Unicellular versus Filamentous: The Glacial Alga Ancylonema alaskana comb. et stat. nov. and Its Ecophysiological Relatedness to Ancylonema nordenskioeldii (Zygnematophyceae, Streptophyta)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
P 34073
Austrian Science Fund FWF - Austria
PubMed
34065466
PubMed Central
PMC8161032
DOI
10.3390/microorganisms9051103
PII: microorganisms9051103
Knihovny.cz E-zdroje
- Klíčová slova
- Mesotaeniaceae, cryoflora, fatty acids, lipidome, photosynthesis, phylogeny, polyphenols, supraglacial communities,
- Publikační typ
- časopisecké články MeSH
Melting polar and alpine ice surfaces frequently exhibit blooms of dark pigmented algae. These microbial extremophiles significantly reduce the surface albedo of glaciers, thus accelerating melt rates. However, the ecology, physiology and taxonomy of cryoflora are not yet fully understood. Here, a Swiss and an Austrian glacier dominated either by filamentous Ancylonema nordenskioeldii or unicellular Mesotaenium berggrenii var. alaskanum, were sampled. Molecular analysis showed that both species are closely related, sharing identical chloroplast morphologies (parietal-lobed for Ancylonema vs. axial plate-like for Mesotaenium sensu stricto), thus the unicellular species was renamed Ancylonema alaskana. Moreover, an ecophysiological comparison of the two species was performed: pulse-amplitude modulated (PAM) fluorometry confirmed that they have a high tolerance to elevated solar irradiation, the physiological light preferences reflected the conditions in the original habitat; nonetheless, A. nordenskioeldii was adapted to higher irradiances while the photosystems of A. alaskana were able to use efficiently low irradiances. Additionally, the main vacuolar polyphenol, which effectively shields the photosystems, was identical in both species. Also, about half of the cellular fatty acids were polyunsaturated, and the lipidome profiles dominated by triacylglycerols were very similar. The results indicate that A. alaskana is physiologically very similar and closely related but genetically distinct to A. nordenskioeldii.
Department of Ecology Faculty of Science Charles University Viničná 7 128 44 Prague Czech Republic
Institute of Microbiology The Czech Academy of Sciences Vídeňská 1083 142 20 Prague Czech Republic
Zobrazit více v PubMed
Anesio A.M., Lutz S., Chrismas N.A.M., Benning L.G. The microbiome of glaciers and ice sheets. NPJ Biofilms Microbiomes. 2017;3:10. doi: 10.1038/s41522-017-0019-0. PubMed DOI PMC
Boetius A., Anesio A.M., Deming J.W., Mikucki J.A., Rapp J.Z. Microbial ecology of the cryosphere: Sea ice and glacial habitats. Nat. Rev. Microbiol. 2015;13:677–690. doi: 10.1038/nrmicro3522. PubMed DOI
Hotaling S., Hood E., Hamilton T.L. Microbial ecology of mountain glacier ecosystems: Biodiversity, ecological connections and implications of a warming climate. Environ. Microbiol. 2017;19:2935–2948. doi: 10.1111/1462-2920.13766. PubMed DOI
Hoham R.W., Remias D. Snow and Glacial Algae: A Review. J. Phycol. 2020;56:264–282. doi: 10.1111/jpy.12952. PubMed DOI PMC
Ling H.U., Seppelt R.D. Snow algae of the Windmill Islands, continental Antarctica. Mesotaenium berggrenii (Zygnematales, Chlorophyta) the alga of grey snow. Antarct. Sci. 1990;2:143–148. doi: 10.1007/s003000050309. DOI
Remias D., Holzinger A., Lütz C. Physiology, ultrastructure and habitat of the ice alga Mesotaenium berggrenii (Zygnemaphyceae, Chlorophyta) from glaciers in the European Alps. Phycologia. 2009;48:302–312. doi: 10.2216/08-13.1. DOI
Remias D., Holzinger A., Aigner S., Lütz C. Ecophysiology and ultrastructure of Ancylonema nordenskiöldii (Zygnematales, Streptophyta), causing brown ice on glaciers in Svalbard (high arctic) Polar Biol. 2012;35:899–908. doi: 10.1007/s00300-011-1135-6. DOI
Kol E. Kryobiologie. Biologie und Limnologie des Schnees und Eises. I. Kryovegetation. In: Elster H.J., Ohle W., editors. Die Binnengewässer. Schweizerbart’sche Verlagsbuchhandlung; Stuttgart, Germany: 1968. Band XXIV.
Williamson C.J., Cameron K.A., Cook J.M., Žárský J.D., Stibal M., Edwards A. Glacier algae: A dark past and a darker future. Front. Microbiol. 2019;10:524. doi: 10.3389/fmicb.2019.00524. PubMed DOI PMC
Barcytė D., Pilátová J., Mojzeš P., Nedbalová L. The Arctic Cylindrocystis (Zygnematophyceae, Streptophyta) green algae are genetically and morphologically diverse and exhibit effective accumulation of polyphosphate. J. Phycol. 2020;56:217–232. doi: 10.1111/jpy.12931. PubMed DOI
Remias D., Schwaiger S., Aigner S., Leya T., Stuppner H., Lütz C. Characterization of an UV- and VIS-absorbing, purpurogallin-derived secondary pigment new to algae and highly abundant in Mesotaenium berggrenii (Zygnematophyceae, Chlorophyta), an extremophyte living on glaciers. FEMS Microbiol. Ecol. 2012;79:638–648. doi: 10.1111/j.1574-6941.2011.01245.x. PubMed DOI
Williamson C.J., Cook J., Tedstone A., Yallop M., McCutcheon J., Poniecka E., Campbell D., Irvine-Fynn T., McQuaid J., Tranter M., et al. Algal photophysiology drives darkening and melt of the Greenland Ice Sheet. Proc. Natl. Acad. Sci. USA. 2020;117:5694–5705. doi: 10.1073/pnas.1918412117. PubMed DOI PMC
Yallop M.L., Anesio A.M., Perkins R.G., Cook J., Telling J., Fagan D., MacFarlane J., Stibal M., Barker G., Bellas C., et al. Photophysiology and albedo-changing potential of the ice algal community on the surface of the Greenland ice sheet. ISME J. 2012;6:2302–2313. doi: 10.1038/ismej.2012.107. PubMed DOI PMC
Lutz S., Anesio A.M., Jorge Villar S.E., Benning L.G. Variations of algal communities cause darkening of a Greenland glacier. FEMS Microbiol. Ecol. 2014;89:402–414. doi: 10.1111/1574-6941.12351. PubMed DOI
Stibal M., Box J.E., Cameron K.A., Langen P.L., Yallop M.L., Mottram R.H., Khan A.L., Molotch N.P., Chrismas N.A.M., Quaglia F.C., et al. Algae drive enhanced darkening of bare ice on the Greenland ice sheet. Geophys. Res. Lett. 2017 doi: 10.1002/2017GL075958. DOI
McCutcheon J., Lutz S., Williamson C., Cook J.M., Tedstone A.J., Vanderstraeten A., Wilson S.A., Stockdale A., Bonneville S., Anesio A.M., et al. Mineral phosphorus drives glacier algal blooms on the Greenland Ice Sheet. Nat. Commun. 2021;12:570. doi: 10.1038/s41467-020-20627-w. PubMed DOI PMC
Williamson C., Anesio A.M., Cook J., Tedstone A., Poniecka E., Holland A., Fagan D., Tranter M., Yallop M. Ice algal bloom development on the surface of the Greenland Ice Sheet. FEMS Microbiol. Ecol. 2018;94:fiy025. doi: 10.1093/femsec/fiy025. PubMed DOI PMC
Di Mauro B., Garzonio R., Baccolo G., Franzetti A., Pittino F., Leoni B., Remias D., Colombo R., Rossini M. Glacier algae foster ice-albedo feedback in the European Alps. Sci. Rep. 2020;10:4739. doi: 10.1038/s41598-020-61762-0. PubMed DOI PMC
Procházková L., Leya T., Křížková H., Nedbalová L. Sanguina nivaloides and Sanguina aurantia gen. et spp. nov. (Chlorophyta): The taxonomy, phylogeny, biogeography and ecology of two newly recognised algae causing red and orange snow. FEMS Microbiol. Ecol. 2019;95:fiz064. doi: 10.1093/femsec/fiz064. PubMed DOI PMC
Procházková L., Remias D., Řezanka T., Nedbalová L. Chloromonas nivalis subsp. tatrae, subsp. nov. (Chlamydomonadales, Chlorophyta): Re–examination of a snow alga from the High Tatra Mountains (Slovakia) Fottea. 2018;18:1–18. doi: 10.5507/fot.2017.010. PubMed DOI PMC
Gontcharov A.A., Melkonian M. Molecular phylogeny and revision of the genus Netrium (Zygnematophyceae, Streptophyta): Nucleotaenium gen. nov. J. Phycol. 2010;46:346–362. doi: 10.1111/j.1529-8817.2010.00814.x. DOI
Posada D. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 2008;25:1253–1256. doi: 10.1093/molbev/msn083. PubMed DOI
Nedbalová L., Mihál M., Kvíderová J., Procházková L., Řezanka T., Elster J. Identity, ecology and ecophysiology of planktic green algae dominating in ice-covered lakes on James Ross Island (northeastern Antarctic Peninsula) Extremophiles. 2017;21:187–200. doi: 10.1007/s00792-016-0894-y. PubMed DOI
Bligh E.G., Dyer W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Phys. 1959;37:911–917. doi: 10.1139/o59-099. PubMed DOI
Kates M., Volcani B.E. Biosynthetic pathways for phosphatidylsulfocholine, the sulfonium analogue of phosphatidylcholine. In: Kiene R.P., Visscher P.T., Keller M.D., Kirst G.O., editors. Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds, in Diatoms. Springer; Boston, MA, USA: 1996. pp. 109–119.
Saunders R.D., Horrocks L.A. Simultaneous extraction and preparation for high-performance liquid chromatography of prostaglandins and phospholipids. Anal. Biochem. 1984;143:71–75. doi: 10.1016/0003-2697(84)90559-1. PubMed DOI
Dembitsky V.M., Řezanka T., Rozentsvet O.A. Lipid composition of three macrophytes from the Caspian Sea. Phytochemistry. 1993;33:1015–1019. doi: 10.1016/0031-9422(93)85014-I. DOI
Kol E. The snow and ice algae of Alaska. Smithson. Misc. Collect. 1942;101:1–36.
Takeuchi N. The altitudinal distribution of snow algae on an Alaska glacier (Gulkana Glacier in the Alaska Range) Hydrol. Process. 2001;15:3447–3459. doi: 10.1002/hyp.1040. DOI
Darcy S.K., Schmidt J.L. Phylogeny of ulotrichalean algae from extreme high-altitude and high-latitude ecosystems. Polar Biol. 2015;38:689–697.
Takeuchi N., Tanaka S., Irvine-Fynn T.D.L., Rassner S.M.E., Edwards A. Variations in phototroph communities on the ablating bare-ice surface of glaciers on Brøggerhalvøya, Svalbard. Front. Earth Sci. 2019;7:4. doi: 10.3389/feart.2019.00004. DOI
Lutz S., McCutcheon J., McQuaid J.B., Benning L.G. The diversity of ice algal communities on the Greenland Ice Sheet as revealed by oligotyping. Microbial. Genomics. 2018;4:e000159. doi: 10.1099/mgen.0.000159. PubMed DOI PMC
Takeuchi N., Uetake J., Fujita K., Aizen V.B., Nikitin S.D. A snow algal community on Akkem Glacier in the Russian Altai Mountains. Ann. Glaciol. 2006;43:378–384. doi: 10.3189/172756406781812113. DOI
Yoshimura Y., Kohshima S., Ohtani S. A community of snow algae on a Himalayan glacier: Change of algal biomass and community structure with altitude. Arctic Alpine Res. 1997;29:126–137. doi: 10.2307/1551843. DOI
Berggren S. Öfversigt af Kongl. Vetenskaps-Akademiens Förhandlingar. P. A. Norstedt & Söner; Stockholm, Sweden: 1871. Alger från Grönlands inlandis; pp. 293–297.
Wittrock B. Om snöns och isens flora, särskildt i de arktiska trakterna. In: Nordenskiöld A.E., editor. Studier och Forskningar Föranledda af Mina Resor i Hoga Norden. F. & G. Beijers Forlag; Stockholm, Sweden: 1883. pp. 63–124.
Lagerheim G. Die Schnee Flora des Pichincha. Ein Beitrag zur Kenntnis der Nivalen Algen und Pilzen. Ber. der Dtsch. Bot. Gessellschaft. 1892;10:517–534.
Turland N.J., Wiersema J.H., Barrie F.R., Greuter W., Hawksworth D.L., Herendeen P.S., Knapp S., Kusber W.-H., Li D.-Z., Marhold K., et al., editors. International Code of Nomenclature For algae, Fungi, and Plants (Shenzhen Code) Adopted by the Nineteenth International Botanical Congress Shenzhen, China, July 2017. Koeltz Botanical Books; Glashütten, Germany: 2018. Regnum Veg. Glashütten 159. DOI
Webb W.L., Newton M., Starr D. Carbon dioxide exchange of Alnus rubra. A mathematical model. Oecologia. 1974;17:281–291. doi: 10.1007/BF00345747. PubMed DOI
Takeuchi N., Kohshima S. A snow algal community on Tyndall Glacier in the Southern Patagonia Icefield, Chile. Arctic Alpine Res. 2004;36:92–99. doi: 10.1657/1523-0430(2004)036[0092:ASACOT]2.0.CO;2. DOI
Komárek O., Komárek J. Contribution to the taxonomy and ecology of green cryosestic algae in the summer season 1995-96 at King George Island, S. Shetland Islands. Nova Hedwig. Beiheft. 2001;123:121–140.
Kol E. Über roten and grünen Schnee der Alpen. Verh Intern. Ver. Limnol. 1961;XIV:912–917. doi: 10.1080/03680770.1959.11899387. DOI
Krieger W. Die Desmidiaceen Europas mit Berücksichtigung der aussereuropäischen Arten. Band 13. Abteilung 1, Teil 1, Lieferung 1 of Dr. L. Rabenhorst’s Kryptogamen-Flora von Deutschland, Österreich und der Schweiz. Akademische Verlagsgeselschaft M.B.H.; Leipzig, Germany: 1933.
Yoshimura Y., Kohshima S., Takeuchi N., Seko K., Fujita K. Himalayan ice-core dating with snow algae. J. Glaciol. 2000;46:335–340. doi: 10.3189/172756500781832918. DOI
Cheng S., Xian W., Fu Y., Marin B., Keller J., Wu T., Sun W., Li X., Xu Y., Zhang Y., et al. Genomes of subaerial Zygnematophyceae provide insights into land plant evolution. Cell. 2019;179:1057–1067.e14. doi: 10.1016/j.cell.2019.10.019. PubMed DOI
Stancheva R., Hall J.D., Herburger K., Lewis L.A., Mccourt R.M., Sheath R.G. Phylogenetic position of Zygogonium ericetorum (Zygnematophyceae, Charophyta) from a high alpine habitat and ultrastructural characterization of unusual aplanospores. J. Phycol. 2014;803:790–803. doi: 10.1111/jpy.12229. PubMed DOI PMC
Broady P.A. Six new species of terrestrial algae from Signy Island, South Orkney Islands, Antarctica. Brit. Phycol. J. 1976;11:387–405. doi: 10.1080/00071617600650451. DOI
Herburger K., Remias D., Holzinger A. The green alga Zygogonium ericetorum (Zygnematophyceae, Charophyta) shows high iron and aluminium tolerance: Protection mechanisms and photosynthetic performance. FEMS Microbiol. Ecol. 2016;92:1–15. doi: 10.1093/femsec/fiw103. PubMed DOI PMC
Nägeli C. Gattungen einzelliger Algen, physiologisch und systematisch bearbeitet. Neue Denkschr. der Allg Schweiz. Gesellschaft für die Gesammten Naturwissenschaften. 1849;10:1–139.
O’Neal S.W., Hoover A.M. Comparison of UVB effects on growth and induction of UVB screening compounds in isolates of metaphytic algae from temperate zone streams and ponds. J. Phycol. 2018;54:818–828. doi: 10.1111/jpy.12786. PubMed DOI
Nedbalová L., Sklenář P. New records of snow algae from the Andes of Ecuador. Arnaldoa. 2008;15:17–20.
Garduño-Solórzano G., Martínez-García M., Scotta Hentschke G., Lopes G., Castelo Branco R., Vasconcelos V.M.O., Campos J.E., López-Cano R., Quintanar-Zúñiga R.E. The phylogenetic placement of Temnogametum (Zygnemataceae) and description of Temnogametum iztacalense sp. nov., from a tropical high mountain lake in Mexico. Eur. J. Phycol. 2020;56:1–15. doi: 10.1080/09670262.2020.1789226. DOI
Kalisch B., Dörmann P., Hölzl G. DGDG and Glycolipids in Plants and Algae. In: Nakamura Y., Li-Beisson Y., editors. Lipids in Plant and Algae Development. Subcellular Biochemistry. Springer; Cham, Switzerland: 2016. pp. 51–83. PubMed
Mock T., Kroon B.M.A. Photosynthetic energy conversion under extreme conditions-II: The significance of lipids under light limited growth in Antarctic sea ice diatoms. Phytochemistry. 2002;61:41–51. doi: 10.1016/S0031-9422(02)00216-9. PubMed DOI
Lukeš M., Procházková L., Shmidt V., Nedbalová L., Kaftan D. Temperature dependence of photosynthesis and thylakoid lipid composition in the red snow alga Chlamydomonas cf. nivalis (Chlorophyceae). FEMS Microbiol. Ecol. 2014;89:303–315. doi: 10.1111/1574-6941.12299. PubMed DOI
Wang X., Li W., Li M., Welti R. Profiling lipid changes in plant response to low temperatures. Physiol. Plantarum. 2006;126:90–96. doi: 10.1111/j.1399-3054.2006.00622.x. DOI
Holzinger A., Roleda M.Y., Lütz C. The vegetative arctic freshwater green alga Zygnema is insensitive to experimental UV exposure. Micron. 2009;40:831–838. doi: 10.1016/j.micron.2009.06.008. PubMed DOI
Řezanka T., Nedbalová L., Procházková L., Sigler K. Lipidomic profiling of snow algae by ESI-MS and silver-LC/APCI-MS. Phytochemistry. 2014;100:34–42. doi: 10.1016/j.phytochem.2014.01.017. PubMed DOI
Gronnier J., Germain V., Gouguet P., Cacas J.L., Mongrand S. GIPC: Glycosyl inositol phospho ceramides, the major sphingolipids on earth. Plant Signal. Behav. 2016;11:1–7. doi: 10.1080/15592324.2016.1152438. PubMed DOI PMC
Markham J.E., Li J., Cahoon E.B., Jaworski J.G. Separation and identification of major plant sphingolipid classes from leaves. J. Biol. Chem. 2006;281:22684–22694. doi: 10.1074/jbc.M604050200. PubMed DOI
Lang I., Hodač L., Friedl T., Feussner I. Fatty acid profiles and their distribution patterns in microalgae: A comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biol. 2011;11:124. doi: 10.1186/1471-2229-11-124. PubMed DOI PMC
Pichrtová M., Arc E., Stöggl W., Kranner I., Hájek T., Hackl H., Holzinger A. Formation of lipid bodies and changes in fatty acid composition upon pre-akinete formation in Arctic and Antarctic Zygnema (Zygnematophyceae, Streptophyta) strains. FEMS Microbiol. Ecol. 2016;92:fiw096. doi: 10.1093/femsec/fiw096. PubMed DOI PMC
Morgan-Kiss R.M., Priscu J.C., Pocock T., Gudynaite-Savitch L., Huner N.P.A. Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol. Mol. Biol. R. 2006;70:222–252. doi: 10.1128/MMBR.70.1.222-252.2006. PubMed DOI PMC
A DUF3494 ice-binding protein with a root cap domain in a streptophyte glacier ice alga