Ecophysiological and ultrastructural characterisation of the circumpolar orange snow alga Sanguina aurantia compared to the cosmopolitan red snow alga Sanguina nivaloides (Chlorophyta)
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
P 29959
Austrian Science Fund FWF - Austria
PubMed
33519055
PubMed Central
PMC7819945
DOI
10.1007/s00300-020-02778-0
PII: 2778
Knihovny.cz E-zdroje
- Klíčová slova
- Arctic, Astaxanthin, Chlamydomonas nivalis, Cryoflora, Green algae, Polyunsaturated fatty acid,
- Publikační typ
- časopisecké články MeSH
UNLABELLED: Red snow caused by spherical cysts can be found worldwide, while an orange snow phenomenon caused by spherical cells is restricted to (Sub-)Arctic climates. Both bloom types, occurring in the same localities at Svalbard, were compared ecophysiologically. Using a combination of molecular markers and light- and transmission electron microscopy, cells were identified as Sanguina nivaloides and Sanguina aurantia (Chlorophyceae). In search for reasons for a cosmopolitan vs. a more restricted distribution of these microbes, significant differences in fatty acid and pigment profiles of field samples were found. S. aurantia accumulated much lower levels of polyunsaturated fatty acids (21% vs. 48% of total fatty acids) and exhibited lower astaxanthin-to-chlorophyll-a ratio (2-8 vs. 12-18). These compounds play an important role in adaptation to extreme conditions at the snow surface and within snow drifts. Accordingly, the performance of photosystem II showed that one third to nearly half of the photosynthetic active irradiation was sufficient in S. aurantia, compared to S. nivaloides, to become light saturated. Furthermore, formation of plastoglobules observed in S. nivaloides but missing in S. aurantia may contribute to photoprotection. The rapid light curves of the two species show to a certain extent the shade-adapted photosynthesis under the light conditions at Svalbard (high α-value 0.16 vs. 0.11, low saturation point I k 59 vs. 86). These results indicate significant physiological and ultrastructural differences of the two genetically closely related cryoflora species, but the reasons why S. aurantia has not been found at conditions outside (Sub-)Arctic climate types remain unknown. SUPPLEMENTARY INFORMATION: The online version of this article (10.1007/s00300-020-02778-0) contains supplementary material, which is available to authorised users.
Department of Ecology Faculty of Science Charles University Viničná 7 Prague Czech Republic
Institute of Microbiology The Czech Academy of Sciences Vídeňská 1083 142 20 Prague Czech Republic
Zobrazit více v PubMed
Aigner A, Holzinger A, Karsten U, Kranner I. The freshwater red alga Batrachospermum turfosum (Florideophyceae) can acclimate to a wide range of temperature and light conditions. Eur J Phycol. 2017;52:238–249. PubMed PMC
An M, Mou S, Zhang X, Ye N, Zheng Z, Cao S, Xu D, Fan X, Wang Y, Miao J. Temperature regulates fatty acid desaturases at a transcriptional level and modulates the fatty acid profile in the Antarctic microalga Chlamydomonas sp. ICE-L. Bioresour Technol. 2013;134:151–157. PubMed
Anderson J, Chow W, Goodchild D. Thylakoid membrane organisation in sun/shade acclimation. Aust J Plant Physiol. 1988;15:11–26.
Anderson JM, Chow WS, De Las RJ. Dynamic flexibility in the structure and function of photosystem II in higher plant thylakoid membranes: the grana enigma. Photosynth Res. 2008;98:575–587. PubMed
Arc E, Pichrtová M, Kranner I, Holzinger A. Pre-akinete formation in Zygnema sp. from polar habitats is associated with metabolite re-arrangement. J Exp Bot. 2020;71:3314–3322. PubMed PMC
Austin JR, II, Frost E, Vidi PA, Kessler F, Staehelin LA. Plastoglobules are lipoprotein subcompartments of the chloroplast that are permanently coupled to thylakoid membranes and contain biosynthetic enzymes. Plant Cell. 2006;18:1693–1703. PubMed PMC
Bidigare RR, Ondrusek ME, Kennicutt MC, II, Iturriaga R, Harvey HR, Hoham RW, Macko SA. Evidence for a photoprotective function for secondary carotenoids of snow algae. J Phycol. 1993;29:427–434.
Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Phys. 1959;37:911–917. PubMed
Brown SP, Tucker AE. Distribution and biogeography of Sanguina snow algae: fine-scale sequence analyses reveal previously unknown population structure. Ecol Evol. 2020;10:11352–11361. PubMed PMC
Brown SP, Ungerer MC, Jumpponen A. A community of clones: snow algae are diverse communities of spatially structured clones. Int J Plant Sci. 2016;177:432–439.
Davey MP, Norman L, Sterk P, Huete-Ortega M, Bunbury F, Loh BKW, Stockton S, Peck LS, Convey P, Newsham KK, Smith AG. Snow algae communities in Antarctica—metabolic and taxonomic composition. New Phytol. 2019;222:1242–1255. PubMed PMC
Dembitsky VM, Řezanka T, Bychek IA, Shustov MV. Identification of fatty acids from Cladonia lichens. Phytochemistry. 1991;30:4015–4018.
Gorton HL, Williams WE, Vogelmann TC. The light environment and cellular optics of the snow alga Chlamydomonas nivalis (Bauer) Wille. Photochem Photobiol. 2001;73:611–620. PubMed
Gurr MI. The biosynthesis of polyunsaturated fatty acids in plants. Lipids. 1971;6:266–273. PubMed
Hisakawa N, Quistad SD, Hester ER, Martynova D, Maughan H, Sala E, Gavrilo MV, Rohwer F. Metagenomic and satellite analyses of red snow in the Russian Arctic. PeerJ. 2015;2015:e1491. PubMed PMC
Hoham RW, Remias D. Snow and glacial algae: a review. J Phycol. 2020;56:264–282. PubMed PMC
Holzinger A, Albert A, Aigner S, Uhl J, Schmitt-Kopplin P, Trumhová K, Pichrtová M. Arictic, Antarctic and temperate green algae Zygnema spp. under UV-B stress: vegetative cells perform better than pre-akinetes. Protoplasma. 2018;255:1239–1252. PubMed PMC
Hwangbo K, Ahn JW, Lim JM, Il PY, Liu JR, Jeong WJ. Overexpression of stearoyl-ACP desaturase enhances accumulations of oleic acid in the green alga Chlamydomonas reinhardtii. Plant Biotechnol Rep. 2014;8:135–142.
Kugler A, Zorin B, Didi-Cohen S, Sibiryak M, Gorelova O, Ismagulova T, Kokabi K, Kumari P, Lukyanov A, Boussiba S, Solovchenko A, Khozin-Goldberg I. Long-chain polyunsaturated fatty acids in the green microalga Lobosphaera incisa contribute to tolerance to abiotic stresses. Plant Cell Physiol. 2019;60:1205–1223. PubMed
Kumari P, Kumar M, Reddy CRK, Jha B. Algal lipids, fatty acids and sterols. In: Dominguez H, editor. Functional ingredients from algae for foods and nutraceuticals. Sawston: Woodhead Publishing; 2013. pp. 87–134.
Kvíderová J. Research on cryosestic communities in Svalbard: the snow algae of temporary snowfields in Petuniabukta, Central Svalbard. Czech Polar Rep. 2012;2:8–19.
Leya T. Snow algae: adaptation strategies to survive on snow and ice. In: Seckbach J, Oren A, Stan-Lotter H, editors. Polyextremophiles. Life under multiple forms of stress. Dordrecht: Springer; 2013. pp. 401–423.
Leya T, Müller T, Ling HU, Fuhr GR (2004) Snow algae from North-Western Spitsbergen (Svalbard). In: Wiencke C (ed) The coastal ecosystem of Kongsfjorden, Svalbard: synopsis of biological research performed at the Koldewey Station in the years 1991–2003 (Berichte zur Polar- und Meeresforschung 492). Bremerhaven, pp 46–54
Lutz S, Anesio AM, Field K, Benning LG. Integrated “omics”, targeted metabolite and single-cell analyses of arctic snow algae functionality and adaptability. Front Microbiol. 2015;6:1323. PubMed PMC
Lutz S, Anesio AM, Raiswell R, Edwards A, Newton RJ, Gill F, Benning LG. The biogeography of red snow microbiomes and their role in melting arctic glaciers. Nat Commun. 2016;7:11968. PubMed PMC
Lutz S, Procházková L, Benning LG, Nedbalová L, Remias D. Evaluating amplicon high–throughput sequencing data of microalgae living in melting snow: improvements and limitations. Fottea. 2019;19:115–131. PubMed PMC
Lyon B, Mock T. Polar microalgae: new approaches towards understanding adaptations to an extreme and changing environment. Biology. 2014;3:56–80. PubMed PMC
Morgan-Kiss RM, Priscu JC, Pocock T, Gudynaite-Savitch L, Huner NPA. Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol Mol Biol R. 2006;70:222–252. PubMed PMC
Müller T, Bleiẞ W, Rogaschewski C-DMS, Fuhr G. Snow algae from northwest Svalbard: their identification, distribution, pigment and nutrient content. Polar Biol. 1998;20:14–32.
Müller T, Leya T, Fuhr G. Persistent snow algal fields in Spitsbergen: field observations and a hypothesis about the annual cell circulation. Arct Antarct Alp Res. 2001;33:42–51.
Peel MC, Finlayson BL, McMahon TA. Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci Disc. 2007;4:439–473.
Pichrtová M, Arc E, Stöggl W, Kranner I, Hájek T, Hackl H, Holzinger A. Formation of lipid bodies and changes in fatty acid composition upon pre-akinete formation in Arctic and Antarctic Zygnema (Zygnematophyceae, Streptophyta) strains. FEMS Microbiol Ecol. 2016;92:096. PubMed PMC
Piercey-Normore MD, DePriest PT. Algal switching among lichen symbioses. Am J Bot. 2001;88:1490–1498. PubMed
Procházková L, Remias D, Řezanka T, Nedbalová L. Chloromonas nivalis subsp. tatrae, subsp. nov. (Chlamydomonadales, Chlorophyta): re–examination of a snow alga from the High Tatra Mountains (Slovakia) Fottea. 2018;18:1–18. PubMed PMC
Procházková L, Remias D, Holzinger A, Řezanka T, Nedbalová L. Ecophysiological and morphological comparison of two populations of Chlainomonas sp. (Chlorophyta) causing red snow on ice-covered lakes in the High Tatras and Austrian Alps. Eur J Phycol. 2018;53:230–243. PubMed PMC
Procházková L, Leya T, Křížková H, Nedbalová L. Sanguina nivaloides and Sanguina aurantia gen. et spp. nov. (Chlorophyta): the taxonomy, phylogeny, biogeography and ecology of two newly recognised algae causing red and orange snow. FEMS Microbiol Ecol. 2019;95:064. PubMed PMC
Procházková L, Remias D, Řezanka T, Nedbalová L. Ecophysiology of Chloromonas hindakiisp. Nov. (Chlorophyceae), causing orange snow blooms at different light conditions. Microorganisms. 2019;7:434. PubMed PMC
Remias D. Cell structure and physiology of alpine snow and ice algae. In: Lütz C, editor. Plants in alpine regions. Cell physiology of adaption and survival strategies. Wien: Springer; 2012. pp. 175–186.
Remias D, Lütz C. Characterisation of esterified secondary carotenoids and of their isomers in green algae: a HPLC approach. Algol Stud. 2007;124:85–94.
Remias D, Lütz-Meindl U, Lütz C. Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur J Phycol. 2005;40:259–268.
Remias D, Holzinger A, Aigner S, Lütz C. Ecophysiology and ultrastructure of Ancylonema nordenskiöldii (Zygnematales, Streptophyta), causing brown ice on glaciers in Svalbard (high arctic) Polar Biol. 2012;35:899–908.
Remias D, Wastian H, Lütz C, Leya T. Insights into the biology and phylogeny of Chloromonas polyptera (Chlorophyta), an alga causing orange snow in Maritime Antarctica. Antarct Sci. 2013;25:648–656.
Řezanka T, Nedbalová L, Sigler K. Unusual medium-chain polyunsaturated fatty acids from the snow alga Chloromonas brevispina. Microb Res. 2008;163:373–379. PubMed
Rottet S, Besagni C, Kessler F. The role of plastoglobules in thylakoid lipid remodeling during plant development. Biochim Biophys Acta Bioenerg. 2015;1847:889–899. PubMed
Saunders RD, Horrocks LA. Simultaneous extraction and preparation for high-performance liquid chromatography of prostaglandins and phospholipids. Anal Biochem. 1984;143:71–75. PubMed
Segawa T, Matsuzaki R, Takeuchi N, Akiyoshi A, Navarro F, Sugiyama S, Yonezawa T, Mori H. Bipolar dispersal of red-snow algae. Nat Commun. 2018;9:3094. PubMed PMC
Škaloud P, Škaloudová M, Doskočilová P, Kim JI, Shin W, Dvořák P. Speciation in protists: spatial and ecological divergence processes cause rapid species diversification in a freshwater chrysophyte. Mol Ecol. 2019;28:1084–1095. PubMed
Sommaruga R, Psenner R. Ultraviolet radiation in a high mountain lake of the Austrian Alps: air and underwater measurements. Photochem Photobiol. 1997;65:957–963.
Soto DF, Fuentes R, Huovinen P, Gómez I. Microbial composition and photosynthesis in Antarctic snow algae communities: Integrating metabarcoding and pulse amplitude modulation fluorometry. Algal Res. 2020;45:101738.
Spijkerman E, Wacker A, Weithoff G, Leya T. Elemental and fatty acid composition of snow algae in Arctic habitats. Front Microbiol. 2012;3:1–15. PubMed PMC
Stibal M, Elster J, Šabacká M, Kaštovská K. Seasonal and diel changes in photosynthetic activity of the snow alga Chlamydomonas nivalis (Chlorophyceae) from Svalbard determined by pulse amplitude modulation fluorometry. FEMS Microbiol Ecol. 2007;59:265–273. PubMed
Stibal M, Bradley JA, Edwards A, Hotaling S, Zawierucha K, Rosvold J, Lutz S, Cameron KA, Mikucki JA, Kohler TJ, Šabacká M, Anesio AM. Glacial ecosystems are essential to understanding biodiversity responses to glacier retreat. Nat Ecol Evol. 2020;4(5):686–687. PubMed
Temina M, Řezanková H, Řezanka T, Dembitsky VM. Diversity of the fatty acids of the Nostoc species and their statistical analysis. Microbiol Res. 2007;162:308–321. PubMed
Teoh ML, Chu WL, Marchant H, Phang SM. Influence of culture temperature on the growth, biochemical composition and fatty acid profiles of six Antarctic microalgae. J Appl Phycol. 2004;16:421–430.
Walsby AE. Modelling the daily integral of photosynthesis by phytoplankton: its dependence on the mean depth of the population. Hydrobiologia. 1997;349:65–74.
White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, editors. PCR protocols—a guide to methods and applications. London: Academic Press; 1990. pp. 315–322.
Williamson CJ, Cook J, Tedstone A, Yallop M, McCutcheon J, Poniecka E, Campbellf D, Irvine-Fynnb T, McQuaidd J, Trantera M, Perkinse R, Anesio A. Algal photophysiology drives darkening and melt of the Greenland Ice Sheet. P Natl Acad Sci USA. 2020;117:5694–5705. PubMed PMC
Yuan JP, Chen F. Identification of astaxanthin isomers in Haematococcus lacustris by HPLC-photodiode array detection. Biotechnol Tech. 1997;11:455–459.