Ecophysiology of Chloromonas hindakii sp. nov. (Chlorophyceae), Causing Orange Snow Blooms at Different Light Conditions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
P 29959
Austrian Science Fund FWF - Austria
17-00027S
the Czech Science Foundation (GACR)
18-02634S
the Czech Science Foundation (GAČR)
P29959
the Austrian Science Fund (FWF)
PubMed
31658718
PubMed Central
PMC6843554
DOI
10.3390/microorganisms7100434
PII: microorganisms7100434
Knihovny.cz E-zdroje
- Klíčová slova
- astaxanthin, cryoflora, cysts, environmental sample, fatty acids, photosynthesis,
- Publikační typ
- časopisecké články MeSH
Slowly melting snowfields in mountain and polar regions are habitats of snow algae. Orange blooms were sampled in three European mountain ranges. The cysts within the blooms morphologically resembled those of Chloromonas nivalis (Chlorophyceae). Molecular and morphological traits of field and cultured material showed that they represent a new species, Chloromonas hindakii sp. nov. The performance of photosystem II was evaluated by fluorometry. For the first time for a snow alga, cyst stages collected in a wide altitudinal gradient and the laboratory strain were compared. The results showed that cysts were well adapted to medium and high irradiance. Cysts from high light conditions became photoinhibited at three times higher irradiances (600 µmol photons m-2 s-1) than those from low light conditions, or likewise compared to cultured flagellates. Therefore, the physiologic light preferences reflected the conditions in the original habitat. A high content of polyunsaturated fatty acids (about 60% of total lipids) and the accumulation of the carotenoid astaxanthin was observed. They are regarded as adaptations to cope with extreme environmental conditions of snow that include low temperatures, freeze-thaw cycles, and variable light intensity. The intraspecific ability of adaptation of the photosynthetic apparatus to different irradiance regimes seems to be advantageous for thriving in different snow habitats.
Department of Ecology Faculty of Science Charles University Viničná 7 12844 Prague Czech Republic
The Czech Academy of Sciences Institute of Microbiology Vídeňská 1083 142 20 Prague Czech Republic
Zobrazit více v PubMed
Davey M.P., Norman L., Sterk P., Huete-Ortega M., Bunbury F., Loh B.K.W., Stockton S., Peck L.S., Convey P., Newsham K.K., et al. Snow algae communities in Antarctica—Metabolic and taxonomic composition. New Phytol. 2019;222:1242–1255. doi: 10.1111/nph.15701. PubMed DOI PMC
Anesio A.M., Lutz S., Chrismas N.A.M., Benning L.G. The microbiome of glaciers and ice sheets. NPJ Biofilms Microbiomes. 2017;3:10. doi: 10.1038/s41522-017-0019-0. PubMed DOI PMC
Cvetkovska M., Hüner N.P.A., Smith D.R. Chilling out: The evolution and diversification of psychrophilic algae with a focus on Chlamydomonadales. Polar Biol. 2017;40:1169–1184. doi: 10.1007/s00300-016-2045-4. DOI
Matsuzaki R., Nozaki H., Takeuchi N., Hara Y., Kawachi M. Taxonomic re-examination of “Chloromonas nivalis (Volvocales, Chlorophyceae) zygotes” from Japan and description of C. muramotoi sp. nov. PLoS ONE. 2019;14:e0210986. doi: 10.1371/journal.pone.0210986. PubMed DOI PMC
Procházková L., Leya T., Křížková H., Nedbalová L. Sanguina nivaloides and Sanguina aurantia gen. et spp. nov. (Chlorophyta): The taxonomy, phylogeny, biogeography and ecology of two newly recognised algae causing red and orange snow. FEMS Microbiol. Ecol. 2019;95:fiz064. doi: 10.1093/femsec/fiz064. PubMed DOI PMC
Vimercati L., Solon A.J., Krinsky A., Arán P., Porazinska D.L., Darcy J.L., Dorador C., Schmidt S.K. Nieves penitentes are a new habitat for snow algae in one of the most extreme high-elevation environments on Earth. Arct. Antarct. Alp. Res. 2019;51:190–200. doi: 10.1080/15230430.2019.1618115. DOI
Terashima M., Umezawa K., Mori S., Kojima H., Fukui M. Microbial community analysis of colored snow from an alpine snowfield in Northern Japan reveals the prevalence of Betaproteobacteria with snow algae. Front. Microbiol. 2017;8:1481. doi: 10.3389/fmicb.2017.01481. PubMed DOI PMC
Brown S.P., Olson B.J.S.C., Jumpponen A. Fungi and algae co-occur in snow: An issue of shared habitat or algal facilitation of heterotrophs? Arct. Antarct. Alp. Res. 2015;47:729–749. doi: 10.1657/AAAR0014-071. DOI
Bidigare R.R., Ondrusek M.E., Kennicutt II M.C., Iturriaga R., Harvey H.R., Hoham R.W., Macko S.A. Evidence for a photoprotective function for secondary carotenoids of snow algae. J. Phycol. 1993;29:427–434. doi: 10.1111/j.1529-8817.1993.tb00143.x. DOI
Hamilton T.L., Havig J. Primary productivity of snow algae communities on stratovolcanoes of the Pacific Northwest. Geobiology. 2017;15:280–295. doi: 10.1111/gbi.12219. PubMed DOI PMC
Thackeray C.W., Derksen C., Fletcher C.G., Hall A. Snow and climate: Feedbacks, drivers, and indices of change. Curr. Clim. Chang. Rep. 2019:1–12. doi: 10.1007/s40641-019-00143-w. DOI
Mudryk L.R., Kushner P.J., Derksen C., Thackeray C. Snow cover response to temperature in observational and climate model ensembles. Geophys. Res. Lett. 2017;44:919–926. doi: 10.1002/2016GL071789. DOI
Marty C., Schlögl S., Bavay M., Lehning M. How much can we save? Impact of different emission scenarios on future snow cover in the Alps. Cryosphere. 2017;11:517–529. doi: 10.5194/tc-11-517-2017. DOI
Morgan-Kiss R.M., Priscu J.C., Pocock T., Gudynaite-Savitch L., Huner N.P.A. Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol. Mol. Biol. R. 2006;70:222–252. doi: 10.1128/MMBR.70.1.222-252.2006. PubMed DOI PMC
Gorton H.L., Vogelmann T.C. Ultraviolet radiation and the snow alga Chlamydomonas nivalis (Bauer) Wille. Photochem. Photobiol. 2003;77:608–615. doi: 10.1562/0031-8655(2003)0770608URATSA2.0.CO2. PubMed DOI
Procházková L., Remias D., Holzinger A., Řezanka T., Nedbalová L. Ecophysiological and morphological comparison of two populations of Chlainomonas sp. (Chlorophyta) causing red snow on ice-covered lakes in the High Tatras and Austrian Alps. Eur. J. Phycol. 2018;53:230–243. doi: 10.1080/09670262.2018.1426789. PubMed DOI PMC
Remias D. Cell structure and physiology of alpine snow and ice algae. In: Lütz C., editor. Plants in Alpine Regions. Cell physiology of Adaption and Survival Strategies. Springer; Berlin/Heidelberg, Germany: 2012. pp. 175–186.
Remias D., Karsten U., Lűtz C., Leya T. Physiological and morphological processes in the Alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation. Protoplasma. 2010;243:73–86. doi: 10.1007/s00709-010-0123-y. PubMed DOI
Remias D., Wastian H., Lütz C., Leya T. Insights into the biology and phylogeny of Chloromonas polyptera (Chlorophyta), an alga causing orange snow in Maritime Antarctica. Antarct. Sci. 2013;25:648–656. doi: 10.1017/S0954102013000060. DOI
Procházková L., Remias D., Řezanka T., Nedbalová L. Chloromonas nivalis subsp. tatrae, subsp. nov. (Chlamydomonadales, Chlorophyta): Re–examination of a snow alga from the High Tatra Mountains (Slovakia) Fottea. 2018;18:1–18. PubMed PMC
Kvíderová J., Stibal M., Nedbalová L., Kaštovská K. The first record of snow algae vitality in situ by variable fluorescence of chlorophyll. Czech Phycol. 2005;5:69–77.
Remias D., Procházková L., Holzinger A., Nedbalová L. Ecology, cytology and phylogeny of the snow alga Scotiella cryophila K-1 (Chlamydomonadales, Chlorophyta) from the Austrian Alps. Phycologia. 2018;57:581–592. doi: 10.2216/18-45.1. PubMed DOI PMC
Remias D., Lütz-Meindl U., Lütz C. Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur. J. Phycol. 2005;40:259–268. doi: 10.1080/09670260500202148. DOI
Bischoff H.W., Bold H.C. Phycological studies. IV. Some soil algae from Enchanted Rock and related algal species. Univ. Texas Publ. 1963;6318:95.
Remias D., Pichrtová M., Pangratz M., Lütz C., Holzinger A. Ecophysiology, secondary pigments and ultrastructure of Chlainomonas sp. (Chlorophyta) from the European Alps compared with Chlamydomonas nivalis forming red snow. FEMS Microbiol. Ecol. 2016;92:fiw030. doi: 10.1093/femsec/fiw030. PubMed DOI PMC
Piercey-Normore M.D., DePriest P.T. Algal switching among lichen symbioses. Am. J. Bot. 2001;88:1490–1498. doi: 10.2307/3558457. PubMed DOI
White T.J., Bruns T., Lee S., Taylor J. Amplification and direct sequencing of fungal ribosomal RNA Genes for phylogenetics. In: Innis M.A., Gelfand D.H., Sninsky J.J., White T.J., editors. PCR Protocols—A Guide to Methods and Applications. Volume 18. Academic Press; Cambridge, MA, USA: 1990. pp. 315–322.
Helms G., Friedl T., Rambold G., Mayrhofer H. Identification of photobionts from the lichen family Physiaceae using algal-specific ITS rDNA sequencing. Lichenologist. 2001;33:73–86. doi: 10.1006/lich.2000.0298. DOI
Vilgalys R., Hester M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptoccocus species. J. Bacteriol. 1990;172:4238–4246. doi: 10.1128/jb.172.8.4238-4246.1990. PubMed DOI PMC
Katana A., Kwiatowski J., Spalik K., Zakryś B., Szalacha E., Szymańska H. Phylogenetic position of Koliella (Chlorophyta) as inferred from nuclear and chloroplast small subunit rDNA. J. Phycol. 2001;37:443–451. doi: 10.1046/j.1529-8817.2001.037003443.x. DOI
Hoham R.W., Bonome T.A., Martin C.W., Leebens-Mack J.H. A combined 18S rDNA and rbcL phylogenetic analysis of Chloromonas and Chlamydomonas (Chlorophyceae, Volvocales) emphasizing snow and other cold-temperature habitats. J. Phycol. 2002;38:1051–1064. doi: 10.1046/j.1529-8817.2002.t01-1-01227.x. DOI
Darty K., Denise A., Ponty Y. VARNA: Interactive drawing and editing of the RNA secondary structure. Bioinformatics. 2009;25:1974–1975. doi: 10.1093/bioinformatics/btp250. PubMed DOI PMC
Pröschold T., Marin B., Schlösser U.G., Melkonian M. Molecular phylogeny and taxonomic revision of Chlamydomonas (Chlorophyta). I. Emendation of Chlamydomonas Ehrenberg and Chloromonas Gobi, and description of Oogamochlamys gen. nov. and gen. nov. and Lobochlamys gen. nov. Protist. 2001;152:265–300. doi: 10.1078/1434-4610-00068. PubMed DOI
Nakada T., Misawa K., Nozaki H. Molecular systematics of Volvocales (Chlorophyceae, Chlorophyta) based on exhaustive 18S rRNA phylogenetic analyses. Mol. Phylogenet. Evol. 2008;48:281–291. doi: 10.1016/j.ympev.2008.03.016. PubMed DOI
Posada D. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 2008;25:1253–1256. doi: 10.1093/molbev/msn083. PubMed DOI
Nedbalová L., Mihál M., Kvíderová J., Procházková L., Řezanka T., Elster J. Identity, ecology and ecophysiology of planktic green algae dominating in ice-covered lakes on James Ross Island (northeastern Antarctic Peninsula) Extremophiles. 2017;21:187–200. doi: 10.1007/s00792-016-0894-y. PubMed DOI
Bligh E.G., Dyer W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Phys. 1959;37:911–917. doi: 10.1139/y59-099. PubMed DOI
Saunders R.D., Horrocks L.A. Simultaneous extraction and preparation for high-performance liquid chromatography of prostaglandins and phospholipids. Anal. Biochem. 1984;143:71–75. doi: 10.1016/0003-2697(84)90559-1. PubMed DOI
Řezanka T. Identification of very long polyenoic acids as picolinyl esters by Ag+ ion-exchange high-performance liquid chromatography, reversed-phase high-performance liquid chromatography and gas chromatography—mass spectrometry. J. Chromatogr. A. 1990;513:344–348. doi: 10.1016/S0021-9673(01)89453-X. DOI
Dembitsky V.M., Řezanka T., Bychek I.A., Shustov M.V. Identification of fatty acids from Cladonia lichens. Phytochemistry. 1991;30:4015–4018. doi: 10.1016/0031-9422(91)83455-T. DOI
Hoham R.W., Mullet J.E. The life history and ecology of the snow alga Chloromonas cryophila sp. nov. (Chlorophyta, Volvocales) Phycologia. 1977;16:53–68. doi: 10.2216/i0031-8884-16-1-53.1. DOI
Coleman A.W. Pan-eukaryote ITS2 homologies revealed by RNA secondary structure. Nucleic Acids Res. 2007;35:3322–3329. doi: 10.1093/nar/gkm233. PubMed DOI PMC
Hindák F. Brownish snow in the High Tatras. Biologia. 1969:80–85.
Javornický P., Hindák F. Cryptomonas frigoris spec. nova (Cryptophyceae), the new cyst-forming flagellate from the snow of the High Tatras. Biologia. 1970;25:241–250. PubMed
Hindák F., Komárek J. Cultivation of cryosestonic alga Koliella (Kol) Hind. Biol. Plant. 1968;10:95–97. doi: 10.1007/BF02921023. DOI
Walsby A.E. Modelling the daily integral of photosynthesis by phytoplankton: Its dependence on the mean depth of the population. Hydrobiologia. 1997;349:65–74. doi: 10.1023/A:1003045528581. DOI
Chytrý M. Current Vegetation of the Czech Republic. In: Chytrý M., Danihelka J., Kaplan Z., Pyšek P., editors. Flora and Vegetation of the Czech Republic. Springer; Cham, Switzerland: 2017. pp. 229–337.
Nedbalová L., Kociánová M., Lukavský J. Ecology of snow algae in the Giant Mts. Opera Corcon. 2008;45:59–68.
Hanzelová M., Vido J., Škvarenina J., Nalevanková P., Perháčová Z. Microorganisms in summer snow patches in selected high mountain ranges of Slovakia. Biologia. 2018;73:1177–1186. doi: 10.2478/s11756-018-0136-0. DOI
Lukavský J., Furnadzhieva S., Nedbalová L. First record of cryoseston in the Vitosha Mountains (Bulgaria) Nova Hedwig. 2009;88:97–110. doi: 10.1127/0029-5035/2009/0088-0097. DOI
Frey B., Bühler L., Schmutz S., Zumsteg A., Furrer G. Molecular characterization of phototrophic microorganisms in the forefield of a receding glacier in the Swiss Alps. Environ. Res. Lett. 2013;8:15033. doi: 10.1088/1748-9326/8/1/015033. DOI
Matsuzaki R., Kawai-Toyooka H., Hara Y., Nozaki H. Revisiting the taxonomic significance of aplanozygote morphologies of two cosmopolitan snow species of the genus Chloromonas (Volvocales, Chlorophyceae) Phycologia. 2015;54:491–502. doi: 10.2216/15-33.1. DOI
Kociánová M., Štursová H., Štursa J., Vaněk J., Vávra V. Nové nálezy červeného sněhu v Krkonoších. [New records of red snow in the Krkonoše Mountains] Opera Corcon. 1989;26:151–158.
Stibal M. Ecological and physiological characteristics of snow algae from Czech and Slovak mountains. Czech Phycol. 2003;3:141–152.
Komárek J., Nedbalová L. Green cryosestic algae. In: Seckbach J., editor. Algae and Cyanobacteria in Extreme Environments. Springer; Berlin/Heidelberg, Germany: 2007. pp. 321–342.
Jehlička J., Culka A., Nedbalová L. Colonization of snow by microorganisms as revealed using miniature Raman spectrometers—Possibilities for detecting carotenoids of psychrophiles on Mars? Astrobiology. 2016;16:1–12. doi: 10.1089/ast.2016.1487. PubMed DOI
Lukavský J. Algal flora of lakes in the High Tatra Mountains (Slovakia) Hydrobiologia. 1994;274:65–74. doi: 10.1007/BF00014628. DOI
Kol E. Cryobiological researches in the High Tatra I. Acta Bot. Hung. 1975;21:61–75.
Kol E. Cryobiological researches in the High Tatra II. Acta Bot. Hung. 1975;21:279–287.
Osterrothová K., Culka A., Němečková K., Nedbalová L., Procházková L., Jehlička J. Analyzing carotenoids of snow algae by Raman microspectroscopy and high-performance liquid chromatography. Spectrochim. Acta Part A. 2019;212:262–271. doi: 10.1016/j.saa.2019.01.013. PubMed DOI
Matsuzaki R., Nozaki H., Kawachi M. Taxonomic revision of Chloromonas nivalis (Volvocales, Chlorophyceae) strains, with the new description of two snow-inhabiting Chloromonas species. PLoS ONE. 2018;13:e0193603. doi: 10.1371/journal.pone.0193603. PubMed DOI PMC
Matsuzaki R., Hara Y., Nozaki H. A taxonomic study of snow Chloromonas species (Volvocales, Chlorophyceae) based on light and electron microscopy and molecular analysis of cultured material. Phycologia. 2014;53:293–304. doi: 10.2216/14-3.1. DOI
Ling H.U., Seppelt R.D. Snow algae of the Windmill Islands, continental Antarctica. 3. Chloromonas polyptera (Volvocales, Chlorophyta) Polar Biol. 1998;20:320–324. doi: 10.1007/s003000050309. DOI
Starmach K., Kawecka B. The yellowish-green snow in the valley Za Mnichem in the Tatra Mountains. Limnol. Investig. Tatra Mt. Dunajec River Basin. 1965;11:75–80.
Ling H.U., Seppelt R.D. Snow algae of the Windmill Islands, continental Antarctica. 2. Chloromonas rubroleosa sp. nov. (Volvocales, Chlorophyta), an alga of red snow. Eur. J. Phycol. 1993;28:77–84. doi: 10.1007/s003000050309. DOI
Chodat R. Algues vertes de la Suisse, A. Pleurococcoïdes–Chroolépoïdes. K.J.Wyss; Berne, Switzerland: 1902. pp. 145–146.
Stibal M., Elster J. Seasonal and diel changes in photosynthetic activity of the snow alga Chlamydomonas nivalis (Chlorophyceae) from Svalbard determined by pulse amplitude modulation fluorometry. FEMS Microbiol. Ecol. 2007;59:265–273. doi: 10.1111/j.1574-6941.2006.00264.x. PubMed DOI
Molino A., Iovine A., Casella P., Mehariya S., Chianese S., Cerbone A., Rimauro J., Musmarra D. Microalgae characterization for consolidated and new application in human food, animal feed and nutraceuticals. Int. J. Environ. Res. Pu. 2018;15:2436. doi: 10.3390/ijerph15112436. PubMed DOI PMC
Leya T. Snow algae: Adaptation strategies to survive on snow and ice. In: Seckbach J., Oren A., Stan-Lotter H., editors. Polyextremophiles. Life Under Multiple Forms of Stress. Volume 27. Springer; Berlin/Heidelberg, Germany: 2013. pp. 401–423.
Osipova S., Dudareva L., Bondarenko N., Nasarova A., Sokolova N., Obolkina L., Glyzina O., Timoshkin O. Temporal variation in fatty acid composition of Ulothrix zonata (Chlorophyta) from ice and benthic communities of Lake Baikal. Phycologia. 2009;48:130–135. doi: 10.2216/08-49.1. DOI
Spijkerman E., Wacker A., Weithoff G., Leya T. Elemental and fatty acid composition of snow algae in Arctic habitats. Front. Microbiol. 2012;3:1–15. doi: 10.3389/fmicb.2012.00380. PubMed DOI PMC
Ishihara K., Murata M., Kaneniwa M., Saito H., Komatsu W., Shinohara K. Purification of stearidonic acid (18:4(n-3)) and hexadecatetraenoic acid (16:4(n-3)) from algal fatty acid with lipase and medium pressure liquid chromatography. Biosci. Biotech. Bioch. 2000;64:2454–2457. doi: 10.1271/bbb.64.2454. PubMed DOI
Ishihara K., Murata M., Kaneniwa M., Saito H., Shinohara K., Maeda-Yamamoto M. Inhibition of icosanoid production in MC/9 mouse mast cells by n-3 polyunsaturated fatty acids isolated from edible marine algae. Biosci. Biotech. Bioch. 1998;62:1412–1415. doi: 10.1271/bbb.62.1412. PubMed DOI
Calder P.C. Polyunsaturated fatty acids and inflammatory processes: New twists in an old tale. Biochimie. 2009;91:791–795. doi: 10.1016/j.biochi.2009.01.008. PubMed DOI
Suzuki H., Hulatt C.J., Wijffels R.H., Kiron V. Growth and LC-PUFA production of the cold-adapted microalga Koliella antarctica in photobioreactors. J. Appl. Phycol. 2019;31:981–997. doi: 10.1007/s10811-018-1606-z. DOI
Řezanka T., Nedbalová L., Lukavský J., Střížek A., Sigler K. Pilot cultivation of the green alga Monoraphidium sp. producing a high content of polyunsaturated fatty acids in a low-temperature environment. Algal Res. 2017;22:160–165. doi: 10.1016/j.algal.2016.12.017. DOI
Lang I., Hodač L., Friedl T., Feussner I. Fatty acid profiles and their distribution patterns in microalgae: A comprehensive analysis of more than 2000 strains from the SAG culture collection. BMC Plant Biol. 2011;11:124. doi: 10.1186/1471-2229-11-124. PubMed DOI PMC
La Rocca N., Sciuto K., Meneghesso A., Moro I., Rascio N., Morosinotto T. Photosynthesis in extreme environments: Responses to different light regimes in the Antarctic alga Koliella antarctica. Physiol. Plantarum. 2015;153:654–667. doi: 10.1111/ppl.12273. PubMed DOI
Ecological interactions in glacier environments: a review of studies on a model Alpine glacier
Phylogeny and lipid profiles of snow-algae isolated from Norwegian red-snow microbiomes