The Arctic Cylindrocystis (Zygnematophyceae, Streptophyta) Green Algae are Genetically and Morphologically Diverse and Exhibit Effective Accumulation of Polyphosphate
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31610035
DOI
10.1111/jpy.12931
Knihovny.cz E-zdroje
- Klíčová slova
- Cylindrocystis, Raman microscopy, diversity, ecology, fluorescent staining, morphology, phylogeny, polar habitats, toluidine blue,
- MeSH
- Chlorophyta * MeSH
- fylogeneze MeSH
- polyfosfáty MeSH
- Streptophyta * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Arktida MeSH
- Svalbard MeSH
- Názvy látek
- polyfosfáty MeSH
The green algal genus Cylindrocystis is widespread in various types of environments, including extreme habitats. However, very little is known about its diversity, especially in polar regions. In the present study, we isolated seven new Cylindrocystis-like strains from terrestrial and freshwater habitats in Svalbard (High Arctic). We aimed to compare the new isolates on a molecular (rbcL and 18S rDNA), morphological (light and confocal laser scanning microscopy), and cytological (Raman microscopy) basis. Our results demonstrated that the Arctic Cylindrocystis were not of a monophyletic origin and that the studied strains clustered within two clades (tentatively named the soil and freshwater/glacier clades) and four separate lineages. Morphological data (cell size, shape, and chloroplast morphology) supported the presence of several distinct taxa among the new isolates. Moreover, the results showed that the Arctic Cylindrocystis strains were closely related to strains originating from the temperate zone, indicating high ecological versatility and successful long-distance dispersal of the genus. Large amounts of inorganic polyphosphate (polyP) grains were detected within the chloroplasts of the cultured Arctic Cylindrocystis strains, suggesting effective luxury uptake of phosphorus. Additionally, various intracellular structures were identified using Raman microscopy and cytochemical and fluorescent staining. This study represents the first attempt to combine molecular, morphological, ecological, and biogeographical data for Arctic Cylindrocystis. Our novel cytological observations partially explain the success of Cylindrocystis-like microalgae in polar regions.
Zobrazit více v PubMed
Albi, T. & Serrano, A. 2016. Inorganic polyphosphate in the microbial world. Emerging roles for a multifaceted biopolymer. World J. Microbiol. Biotechnol. 32:1-12.
Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389-402.
Barcytė, D., Hodač, L. & Nedbalová, L. 2017. Lunachloris lukesovae gen. et sp. nov. (Trebouxiophyceae, Chlorophyta), a novel coccoid green alga isolated from soil in South Bohemia. Czech Republic. Eur. J. Phycol. 52:281-91.
Bischoff, H. W. & Bold, H. C. 1963. Phycological studies IV. Some soil algae from Enchanted Rock and relatedalgal species. Univ. Texas Publ. 6318:1-95.
Borchhardt, N., Baum, C., Mikhailyuk, T. & Karsten, U. 2017. Biological soil crusts of Arctic Svalbard - water availability as potential controlling factor for microbial biodiversity. Front. Microbiol. 8:1485.
Brook, A. J. 1992. Spirotaenia alpina (Zygnemaphyceae: Mesotaeniaceae), a saccoderm desmid new to the British Isles: Revised description and observations on cell division. Br. Phycol. J. 27:29-38.
Cembella, A. D., Antia, N. J. & Harrison, P. J. 1982. The utilization of inorganic and organic phosphorus-compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective: Part 1. Crit. Rev. Microbiol. 10:317-91.
Cembella, A. D., Antia, N. J. & Harrison, P. J. 1984. The utilization of inorganic and organic phosphorus compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective. Part 2. Crit. Rev. Microbiol. 11:13-81.
Chelvanayagam, D. K. & Beazley, L. D. 1997. Toluidine blue-O is a Nissl bright-field counterstain for lipophilic fluorescent tracers Di-ASP, DiI and DiO. J. Neurosci. Methods 72:49-55.
Coesel, P. F. M. & Meesters, K. J. 2007. Desmids of the Lowlands. KNNV Publishing, Zeist, The Netherlands, 351 pp.
Ehling-Schulz, M., Bilger, W. & Scherer, S. 1997. UV-B-induced synthesis of photoprotective pigments and extracellular polysaccharides in the terrestrial cyanobacterium Nostoc commune. J. Bacteriol. 179:1940-5.
Elster, J., Svoboda, J., Komárek, J. & Marvan, P. 1997. Algal and cyanoprocaryote communities in a glacial stream, Sverdrup Pass, 79°N, Central Ellesmere Island, Canada. Algol. Stud. 85:57-93.
Flechtner, V. R., Johansen, J. R. & Clark, W. H. 1998. Algal composition of microbiotic crusts from the Central Desert of Baja California, Mexico. Great Basin Nat. 58:295-311.
Førland, E. J., Benestad, R., Hanssen-Bauer, I., Haugen, J. E. & Skaugen, T. E. 2011. Temperature and precipitation development at Svalbard 1900-2100. Adv. Meteorol. https://doi.org/10.1155/2011/893790.
Gontcharov, A. A. & Melkonian, M. 2010. Molecular phylogeny and revision of the genus Netrium (Zygnematophyceae, Streptophyta): Nucleotaenium gen. nov. J. Phycol. 46:346-62.
Gray, M. J. & Jakob, U. 2015. Oxidative stress protection by polyphosphate - new roles for an old player. Curr. Opin. Microbiol. 24:1-6.
Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41:95-8.
Hall, J. D., Karol, K. G., McCourt, R. M. & Delwiche, C. F. 2008. Phylogeny of the conjugating green algae based on chloroplast and mitochondrial nucleotide sequence data. J. Phycol. 44:467-77.
Hall, J. D. & McCourt, R. M. 2017. Zygnematophyta. In Archibald, J. M., Simpson, A. G. B. & Slamovits, C. H. [Eds.] Handbook of the Protists. Springer International Publishing AG, Cham, Switzerland, pp. 135-63.
Hamby, R. K., Sim, L., Issel, L. & Zimmer, E. 1988. Direct RNA sequencing: Optimization of extraction and sequencing techniques for work with higher plants. Plant Mol. Biol. Rep. 6:175-92.
Harold, F. M. 1966. Inorganic polyphosphates in biology: structure, metabolism, and function. Bacteriol. Rev. 30:772-94.
Hepperle, D. 2004. SeqAssem©. A sequence analysis tool, contig assembler and trace data visualization tool for molecular sequences. Win32-Version. Available at http://www.sequentix.de (last accessed 20 May 2019).
Herburger, K., Lewis, L. A. & Holzinger, A. 2015. Photosynthetic efficiency, desiccation tolerance and ultrastructure in two phylogenetically distinct strains of alpine Zygnema sp. (Zygnematophyceae, Streptophyta): role of pre-akinete formation. Protoplasma 252:571-89.
Herburger, K., Remias, D. & Holzinger, A. 2016. The green alga Zygogonium ericetorum (Zygnematophyceae, Charophyta) shows high iron and aluminium tolerance: protection mechanisms and photosynthetic performance. FEMS Microbiol. Ecol. 92:fiw103.
Hirn, I. 1953. Vitalfärbungsstudien an Desmidiaceen. Flora 140:453-73.
Hodač, L., Hallmann, C., Spitzer, K., Elster, J., Faßhauer, F., Brinkmann, N., Lepka, D., Diwan, V. & Friedl, T. 2016. Widespread green algae Chlorella and Stichococcus exhibit polar-temperate and tropical-temperate biogeography. FEMS Microbiol. Ecol. 92:fiw122.
Höfler, K. & Schindler, H. 1951. Vitalfärbung von Algenzellen mit Toluidinblaulösungen gestufter Wasserstoffionenkonzentration. Protoplasma 40:137-51.
Holzinger, A., Albert, A., Aigner, S., Uhl, J., Schmitt-Kopplin, P., Trumhová, K. & Pichrtová, M. 2018. Arctic, Antarctic, and temperate green algae Zygnema spp. under UV-B stress: vegetative cells perform better than pre-akinetes. Protoplasma 255:1239-52.
Jiménez, J., Bru, S., Ribeiro, M. P. C. & Clotet, J. 2017. Polyphosphate: popping up from oblivion. Curr. Genet. 63:15-8.
Katoh, K., Rozewicki, J. & Yamada, K. D. 2019. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinf 20:1160-66.
Keasling, J. D., van Dien, S. J. & Pramanik, J. 1998. Engineering polyphosphate metabolism in Escherichia coli: Implications for bioremediation of inorganic contaminants. Biotechnol. Bioeng. 58:231-9.
Klimešová, M., Rindi, F. & Škaloud, P. 2018. DNA cloning demonstrates high genetic heterogenity in populations of the subaerial green alga Trentepohlia (Trentepohliales, Chlorophyta). J. Phycol. 55:224-35.
Kol, E. 1942. The snow and ice algae of Alaska. Smithson Misc. Collect. 101:1-36.
Kopetzky-Rechtperg, O. 1931. Die “Zersetzungskorperchen” der Desmidiaceenzelle. Arch. Protistenk. 75:270-83.
Kopetzky-Rechtperg, O. 1949. Zellbau und Zelleinschlüsse bei Conjugaten, besonders Desmidiales. Protoplasma 39:106-12.
Kornberg, A. 1995. Inorganic polyphosphate: toward making a forgotten polymer unforgettable. J. Bacteriol. 177:491-6.
Kornberg, A., Rao, N. N. & Ault-Riché, D. 1999. Inorganic polyphosphate: a molecule of many functions. Annu. Rev. Biochem. 68:89-125.
Kulaev, I. S., Vagabov, V. M. & Kulakovskaya, T. V. 2004. The Biochemistry of Inorganic Polyphosphates. John Wiley & Sons, Chichester, UK, 294 pp.
Lanfear, R., Calcott, B., Ho, S. Y. & Guindon, S. 2012. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 29:1695-701.
Lenzenweger, R. 2003. Desmidiaceenflora von Österreich. Teil 4. J Cramer, Stuttgart, Germany.
Lewis, L. A. & Lewis, P. O. 2005. Unearthining the molecular phylodiversity of desert soil green algae (Chlorophyta). Syst. Biol. 54:936-47.
Love, R., Orsi, E. V. & Berry, E. E. 1955. A simple stain for mitochondria. Proc. Soc. Exp. Biol. Med. 88:666-9.
Lütkemüller, J. 1913. Die Gattung Cylindrocystis Menegh. Verh. KK. Zool.-Bot. Ges. Wien 63:212-30.
Lutz, S., McCutcheon, J., McQuaid, J. B. & Benning, L. G. 2018. The diversity of ice algal communities on the Greenland Ice Sheet as revealed by oligotyping. Microb. Genom. 4:e000159.
McCourt, R. M., Karol, K. G., Bell, J., Helm-Bychowski, K. M., Grajewska, A., Wojciechowski, M. F. & Hoshaw, R. W. 2000. Phylogeny of the conjugating green algae (Zygnematophyceae) based on rbcL sequences. J. Phycol. 36:747-58.
Meyer, A. 1904. Orientierende Untersuchungen über Verbreitung, Morphologie und Chemie des Volutins. Bot. Zeitung 62:113-52.
Mikhailyuk, T., Lukešová, A., Glaser, K., Holzinger, A., Obwegeser, S., Nyporko, S., Friedl, T. & Karsten, U. 2018. New taxa of streptophyte algae (Streptophyta) from terrestrial habitats revealed using an integrative approach. Protist 169:406-31.
Miller, M. A., Pfeiffer, W. & Schwartz, T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, LA, pp. 1-8.
Moudříková, Š., Mojzeš, P., Zachleder, V., Pfaff, C., Behrendt, D. & Nedbal, L. 2016. Raman and fluorescence microscopy sensing energy-transducing and energy-storing structures in microalgae. Algal Res. 16:224-32.
Moudříková, Š., Nedbal, L., Solovchenko, A. & Mojzeš, P. 2017b. Raman microscopy shows that nitrogen-rich cellular inclusions in microalgae are microcrystalline guanine. Algal Res. 23:216-22.
Moudříková, Š., Sadowsky, A., Metzger, S., Nedbal, L., Mettler-Altmann, T. & Mojzeš, P. 2017a. Quantification of polyphosphate in microalgae by Raman microscopy and by a reference enzymatic assay. Anal. Chem. 89:12006-13.
Nedbalová, L. & Sklenář, P. 2008. New records of snow algae from the Andes of Ecuador. Arnaldoa 15:17-20.
Ohtomo, R., Sekiguchi, Y., Mimura, T., Saito, M. & Ezawa, T. 2004. Quantification of polyphosphate: different sensitivities to short-chain polyphosphate using enzymatic and colorimetric methods as revealed by ion chromatography. Anal. Biochem. 328:139-46.
Pichrtová, M., Hájek, T. & Elster, J. 2014b. Osmotic stress and recovery in field populations of Zygnema sp. (Zygnematophyceae, Streptophyta) on Svalbard (High Arctic) subjected to natural desiccation. FEMS Microbiol. Ecol. 89:270-80.
Pichrtová, M., Hájek, T. & Elster, J. 2016. Annual development of mat-forming conjugating green algae Zygnema spp. in hydroterrestrial habitats in the Arctic. Polar Biol. 39:1653-62.
Pichrtová, M., Holzinger, A., Kulichová, J., Ryšánek, D., Šoljaková, T., Trumhová, K. & Němcová, Y. 2018. Molecular and morphological diversity of Zygnema and Zygnemopsis (Zygnematophyceae, Streptophyta) from Svalbard (High Arctic). Eur. J. Phycol. 53:492-508.
Pichrtová, M., Kulichová, J. & Holzinger, A. 2014a. Nitrogen limitation and slow drying induce desiccation tolerance in conjugating green algae (Zygnematophyceae, Streptophyta) from polar habitats. PLoS ONE 9:e113137.
Pick, U., Zeelon, O. & Weiss, M. 1991. Amine accumulation in acidic vacuoles protects the halotolerant alga Dunaliella salina against alkaline stress. Plant Physiol. 97:1226-33.
Posada, D. & Crandall, K. A. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817-8.
Prescott, G. W., Croasdale, H. T. & Vinyard, W. C. 1972. North American Flora. Series II, Part 6, Desmidiales. Part I. Saccodermae, Mesotaeniaceae. New York Botanical Garden, Bronx, NY.
Rambaut, A. 2007. Figtree, a graphical viewer of phylogenetic trees. Available at http://tree.bio.ed.ac.uk/software/figtree (last accessed 20 May 2019).
Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. 2018. Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67:901-4.
Remias, D., Holzinger, A., Aigner, S. & Lütz, C. 2012a. Ecophysiology and ultrastructure of Ancylonema nordenskiöldii (Zygnematales, Streptophyta), causing brown ice on glaciers in Svalbard (high arctic). Polar Biol. 35:899-908.
Remias, D., Holzinger, A. & Lütz, C. 2009. Physiology, ultrastructure and habitat of the ice alga Mesotaenium berggrenii (Zygnematophyceae, Chlorophyta) from glaciers in the European Alps. Phycologia 48:302-12.
Remias, D., Schwaiger, S., Aigner, S., Leya, T., Stuppner, H. & Lütz, C. 2012b. Characterization of an UV- and VIS-absorbing, purpurogallin-derived secondary pigment new to algae and highly abundant in Mesotaenium berggrenii (Zygnematophyceae, Chlorophyta), an extremophyte living on glaciers. FEMS Microbiol. Ecol. 79:638-48.
Rippin, M., Becker, B. & Holzinger, A. 2017. Enhanced desiccation tolerance in mature cultures of the streptophytic green alga Zygnema circumcarinatum revealed by transcriptomics. Plant Cell Physiol. 58:2067-84.
Rippin, M., Lange, S., Sausen, N. & Becker, B. 2018. Biodiversity of biological soil crusts from the Polar Regions revealed by metabarcoding. FEMS Microbiol. Ecol. 94:fiy036.
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A. & Huelsenbeck, J. P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61:539-42.
Ruhfel, B. R., Gitzendanner, M. A., Soltis, P. S., Soltis, D. E. & Butleigh, J. G. 2014. From algae to angiosperms-inferring the phylogeny of green plants (Viridiplantae) from 360 plastid genomes. BMC Evol. Biol. 14:23.
Rýšánek, D., Elster, J., Kováčik, L. & Škaloud, P. 2016. Diversity and dispersal capacities of a terrestrial genus Klebsormidium (Streptophyta) in polar regions. FEMS Microbiol. Ecol. 92:fnw039.
Siderius, M., van den Musgrave, A., Ende, H., Koerten, H., Cambier, P. & van der Meer, P. 1996. Chlamydomonas eugametos (Chlorophyta) stores phosphate in polyphosphate bodies together with calcium. J. Phycol. 32:402-9.
Singhrao, S. K. & Nair-Roberts, R. G. 2010. In situ hybridization and immunofluorescence on resin-embedded tissue to identify the components of Nissl substance. Microsc. Res. Tech. 73:555-9.
Škaloud, P. 2009. Species composition and diversity of aero-terrestrial algae and cyanobacteria of the Boreč Hill ventaroles. Fottea 9:65-80.
Solovchenko, A., Verschoor, A. M., Jablonowski, N. D. & Nedbal, L. 2016. Phosphorus from wastewater to crops: An alternative path involving microalgae. Biotechnol. Adv. 34:550-64.
Stamatakis, A. 2014. RaxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312-3.
Stancheva, R., Hall, J. D., McCourt, R. M. & Sheath, R. G. 2013. Identity and phylogenetic placement of Spirogyra species (Zygnematophyceae, Charophyta) from California streams and elsewhere. J. Phycol. 49:588-607.
Štěpánková, J., Hašler, P., Hladká, M. & Poulíčková, A. 2012. Diversity and ecology of desmids of peat bogs in the Jeseníky Mts: spatial distribution, remarkable finds. Fottea 12:111-26.
Stibal, M., Šabacká, M. & Kaštovská, K. 2006. Microbial communities on glacier surfaces in Svalbard: impact of physical and chemical properties on abundance and structure of cyanobacteria and algae. Microb. Ecol. 52:644-54.
Swofford, D. L. 2003. PAUP*: Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4. Sinauer Associates, Sunderland, MA.
Takeuchi, N. & Kohshima, S. 2004. A snow algal community on Tyndall Glacier in the Southern Patagonia Icefield, Chile. Arct. Antarct. Alp. Res. 36:92-9.
de Vries, J., Curtis, B. A., Gould, S. B. & Archibald, J. M. 2018. Embryophyte stress signaling evolved in the algal progenitors of land plants. Proc. Natl. Acad. Sci. USA E3471-80.
de Vries, J., Stanton, A., Archibald, J. M. & Gould, S. B. 2016. Streptophyte terrestrialization in light of plastid evolution. Trends Plant Sci. 21:467-76.
Walczowski, W. & Piechura, J. 2011. Influence of the west Spitsbergen current on the local climate. Int. J. Climatol. 31:1088-93.
Wodniok, S., Brinkmann, H., Glöckner, G., Heidel, A. J., Philippe, H., Melkonian, M. & Becker, B. 2011. Origin of land plants: Do conjugating green algae hold the key? BMC Evol. Biol. 11:104.
Xie, L. & Jakob, U. 2019. Inorganic polyphosphate, a multifunctional polyanionic protein scaffold. J. Biol. Chem. 294:2180-90.
Yallop, M. L., Anesio, A. M., Perkins, R. G., Cook, J., Telling, J., Fagan, D., MacFarlane, J. et al. 2012. Photophysiology and albedo-changing potential of the ice algal community on the surface of the Greenland ice sheet. ISME J. 6:2302-13.
Zhang, W. & Tung, C. H. 2018. Real-time visualisation of lysosome destruction using a photosensitive toluidine blue nanogel. Chemistry 24:2089-93.
Zwickl, D. J. 2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence data sets under the maximum likelihood criterion. Ph.D. dissertation, The University of Texas at Austin, 125 pp.
Massive Accumulation of Strontium and Barium in Diplonemid Protists
GENBANK
MN177723, MN177736