna R, Rivera G, Huerta M, Pais-Morales J. EhNPC1 and EhNPC2 proteins participate in trafficking of exogenous cholesterol in Entamoeba histolytica trophozoites: relevance for phagocytosis. PLoS Pathogens. 2016;12(12):e1006089. doi: 10.1371/journal.ppat.1006089 PubMed DOI PMC

Rodríguez-Mera IB, Carrasco-Yépez MM, Vásquez-Moctezuma I, Correa-Basurto J, Salinas GR-, Castillo-Ramírez DA, et al.. Role of cathepsin B of Naegleria fowleri during primary amebic meningoencephalitis. Parasitol Res. 2022;121(11):3287–303. doi: 10.1007/s00436-022-07660-y PubMed DOI PMC

Lê H, Kang J, Võ T, Na B. Naegleria fowleri cathepsin B induces a pro-inflammatory immune response in BV-2 microglial cells via NF-κB and AP-1 dependent-MAPK signaling pathway. Int J Mol Sci. 2022;23(15):8388. doi: 10.3390/ijms23158388 PubMed DOI PMC

Stepánek J, Kopecký V Jr, Mezzetti A, Turpin P-Y, Paulin D, Alpert B, et al.. Structural and dynamic changes of the serum response element and the core domain of serum response factor induced by their association. Biochem Biophys Res Commun. 2010;391(1):203–8. doi: 10.1016/j.bbrc.2009.11.032 PubMed DOI

Pilát Z, Jonáš A, Pilátová J, Klementová T, Bernatová S, Šiler M. Analysis of bacteriophage–host interaction by Raman tweezers. Anal Chem. 2020;92(18):12304–11. PubMed

Bexkens M, Zimorski V, Sarink M, Wienk H, Brouwers J, De Jonckheere J, et al.. Lipids are the preferred substrate of the protist Naegleria gruberi, relative of a human brain pathogen. Cell Rep. 2018;25(3):537-543.e3. doi: 10.1016/j.celrep.2018.09.086 PubMed DOI PMC

Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, et al.. Fiji: an open-source platform for biological-image analysis. Nat Methods. 2012;9(7):676–82. doi: 10.1038/nmeth.2019 PubMed DOI PMC

Mach J, Bíla J, Ženíšková K, Arbon D, Malych R, Glavanakovová M, et al.. Iron economy in Naegleria gruberi reflects its metabolic flexibility. Int J Parasitol. 2018;48(9):719–27. PubMed

Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics. 2014;13(9):2513–26. doi: 10.1074/mcp.M113.031591 PubMed DOI PMC

Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al.. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13(9):731–40. doi: 10.1038/nmeth.3901 PubMed DOI

Zimmermann L, Stephens A, Nam S-Z, Rau D, Kübler J, Lozajic M, et al.. A completely reimplemented MPI bioinformatics toolkit with a new HHpred server at its core. J Mol Biol. 2018;430(15):2237–43. doi: 10.1016/j.jmb.2017.12.007 PubMed DOI

Perez-Riverol Y, Bai J, Bandla C, García-Seisdedos D, Hewapathirana S, Kamatchinathan S, et al.. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2021;50(D1):D543–52. doi: 10.1093/nar/gkab1060 PubMed DOI PMC

Meng E, Goddard T, Pettersen E, Couch G, Pearson Z, Morris J. UCSF ChimeraX: tools for structure building and analysis. Prot Sci. 2023;32(11):e4792. doi: 10.1002/pro.4792 PubMed DOI PMC

Petasis DT, Hendrich MP. Quantitative interpretation of multifrequency multimode EPR spectra of metal containing proteins, enzymes, and biomimetic complexes. Methods Enzymol. 2015;563:171–208. doi: 10.1016/bs.mie.2015.06.025 PubMed DOI PMC

Lertjuthaporn S, Somkird J, Lekmanee K, Atipimonpat A, Sukapirom K, Sawasdipokin H, et al.. Extracellular vesicles from Naegleria fowleri Induce IL-8 response in THP-1 macrophage. Pathogens. 2022;11(6):632. doi: 10.3390/pathogens11060632 PubMed DOI PMC

Goedhart J, Luijsterburg M. VolcaNoseR is a web app for creating, exploring, labeling and sharing volcano plots. Sci Rep. 2020;10(1):20560. PubMed PMC

Mojzeš P, Gao L, Ismagulova T, Pilátová J, Moudříková Š, Gorelova O. Guanine, a high-capacity and rapid-turnover nitrogen reserve in microalgal cells. Proc Natl Acad Sci. 2020;117(51):32722–30. PubMed PMC

Pilátová J, Tashyreva D, Týč J, Vancová M, Bokhari SNH, Skoupý R, et al.. Massive accumulation of strontium and barium in diplonemid protists. mBio. 2023;14(1):e0327922. doi: 10.1128/mbio.03279-22 PubMed DOI PMC

Pilátová J, Pánek T, Oborník M, Čepička I, Mojzeš P. Revisiting biocrystallization: purine crystalline inclusions are widespread in eukaryotes. ISME J. 2022;16(9):2290–4. doi: 10.1038/s41396-022-01264-1 PubMed DOI PMC

Barcytė D, Pilátová J, Mojzeš P, Nedbalová L. The arctic cylindrocystis (Zygnematophyceae, Streptophyta) green algae are genetically and morphologically diverse and exhibit effective accumulation of polyphosphate. J Phycol. 2020;56(1):217–32. doi: 10.1111/jpy.12931 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...