Chloromonas nivalis subsp. tatrae, subsp. nov. (Chlamydomonadales, Chlorophyta): re-examination of a snow alga from the High Tatra Mountains (Slovakia)
Status PubMed-not-MEDLINE Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
P 29959
Austrian Science Fund FWF - Austria
PubMed
30976329
PubMed Central
PMC6456015
DOI
10.5507/fot.2017.010
Knihovny.cz E-zdroje
- Klíčová slova
- Chloromonas nivalis, High Tatra Mountains, Scotiella, aplanozygote, astaxanthin, fatty acids, field sample, photosynthesis, snow algae, ultrastructure,
- Publikační typ
- časopisecké články MeSH
Melting snow fields populated by aplanozygotes of the genus Chloromonas (Chlamydomonadales, Chlorophyta) are found in polar and alpine habitats. In the High Tatra Mountains (Slovakia), cells causing blooms of brownish-red snow designated as Scotiella tatrae kol turned out to be genetically (18S, ITS1 and ITS2 rDNA, rbcL) very closely related to Chloromonas nivalis (Chodat) Hoham et Mullet from the Austrian Alps. Therefore, Sc. tatrae is transferred into the latter taxon and reduced to a subspecies as Cr. nivalis subsp. tatrae. Both exhibit a similar photosynthetic performance, thrive in similar habitats at open sites above timberline, but differ in astaxanthin accumulation and number of aplanozygote cell wall flanges. In a field sample of Cr. nivalis subsp. tatrae, polyunsaturated fatty acids formed nearly 50 % of total lipids, dominating in phospholipids and glycolipids. Cr. nivalis subsp. tatrae represents likely a variation of a common cryoflora species with distinct morphology.
Institute of Microbiology CAS Vídeňská 1083 CZ 142 20 Prague Czech Republic
University of Applied Sciences Upper Austria Stelzhamerstraße 23 A 4600 Wels Austria
Zobrazit více v PubMed
Akiyama M. Some ecological and taxonomic observations on the colored snow algae found in Rumpa and Skarvsnes, Antarctica. Mem Natl Inst Polar Res Spec Issue. 1979;11:27–34.
Bidigare RR, Ondrusek ME, Iturriaga R, Harvey HR, Hoham RW, Macko SA. Evidence for a photoprotective function for secondary carotenoids of snow algae. J Phycol. 1993;29:427–434.
Bischoff HW, Bold HC. Phycological studies. IV. Some soil algae from Enchanted Rock and related algal species. Vol. 6318. University of Texas, Publications; 1963. pp. 1–95.
Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37:911–917. PubMed
Buchholz J. Beschreibung des wundervollen Karpatischen Schnee–Gebirges. Ung Mag Pressburg. 1793:3–47.
Chodat R. Algues vertes de la Suisse. Pleurococcoïdes – Chroolépoïdes. Beiträge Kryptogamenflora der Schwei Band I, Heft 3. Berne: Druck und Verlag von K–J. Wyss, Libraire–Éditeur; 1902. pp. 1–373.
Coleman AW. Pan–eukaryote ITS2 homologies revealed by RNA secondary structure. Nucleic Acids Res. 2007;35:3322–3329. PubMed PMC
Coleman A. Is there a molecular key to the level of ´biological species´ in eukaryotes? A DNA guide. Mol Phylogenet Evol. 2009;50:197–203. PubMed
Cvetkovska M, Hüner NPM, Smith DR. Chilling out: the evolution and diversification of psychrophilic algae with a focus on Chlamydomonadales. Polar Biol. 2016 doi: 10.1007/s00300-016-2045-4. DOI
Demachenko E, Mikhailyuk T, Coleman A, Pröschold T. Generic and species concepts in Microglena (previously the Chlamydomonas monadina group) revised using an integrate approach. Eur J Phycol. 2012;47:264–290.
Dembitsky VM, Řezanka T, Bychek IA, Shustov MV. Identification of fatty–acids from Cladonia lichens. Phytochemistry. 1991;30:4015–4018.
De Maayer P, Anderson D, Cary C, Cowan DA. Some like it cold: understanding the survival strategies of psychrophiles. EMBO Rep. 2014;15:508–517. PubMed PMC
Duval B, Duval E, Hoham RW. Snow algae of the Sierra Nevada, Spain, and High Atlas mountains of Marocco. Internatl Microbiol. 1999;2:39–42. PubMed
Ettl H, Gärtner G. Syllabus der Boden–, Luft– und Flechtenalgen. Springer; Berlin, Heidelberg: 2014. p. 773.
Fritsch FE. Freshwater algae collected in the South Orkneys by Mr. R. N. Rudmose Brown, B.Sc. of the Scottish National Antarctic Expedition, 1902–04. J Linn Soc London Botany. 1912;40:293–338.
Genty B, Briantais J–M, Baker NR. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta (BBA) – General Subjects. 1989;990:87–92.
Goff LJ, Moon DA. PCR amplification of nuclear and plastid genes from algal herbarium specimens and algal spores. J Phycol. 1993;29:381–384.
Gorton HL, Vogelman TC. Ultraviolet Radiation and the Snow Alga Chlamydomonas nivalis (Bauer) Wille. Photochem Photobiol. 2003;77:608–615. PubMed
Hanagata N. Phylogeny of the subfamily Scotiellocystoideae (Chlorophyceae, Chlorophyta) and related taxa inferred from 18S ribosomal RNA gene. J Phycol. 1998;24:1049–1054.
Helms G, Friedl T, Rambold G, Mayrhofer H. Identification of photobionts from the lichen family Physciaceae using algal–specific ITS rDNA sequences. Lichenologist. 2001;33:73–86.
Henderson RJ, Hegseth EN, Park MT. Seasonal variation in lipid and fatty acid composition of ice algae from the Barents Sea. Polar Biol. 1998;20:48–55.
Hoham RW. The life history and ecology of the snow alga Chloromonas pichinchae (Chlorophyta, Volvocales) Phycologia. 1975;14:213–226.
Hoham RW, Mullet JE. The life history and ecology of the snow alga Chloromonas cryophila sp. nov. (Chlorophyta, Volvocales) Phycologia. 1977;16:53–68.
Hoham RW, Mullet JE. Chloromonas nivalis (Chod.) Hoh. & Mull. comb. nov., and additional comments on the snow alga, Scotiella. Phycologia. 1978;17:106.
Hoham RW, Duval B. Microbial ecology of snow and freshwater ice. In: Jones HG, Pomeroy JW, Walker DA, Hoham RW, editors. Snow Ecology: An Interdisciplinary Examination of Snow–Covered Ecosystems. Cambridge University Press; Cambridge: 2001. pp. 168–228.
Hoham RW, Mullet JE, Roemer SC. The life history and ecology of the snow alga Chloromonas polyptera comb. nov. (Chloropyta, Volvocales) Can J Bot. 1983;61:2416–2429.
Hoham RW, Schlag EM, Kang JY, Hasselwander AJ, Behrstock AF, Blackburn IR, Johnson RC, Roemer SC. The effects of irradiance levels and spectral composition on mating strategies in the snow alga, Chloromonas sp.–D, from the Tughill Plateau, New York State. Hydrol Process. 1998;12:1627–1639.
Hoham RW, Bonome TA, Martin CW, Leebens–Mack JH. A combined 18S rDNA and rbcL phylogenetic analyses of Chloromonas and Chlamydomonas (Chlorophyceae, Volvocales) emphasizing snow and other cold–temperature habitats. J Phycol. 2002;38:1051–1064.
Hoham RW, Berman JD, Rogers HS, Felio JH, Ryba JB, Miller PR. Two new species of green snow algae from Upstate New York, Chloromonas chenangoensis sp. nov. and Chloromonas tughillensis sp. nov. (Volvocales, Chlorophyceae) and the effects of light on their life cycle development. Phycologia. 2006;45:319–330.
Hoham RW, Filbin RW, Frey FM, Pusack TJ, Ryba JB, McDermott PD, Fields RA. The Optimum pH of the green snow algae, Chloromonas tughillensis and Chloromonas chenangoensis, from Upstate New York. Arct Antarct Alp Res. 2007;39:65–73.
Hořická Z, Stuchlík E, Hudec I, Černý M, Fott J. Acidification and the structure of crustacean zooplankton in mountain lakes: The Tatra Mountains (Slovakia, Poland) Biologia. 2006;61(Suppl 18):S121–S134.
Katana A, Kwiatowski J, Spalik K, Zakryś B, Szalacha E, Szymańska H. Phylogenetic position of Koliella (Chlorophyta) as inferred from nuclear and chloroplast small subunit rDNA. J Phycol. 2001;37:443–451.
Kates M, Volcani BE. Biosynthetic pathways for phosphatidylsulfocholine, the sulfonium analogue of phosphatidylcholine, in diatoms. In: Kiene RP, Visscher PT, Keller MD, Kirst GO, editors. Biological and Environmental Chemistry of DMSP and Related Sulfonium Compounds. Springer; New York: 1996. pp. 109–119.
Knothe G, Dunn RO. A comprehensive evaluation of the melting points of fatty acids and esters determined by differential scanning calorimentry. J Am Oil Chem Soc. 2009;86:843–856.
Kol E. Roter Schnee von Scotiella in der Hohen Tátra. Ann Hist–Nat Mus Natl Hung. 1965;57:146–148.
Kol E. Kryobiologie I. Kryovegetation. In: Elster J, Ohle W, editors. Die Binnengewasser. Vol. 24. Schweizerbart; Stuttgart: 1968. 216 pp.
Kol E. Vom roten Schnee der Tiroler Alpen. Ann Hist–Nat Mus Natl Hung. 1970;62:129–136.
Kol E. Cryobiological researches in the High Tatra I. Acta Bot Hung. 1975a;21:61–75.
Kol E. Cryobiological researches in the High Tatra II. Acta Bot Hung. 1975b;21:279–287.
Koetschan C, Főrster F, Keller A, Schleicher T, Ruderisch B, Schwarz R, Müller T, WolF M, Schultz J. The ITS2 Database III – sequences and structures for phylogeny. Nucleic Acids Res. 2010;38:D275–279. PubMed PMC
Komárek J, Nedbalová L. Green cryosestic algae. In: Seckbach J, editor. Algae and Cyanobacteria in Extreme Environments. Springer; Dordrecht: 2007. pp. 321–342.
Komáromy ZP. Application of cluster analysis in the taxonomy of Scotiella species (Chlorophyceae) Arch Hydrobiol Suppl. 1982;60:432–438.
Křístek Š, Holuša J, Urbaňcová N, Trombik J, Drápela K. Expeditionary measurements of snow in extensively forested Carpatian Mountains: evaluating parameters variability. Carpath J Earth Environ Sci. 2011;6:45–58.
Kvíderová J. Characterization of the community of snow algae and their photochemical performance in situ in the Giant Mountains, Czech Republic. Arct Antarct Alp Res. 2010;42:210–218.
Lang I, Hodač L, Friedl T, Feussner I. Fatty acid profiles and their distribution patterns in microalgae: a comprehenive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biol. 2011;11:124. PubMed PMC
Ling HU, Seppelt RD. Snow algae of the Windmill Islands, continental Antarctica. 3 Chloromonas polyptera (Volvocales, Chlorophyta) Polar Biol. 1998;20:320–324.
Lukavský J. Algal flora of lakes in the High Tatra Mts. (Slovakia) Hydrobiologia. 1994;274:65–74.
Lukeš M, Procházková L, Shmidt V, Nedbalová L, Kaftan D. Temperature dependence of photosynthesis and thylakoid lipid composition in the red snow alga Chlamydomonas cf nivalis (Chlorophyceae) FEMS Microbiol Ecol. 2014;89:303–315. PubMed
Lutz S, Anesio AM, Edwards A, Benning LG. Microbial diversity on Icelandic glaciers and ice caps. Front Microbiol. 2015;6:307. PubMed PMC
Lutz S, Anesio AM, Raiswell R, Edwards A, Newton RJ, Gill F, Benning LG. The biogeography of red snow microbiomes and their role in melting arctic glaciers. Nat Commun. 2016;7 doi: 10.1038/ncomms11968. 11968. PubMed DOI PMC
Matsuzaki R, Hara Y, Nozaki H. A taxonomic study of snow Chloromonas species (Volvocales, Chlorophyceae) based on light and electron microscopy and molecular analysis of cultured material. Phycologia. 2014;53:293–304.
Matsuzaki R, Kawai–Toyooka H, Hara Y, Nozaki H. Revisiting the taxonomic significance of aplanozygote morphologies of two cosmopolitan snow species of the genus Chloromonas (Volvocales, Chlorophyceae) Phycologia. 2015;54:491–502.
Mikhailyuk TI, Sluiman HJ, Massalski A, Mudimu O, Demchenko EM, Kondratyuk SY, Friedl T. New streptophyte green algae from terrestrial habitats and an assessment of the genus Interfilum (Klebsormidiophyceae, Streptophyta) J Phycol. 2008;44:1586–1603. PubMed
Morgan-Kiss R, Ivanov AG, Williams J, Khan M, Huner NPA. Differential thermal effects on the energy distribution between photosystem II and photosystem I in thylakoid membranes of a psychrophilic and mesophilic alga. Biochim Biophys Acta. 2006;1561:251–265. PubMed
Müller T, Bleiẞ W, Martin C-D, Rogaschewski S, Fuhr G. Snow algae from northwest Svalbard: their identification, distribution, pigment and nutrient content. Polar Biol. 1998;20:14–32.
Nakada T, Shinkawa H, Ito T, Tomita M. Recharacterization of Chlamydomonas reinhardtii and its relatives with new isolates from Japan. J Plant Res. 2010;123:67–78. PubMed
Novis P. New records of snow algae for New Zealand, from the Mt Philistine, Arthur´s Pass National Park. New J Zeal Bot. 2002;40:297–312.
Ota S, Yoshihara M, Yamazaki T, Takeshita T, Hirata A, Konomi M, Oshima K, Hattorim M, Bišová K, Zachleder V, Kawano S. Deciphering the relationship among phosphate dynamics, electron–dense body and lipid accumulation in the green alga Parachlorella kessleri. Sci Rep. 2016;6 doi: 10.1038/srep25731. 25731. PubMed DOI PMC
Piercey–Normore MD, DePriest PT. Algal–switching among lichen symbioses. Am J Bot. 2001;88:1490–1498. PubMed
Remias D. Cell structure and physiology of alpine snow and ice algae. In: Lütz C, editor. Plants in Alpine Regions. Cell Physiology of Adaption and Survival Strategies. Springer; Wien: 2012. pp. 175–186.
Remias D, Lütz C. Characterisation of esterified secondary carotenoids and of their isomers in green algae: a HPLC approach. Algological Studies. 2007;124:85–94.
Remias D, Lütz–Meindl U, Lütz C. Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur J Phycol. 2005;40:259–268.
Remias D, Karsten U, Lűtz C, Leya T. Physiological and morphological processes in the Alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation. Protoplasma. 2010;243:73–86. PubMed
Remias D, Wastian H, Lütz C, Leya T. Insights into the biology and phylogeny of Chloromonas polyptera (Chlorophyta), an alga causing orange snow in Maritime Antarctica. Antarct Sci. 2013;25:648–656.
Remias D, Pichrtová M, Pangratz M, Lütz C, Holzinger A. Ecophysiology, secondary pigments and ultrastructure of Chlainomonas sp. (Chlorophyta) from the European Alps compared with Chlamydomonas nivalis forming red snow. FEMS Microbiol Ecol. 2016;92:fiw030. PubMed PMC
Řezanka T. Identification of very long polyenoic acids as picolinyl esters by Ag+ ion–exchange high–performance liquid–chromatography, reversed–phase high–performance liquid–chromatography and gas–chromatography mass–spectrometry. J Chromatogr. 1990;513:344–348.
Řezanka T, Nedbalová L, Sigler K. Unusual medium–chain polyunsaturated fatty acids from the snow alga Chloromonas brevispina. Microbiol Res. 2008;163:373–379. PubMed
Řezanka T, Nedbalová L, Procházková L, Sigler K. Lipidomic profiling of snow algae by ESI–MS and silver –LC/APCI–MS. Phytochemistry. 2014;100:34–42. PubMed
Saunders RD, Horrocks LA. Simultaneous extraction and preparation for high–performance liquid chromatography of prostaglandins and phospholipids. Anal Biochem. 1984;143:71–75. PubMed
Spijkerman E, Wacker A, Weithoff G, Leya T. Elemental and fatty acid composition of snow algae in Arctic habitats. Front Microbiol. 2012;3:380. PubMed PMC
Stibal M. Ecological and physiological characteristics of snow algae from Czech and Slovak mountains. Czech Phycology. 2003;3:141–152.
Thompson GA. Lipids and membrane function in green algae. Biochim Biophys Acta. 1996;1302:17–45. PubMed
Vilgalys R, Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol. 1990;172:4238–4246. PubMed PMC
Walsby AE. Modelling the daily integral of photosynthesis by phytoplankton: its dependence on the mean depth of the population. Hydrobiologia. 1997;349:65–74.
Webb WL, Newton M, Starr D. Carbon dioxide exchange of Alnus rubra. A mathematical model. Oecologia. 1974;17:281–291. PubMed
Wolf M, Chen S, Song J, Ankenbrand M, Müller T. Compensatory base changes in ITS2 secondary structres correlated with the biologic species concept despite intragenomic variability in ITS2 sequences – a proof of concept. PLOS ONE. 2013;8:e66726. PubMed PMC
Zasadni J, Klapyta P. The Tatra Mountains during the Last Glacial Maximum. J Maps. 2014;10:440–456.
Zuker DJ. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 2003;31:3406–3415. PubMed PMC
Phylogeny and lipid profiles of snow-algae isolated from Norwegian red-snow microbiomes
Two New Kremastochrysopsis species, K. austriaca sp. nov. and K. americana sp. nov. (Chrysophyceae)1