Massive Accumulation of Strontium and Barium in Diplonemid Protists
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36645306
PubMed Central
PMC9972996
DOI
10.1128/mbio.03279-22
Knihovny.cz E-zdroje
- Klíčová slova
- Euglenozoa, barite, biocrystallization, biogeochemical cycles, celestite,
- MeSH
- baryum MeSH
- minerály MeSH
- oceány a moře MeSH
- plankton MeSH
- síran barnatý * MeSH
- stroncium * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- oceány a moře MeSH
- Názvy látek
- baryum MeSH
- minerály MeSH
- síran barnatý * MeSH
- stroncium * MeSH
Barium and strontium are often used as proxies of marine productivity in palaeoceanographic reconstructions of global climate. However, long-searched biological drivers for such correlations remain unknown. Here, we report that taxa within one of the most abundant groups of marine planktonic protists, diplonemids (Euglenozoa), are potent accumulators of intracellular barite (BaSO4), celestite (SrSO4), and strontiobarite (Ba,Sr)SO4. In culture, Namystinia karyoxenos accumulates Ba2+ and Sr2+ 42,000 and 10,000 times higher than the surrounding medium, forming barite and celestite representing 90% of the dry weight, the greatest concentration in biomass known to date. As heterotrophs, diplonemids are not restricted to the photic zone, and they are widespread in the oceans in astonishing abundance and diversity, as their distribution correlates with environmental particulate barite and celestite, prevailing in the mesopelagic zone. We found diplonemid predators, the filter-feeding zooplankton that produces fecal pellets containing the undigested celestite from diplonemids, facilitating its deposition on the seafloor. To the best of our knowledge, evidence for diplonemid biomineralization presents the strongest explanation for the occurrence of particulate barite and celestite in the marine environment. Both structures of the crystals and their variable chemical compositions found in diplonemids fit the properties of environmentally sampled particulate barite and celestite. Finally, we propose that diplonemids, which emerged during the Neoproterozoic era, qualify as impactful players in Ba2+/Sr2+ cycling in the ocean that has possibly contributed to sedimentary rock formation over long geological periods. IMPORTANCE We have identified that diplonemids, an abundant group of marine planktonic protists, accumulate conspicuous amounts of Sr2+ and Ba2+ in the form of intracellular barite and celestite crystals, in concentrations that greatly exceed those of the most efficient Ba/Sr-accumulating organisms known to date. We propose that diplonemids are potential players in Ba2+/Sr2+ cycling in the ocean and have possibly contributed to sedimentary rock formation over long geological periods. These organisms emerged during the Neoproterozoic era (590 to 900 million years ago), prior to known coccolithophore carbonate biomineralization (~200 million years ago). Based on reported data, the distribution of diplonemids in the oceans is correlated with the occurrence of particulate barite and celestite. Finally, diplonemids may provide new insights into the long-questioned biogenic origin of particulate barite and celestite and bring more understanding of the observed spatial-temporal correlation of the minerals with marine productivity used in reconstructions of past global climate.
Faculty of Science Charles University Prague Czech Republic
Faculty of Sciences University of South Bohemia České Budějovice Czech Republic
Institute of Parasitology Biology Centre Czech Academy of Sciences České Budějovice Czech Republic
Institute of Physics Czech Academy of Sciences Prague Czech Republic
Institute of Physics Faculty of Mathematics and Physics Charles University Prague Czech Republic
Institute of Scientific Instruments Czech Academy of Sciences Brno Czech Republic
Zobrazit více v PubMed
Avery SV, Smith SL, Ghazi AM, Hoptroff MJ. 1999. Stimulation of strontium accumulation in linoleate-enriched Saccharomyces cerevisiae is a result of reduced Sr2+ efflux. Appl Environ Microbiol 65:1191–1197. doi:10.1128/AEM.65.3.1191-1197.1999. PubMed DOI PMC
Krejci MR, Wasserman B, Finney L, McNulty I, Legnini D, Vogt S, Joester D. 2011. Selectivity in biomineralization of barium and strontium. J Struct Biol 176:192–202. doi:10.1016/j.jsb.2011.08.006. PubMed DOI
Bowen HJM, Dymond JA. 1955. Strontium and barium in plants and soils. Proc R Soc Lindon B Biol Sci 144:355–368.
Pors Nielsen S. 2004. The biological role of strontium. Bone 35:583–588. doi:10.1016/j.bone.2004.04.026. PubMed DOI
Bhoelan BS, Stevering CH, van der Boog ATJ, van der Heyden MAG. 2014. Barium toxicity and the role of the potassium inward rectifier current. Clin Toxicol 52:584–593. doi:10.3109/15563650.2014.923903. PubMed DOI
Fukuda SY, Iwamoto K, Atsumi M, Yokoyama A, Nakayama T, Ishida K-I, Inouye I, Shiraiwa Y. 2014. Global searches for microalgae and aquatic plants that can eliminate radioactive cesium, iodine and strontium from the radio-polluted aquatic environment: a bioremediation strategy. J Plant Res 127:79–89. doi:10.1007/s10265-013-0596-9. PubMed DOI PMC
Walker JB. 1953. Inorganic micronutrient requirements of Chlorella. I. Requirements for calcium (or strontium), copper, and molybdenum. Arch Biochem Biophys 46:1–11. doi:10.1016/0003-9861(53)90163-5. PubMed DOI
Bolland MJ, Grey A. 2016. Ten years too long: strontium ranelate, cardiac events, and the European Medicines Agency. Br Med J 354:i5109. doi:10.1136/bmj.i5109. PubMed DOI
Moore JW. 1991. Inorganic contaminants of surface water: research and monitoring priorities, 1st ed. Springer US, New York, NY.
Cam N, Benzerara K, Georgelin T, Jaber M, Lambert JF, Poinsot M, Skouri-Panet F, Cordier L. 2016. Selective uptake of alkaline earth metals by cyanobacteria forming intracellular carbonates. Environ Sci Technol 50:11654–11662. doi:10.1021/acs.est.6b02872. PubMed DOI
Paytan A, Griffith EM. 2007. Marine barite: recorder of variations in ocean export productivity. Deep Sea Res II 54:687–705. doi:10.1016/j.dsr2.2007.01.007. DOI
Griffith EM, Paytan A. 2012. Barite in the ocean: occurrence, geochemistry and palaeoceanographic applications. Sedimentology 59:1817–1835. doi:10.1111/j.1365-3091.2012.01327.x. DOI
Raven JA, Knoll AH. 2010. Non-skeletal biomineralization by eukaryotes: matters of moment and gravity. Geomicrobiol J 27:572–584. doi:10.1080/01490451003702990. DOI
Langer G, Nehrke G, Thoms S, Stoll H. 2009. Barium partitioning in coccoliths of Emiliania huxleyi. Geochim Cosmochim Acta 73:2899–2906. doi:10.1016/j.gca.2009.02.025. DOI
Monnin C, Cividini D. 2006. The saturation state of the world’s ocean with respect to (Ba,Sr)SO4 solid solutions. Geochim Cosmochim Acta 70:3290–3298. doi:10.1016/j.gca.2006.04.002. DOI
Bütschli O. 1906. Über die chemische Natur der Skelettsubstanz der Acantharia. Zool Anz 30:784–789.
Hemmersbach R, Krause M, Bräucker R, Ivanova K. 2005. Graviperception in ciliates: steps in the transduction chain. Adv Space Res 35:296–299. doi:10.1016/j.asr.2005.03.024. PubMed DOI
Brook AJ, Fotheringham A, Bradly J, Jenkins A. 1980. Barium accumulation by desmids of the genus Closterium (Zygnemaphyceae). Br Phycol J 15:261–264. doi:10.1080/00071618000650251. DOI
Gooday AJ, Nott JA. 1982. Intracellular barite crystals in two Xenophyophores, Aschemonella ramuliformis and Galatheammina sp. (Protozoa: Rhizopoda) with comments on the taxonomy of A. ramuliformis. J Mar Biol Ass 62:595–605. doi:10.1017/S0025315400019779. DOI
Fresnel J, Galle P, Gayral P. 1979. Résultats de la microanalyse des cristaux vacuolaires chez deux Chromophytes unicellulaires marines: Exanthemachrysis gayraliae, Pavlova sp. (Prymnesiophyceées, Pavlovacées). C R Hebd Seances Ser D Sci Nat 288:823–825.
Martignier A, Filella M, Pollok K, Melkonian M, Bensimon M, Barja F, Langenhorst F, Jaquet JM, Ariztegui D. 2018. Marine and freshwater micropearls: biomineralization producing strontium-rich amorphous calcium carbonate inclusions is widespread in the genus Tetraselmis (Chlorophyta). Biogeosciences 15:6591–6605. doi:10.5194/bg-15-6591-2018. DOI
Stoll HM, Rosenthal Y, Falkowski P. 2002. Climate proxies from Sr/Ca of coccolith calcite: Calibrations from continuous culture of Emiliania huxleyi. Geochim Cosmochim Acta 66:927–936. doi:10.1016/S0016-7037(01)00836-5. DOI
Dymond J, Collier R. 1996. Particulate barium fluxes and their relationships to biological productivity. Deep Res Part II Top Stud Oceanogr 43:1283–1308. doi:10.1016/0967-0645(96)00011-2. DOI
Dehairs F, Chesselet R, Jedwab J. 1980. Discrete suspended particles of barite and the barium cycle in the open ocean. Earth Planet Sci Lett 49:528–550. doi:10.1016/0012-821X(80)90094-1. DOI
De Deckker P. 2004. On the celestite-secreting Acantharia and their effect on seawater strontium to calcium ratios. Hydrobiologia 517:1–13. doi:10.1023/B:HYDR.0000027333.02017.50. DOI
Martinez-Ruiz F, Jroundi F, Paytan A, Guerra-Tschuschke I, Abad MDM, González-Muñoz MT. 2018. Barium bioaccumulation by bacterial biofilms and implications for Ba cycling and use of Ba proxies. Nat Commun 9:1619. doi:10.1038/s41467-018-04069-z. PubMed DOI PMC
Bishop JKB. 1988. The barite-opal-organic carbon association in oceanic particulate matter. Nature 332:341–343. doi:10.1038/332341a0. DOI
Horner TJ, Pryer HV, Nielsen SG, Crockford PW, Gauglitz JM, Wing BA, Ricketts RD. 2017. Pelagic barite precipitation at micromolar ambient sulfate. Nat Commun 8:1342. doi:10.1038/s41467-017-01229-5. PubMed DOI PMC
Kostygov AY, Karnkowska A, Votýpka J, Tashyreva D, Maciszewski K, Yurchenko V, Lukeš J. 2021. Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol 11:200407. doi:10.1098/rsob.200407. PubMed DOI PMC
Prokopchuk G, Korytář T, Juricová V, Majstorović J, Horák A, Šimek K, Lukeš J. 2022. Trophic flexibility of marine diplonemids: switching from osmotrophy to bacterivory. ISME J 16:1409–1419. doi:10.1038/s41396-022-01192-0. PubMed DOI PMC
Tashyreva D, Simpson AGB, Prokopchuk G, Škodová-Sveráková I, Butenko A, Hammond M, George EE, Flegontova O, Záhonová K, Faktorová D, Yabuki A, Horák A, Keeling PJ, Lukeš J. 2022. Diplonemids: a review on “new” flagellates on the oceanic block. Protist 173:125868. doi:10.1016/j.protis.2022.125868. PubMed DOI
Flegontova O, Flegontov P, Malviya S, Audic S, Wincker P, de Vargas C, Bowler C, Lukeš J, Horák A. 2016. Extreme diversity of diplonemid eukaryotes in the Ocean. Curr Biol 26:3060–3065. doi:10.1016/j.cub.2016.09.031. PubMed DOI
Flegontova O, Flegontov P, Londoño Castañeda AP, Walczowski W, Šantić D, Edgcomb VP, Lukeš J, Horák A. 2020. Environmental determinants of the distribution of planktonic diplonemids and kinetoplastids in the oceans. Environ Microbiol 22:4014–4031. doi:10.1111/1462-2920.15190. PubMed DOI
de Vargas C, Audic S, Henry N, Decelle J, Mahé F, Logares R, Lara E, Berney C, Le Bescot N, Probert I, Carmichael M, Poulain J, Romac S, Colin S, Aury J-M, Bittner L, Chaffron S, Dunthorn M, Engelen S, Flegontova O, Guidi L, Horák A, Jaillon O, Lima-Mendez G, Lukeš J, Malviya S, Morard R, Mulot M, Scalco E, Siano R, Vincent F, Zingone A, Dimier C, Picheral M, Searson S, Kandels-Lewis S, Tara Oceans Coordinators, Acinas SG, Bork P, Bowler C, Gorsky G, Grimsley N, Hingamp P, Iudicone D, Not F, Ogata H, Pesant S, Raes J, Sieracki ME, Speich S, et al. . 2015. Eukaryotic plankton diversity in the sunlit ocean. Science 348:1261605. doi:10.1126/science.1261605. PubMed DOI
Mukherjee I, Salcher MM, Andrei AŞ, Kavagutti VS, Shabarova T, Grujčić V, Haber M, Layoun P, Hodoki Y, Nakano SI, Šimek K, Ghai R. 2020. A freshwater radiation of diplonemids. Environ Microbiol 22:4658–4668. doi:10.1111/1462-2920.15209. PubMed DOI
Zhou L, Mernagh TP, Mo B, Wang L, Zhang S, Wang C. 2020. Raman study of barite and celestine at various temperatures. Minerals 10:260. doi:10.3390/min10030260. DOI
Walsby AE, Reynolds CS. 1980. Sinking and floating, p 371–412. In Morris I (ed), The physiological ecology of the phytoplankton. Blackwell Science, Oxford, United Kingdom.
Knoll AH. 2003. Biomineralization and evolutionary history. Rev Mineral Geochem 54:329–356. doi:10.2113/0540329. DOI
Kreger DR, Boeré H. 1969. Some observations on barium sulphate in Spirogyra. Acta Bot Neerl 18:143–151. doi:10.1111/j.1438-8677.1969.tb00579.x. DOI
Gawryluk RMR, Del Campo J, Okamoto N, Strassert JFH, Lukeš J, Richards TA, Worden AZ, Santoro AE, Keeling PJ. 2016. Morphological identification and single-cell genomics of marine diplonemids morphological identification. Curr Biol 26:3053–3059. doi:10.1016/j.cub.2016.09.013. PubMed DOI
Cavan EL, Laurenceau-Cornec EC, Bressac M, Boyd PW. 2019. Exploring the ecology of the mesopelagic biological pump. Prog Oceanogr 176:102125. doi:10.1016/j.pocean.2019.102125. DOI
Fisher NS, Guillard RRL, Bankston DC. 1991. The accumulation of barium by marine phytoplankton grown in culture. J Mar Res 49:339–354. doi:10.1357/002224091784995882. DOI
Brook AJ, Grime GW, Watt F. 1988. A study of barium accumulation in desmids using the Oxford scanning proton microprobe (SPM). Nucl Instruments Methods Phys Res 30:372–377. doi:10.1016/0168-583X(88)90027-4. DOI
Sun S, Liu M, Nie X, Dong F, Hu W, Tan D, Huo T. 2018. A synergetic biomineralization strategy for immobilizing strontium during calcification of the coccolithophore Emiliania huxleyi. Environ Sci Pollut Res Int 25:22446–22454. doi:10.1007/s11356-018-1271-4. PubMed DOI
Kirichok Y, Krapivinsky G, Clapham DE. 2004. The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427:360–364. doi:10.1038/nature02246. PubMed DOI
Schumaker KS, Sze H. 1986. Calcium transport into the vacuole of oat roots. Characterization of H+/Ca2+ exchange activity. J Biol Chem 261:12172–12178. doi:10.1016/S0021-9258(18)67219-9. PubMed DOI
Docampo R, Lukeš J. 2012. Trypanosomes and the solution of a fifty years-mitochondrial calcium mystery. Trends Parasitol 28:31–37. doi:10.1016/j.pt.2011.10.007. PubMed DOI PMC
Veronis G. 1972. On properties of seawater, defined by temperature, salinity and pressure. J Mar Res 30:227–255.
Gaft ML, Bershov LV, Krasnaya AR, Yaskolko VY. 1985. Luminescence centers in anhydrite, barite, celestite and their synthesized analogs. Phys Chem Minerals 11:255–260. doi:10.1007/BF00307403. DOI
Raven JA. 1985. Regulation of pH and generation of osmolarity in vascular plants: a cost-benefit analysis in relation to efficiency of use of energy, nitrogen and water. New Phytol 101:25–77. doi:10.1111/j.1469-8137.1985.tb02816.x. PubMed DOI
Butenko A, Hammond M, Field MC, Ginger ML, Yurchenko V, Lukeš J. 2021. Reductionist pathways for parasitism in Euglenozoans? Expanded datasets provide new insights. Trends Parasitol 37:100–116. doi:10.1016/j.pt.2020.10.001. PubMed DOI
De Vargas C, Aubry M-P, Probert I, Young J. 2007. Origin and evolution of coccolithophores: from coastal hunters to oceanic farmers, p 251–285. Evolution of primary producers in the sea. Elsevier, Amsterdam, Netherlands.
Tashyreva D, Prokopchuk G, Yabuki A, Kaur B, Faktorová D, Votýpka J, Kusaka C, Fujikura K, Shiratori T, Ishida K-I, Horák A, Lukeš J. 2018. Phylogeny and morphology of new diplonemids from Japan. Protist 169:158–179. doi:10.1016/j.protis.2018.02.001. PubMed DOI
Prokopchuk G, Tashyreva D, Yabuki A, Horák A, Masařová P, Lukeš J. 2019. Morphological, ultrastructural, motility and evolutionary characterization of two new Hemistasiidae species. Protist 170:259–282. doi:10.1016/j.protis.2019.04.001. PubMed DOI
Tashyreva D, Prokopchuk G, Votýpka J, Yabuki A, Horák A, Lukeš J. 2018. Life cycle, ultrastructure, and phylogeny of new diplonemids. mBio 9:e02447-17. doi:10.1128/mBio.02447-17. PubMed DOI PMC
Moudříková Š, Sadowsky A, Metzger S, Nedbal L, Mettler-Altmann T, Mojzeš P. 2017. Quantification of polyphosphate in microalgae by Raman microscopy and by a reference enzymatic assay. Anal Chem 89:12006–12013. doi:10.1021/acs.analchem.7b02393. PubMed DOI
Moudříková Š, Mojzeš P, Zachleder V, Pfaff C, Behrendt D, Nedbal L. 2016. Raman and fluorescence microscopy sensing energy-transducing and energy-storing structures in microalgae. Algal Res 16:224–232. doi:10.1016/j.algal.2016.03.016. DOI
Moudříková Š, Nedbal L, Solovchenko A, Mojzeš P. 2017. Raman microscopy shows that nitrogen-rich cellular inclusions in microalgae are microcrystalline guanine. Algal Res 23:216–222. doi:10.1016/j.algal.2017.02.009. DOI
Barcytė D, Pilátová J, Mojzeš P, Nedbalová L. 2020. The arctic Cylindrocystis (Zygnematophyceae, Streptophyta) green algae are genetically and morphologically diverse and exhibit effective accumulation of polyphosphate. J Phycol 56:217–232. doi:10.1111/jpy.12931. PubMed DOI
Pilátová J, Pánek T, Oborník M, Čepička I, Mojzeš P. 2022. Revisiting biocrystallization: purine crystalline inclusions are widespread in eukaryotes. ISME J 16:2290–2294. doi:10.1038/s41396-022-01264-1. PubMed DOI PMC
Yurchenko V, Votýpka J, Tesarová M, Klepetková H, Kraeva N, Jirků M, Lukeš J. 2014. Ultrastructure and molecular phylogeny of four new species of monoxenous trypanosomatids from flies (Diptera: Brachycera) with redefinition of the genus Wallaceina. Folia Parasitol 61:97–112. doi:10.14411/fp.2014.023. PubMed DOI
Gemmi M, Mugnaioli E, Gorelik TE, Kolb U, Palatinus L, Boullay P, Hovmöller S, Abrahams JP. 2019. 3D electron diffraction: The nanocrystallography revolution. ACS Cent Sci 5:1315–1329. doi:10.1021/acscentsci.9b00394. PubMed DOI PMC
Palatinus L, Brázda P, Jelínek M, Hrdá J, Steciuk G, Klementová M. 2019. Specifics of the data processing of precession electron diffraction tomography data and their implementation in the program PETS2.0. Acta Crystallogr B Struct Sci Cryst Eng Mater 75:512–522. doi:10.1107/S2052520619007534. PubMed DOI
Petříček V, Dušek M, Palatinus L. 2014. Crystallographic computing system JANA2006: general features. Z Krist 229:345–352. doi:10.1515/zkri-2014-1737. DOI
Belevich I, Joensuu M, Kumar D, Vihinen H, Jokitalo E. 2016. Microscopy Image Browser: a platform for segmentation and analysis of multidimensional datasets. PLoS Biol 14:e1002340. doi:10.1371/journal.pbio.1002340. PubMed DOI PMC
Zhao F, McGrath SP, Crosland AR. 1994. Comparison of three wet digestion methods for the determination of plant sulphur by inductively coupled plasma atomic emission spectroscopy (ICP-AES). Commun Soil Sci Plant Anal 25:407–418. doi:10.1080/00103629409369047. DOI
Andresen E, Lyubenova L, Hubáček T, Bokhari SNH, Matoušková Š, Mijovilovich A, Rohovec J, Küpper H. 2020. Chronic exposure of soybean plants to nanomolar cadmium reveals specific additional high-affinity targets of cadmium toxicity. J Exp Bot 71:1628–1644. doi:10.1093/jxb/erz530. PubMed DOI PMC
Strbkova L, Carson BB, Vincent T, Vesely P, Chmelik R. 2020. Automated interpretation of time-lapse quantitative phase image by machine learning to study cellular dynamics during epithelial–mesenchymal transition. J Biomed Opt 25:e086502. PubMed PMC
Decelle J, Not F. 2015. Acantharia. John Wiley & Sons, Hoboken, NJ.