The snow alga Chloromonas kaweckae sp. nov. (Volvocales, Chlorophyta) causes green surface blooms in the high tatras (Slovakia) and tolerates high irradiance
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
P 29959
Austrian Science Fund FWF - Austria
P 34073
Austrian Science Fund FWF - Austria
PubMed
36461636
PubMed Central
PMC10946730
DOI
10.1111/jpy.13307
Knihovny.cz E-zdroje
- Klíčová slova
- biodiversity, cryoflora, environmental sample, fatty acids, fluorometry, vegetative stages,
- MeSH
- Chlorophyceae * MeSH
- Chlorophyta * fyziologie MeSH
- fotosyntéza fyziologie MeSH
- nízká teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Slovenská republika MeSH
Seasonally slowly melting mountain snowfields are populated by extremophilic microalgae. In alpine habitats, high-light sensitive, green phytoflagellates are usually observed in subsurface layers deeper in the snowpack under dim conditions, while robust orange to reddish cyst stages can be seen exposed on the surface. In this study, uncommon surface green snow was investigated in the High Tatra Mountains (Slovakia). The monospecific community found in the green surface bloom consisted of vegetative Chloromonas cells (Volvocales, Chlorophyta). Molecular data demonstrated that the field sample and the strain isolated and established from the bloom were conspecific, and they represent a new species, Chloromonas kaweckae sp. nov., which is described based on the morphology of the vegetative cells and asexual reproduction and on molecular analyses of the strain. Cells of C. kaweckae accumulated approximately 50% polyunsaturated fatty acids, which is advantageous at low temperatures. In addition, this new species performed active photosynthesis at temperatures close to the freezing point showed a light compensation point of 126 ± 22 μmol photons · m-2 · s-1 and some signs of photoinhibition at irradiances greater than 600 μmol photons · m-2 · s-1 . These data indicate that the photosynthetic apparatus of C. kaweckae could be regarded as adapted to relatively high light intensities, otherwise unusual for most flagellate stages of snow algae.
Department of Ecology Charles University Faculty of Science Prague 128 44 Czech Republic
The Czech Academy of Sciences Institute of Microbiology Vídeňská 1083 Prague 142 20 Czech Republic
Zobrazit více v PubMed
Allorent, G. , Lefebvre‐Legendre, L. , Chappuis, R. , Kuntz, M. , Truong, T. B. , Niyogi, K. K. , Ulm, R. & Goldschmidt‐Clermont, M. 2016. UV‐B photoreceptor‐mediated protection of the photosynthetic machinery in PubMed PMC
Allorent, G. , Tokutsu, R. , Roach, T. , Peers, G. , Cardol, P. , Girard‐Bascou, J. , Seigneurin‐Berny, D. et al. 2013. Dual strategy to cope with high light in PubMed PMC
Ambach, W. , Blumthaler, M. & Wendler, G. 1991. A comparison of ultraviolet radiation measured at an Arctic and Alpine site. Sol. Energy 47:121–6.
Bidigare, R. R. , Ondrusek, M. E. , Kennicutt, M. , Iturriaga, R. , Harvey, H. R. , Hoham, R. W. & Macko, S. A. 1993. Evidence for a photoprotective function for secondary carotenoids of snow algae. J. Phycol. 29:427–34.
Blumthaler, M. , Ambach, W. & Ellinger, R. 1997. Increase in solar UV radiation with altitude. J. Photoch. Photobio. B 39:130–4.
Chen, S. , Zhou, Y. , Chen, Y. & Gu, J. 2018. Fastp: An ultra‐fast all‐in‐one FASTQ preprocessor. Bioinformatics 34:i884–90. PubMed PMC
Coleman, A. W. 2003. ITS2 is a double‐edged tool for eukaryote evolutionary comparisons. Trends Genet. 19:370–5. PubMed
Coleman, A. W. 2009. Is there a molecular key to the level of “biological species” in eukaryotes? A DNA guide. Mol. Phylogenet. Evol. 50:197–203. PubMed
Czirbesz, A. J. 1772. Kurzgefasste Beschreibung des Karpatischen Gerbirges.
Darriba, D. I. , Posada, D. , Kozlov, A. M. , Stamatakis, A. , Morel, B. & Flouri, T. 2020. ModelTest‐NG: A new and scalable tool for the selection of DNA and protein evolutionary models. Mol. Biol. Evol. 37:291–4. PubMed PMC
Davey, M. P. , Norman, L. , Sterk, P. , Heute‐Ortegal, M. , Bunburry, F. , Loh, B. K. W. , Stockton, S. , Pecl, L. S. , Convey, P. , Newsham, K. K. & Smith, A. 2019. Snow algae communities in Antarctica: metabolic and taxonomic composition. New Phytol. 222:1242–55. PubMed PMC
Dolhi, J. M. , Maxwell, D. P. & Morgan‐Kiss, R. M. 2013. Review: The Antarctic PubMed
Ettl, H. 1961. Zwei neue Chlamydomonaden. Arch. Protistenkunde 105:273–80.
Gates, D. M. 1980. Biophysical Ecology. Springer‐Verlag, New York, 611 pp.
Goff, L. J. , Moon, D. A. & Coleman, A. W. 1994. Molecular delineation of species and species relationships in the red algal agarophytes
Gorton, H. L. , Williams, W. E. & Vogelmann, T. C. 2001. The light environment and cellular optics of the snow alga PubMed
Gray, A. , Krolikowski, M. , Fretwell, P. , Convey, P. , Peck, L. S. , Mendelova, M. , Smith, A. G. & Davey, M. P. 2020. Remote sensing reveals Antarctic green snow algae as important terrestrial carbon sink. Nat. Commun. 11:2527. PubMed PMC
Gray, A. , Krolikowski, M. , Fretwell, P. , Convey, P. , Peck, L. S. , Mendelova, M. , Smith, A. G. & Davey, M. P. 2021. Remote sensing phenology of Antarctic green and red snow algae using WorldView satellites. Front. Plant Sci. 12:671981. PubMed PMC
Hanzelová, M. , Vido, J. , Škvarenina, J. , Nalevanková, P. & Perháčová, Z. 2018. Microorganisms in summer snow patches in selected high mountain ranges of Slovakia. Biologia 73:1177–86.
Hindák, F. & Komárek, J. 1968. Cultivation of cryosestonic alga
Hoham, R. W. 1975. The life history and ecology of the snow alga
Hoham, R. W. , Berman, J. D. , Rogers, H. S. , Felio, J. H. , Ryba, J. B. & Miller, P. R. 2006. Two new species of green snow algae from Upstate New York,
Hoham, R. W. , Bonome, T. A. , Martin, C. W. & Leebens‐Mack, J. H. 2002. A combined 18S rDNA and
Hoham, R. W. & Duval, B. 2001. Microbial ecology of snow and freshwater ice with emphasis on snow algae.
Hoham, R. W. , Mullet, J. E. & Roemer, S. C. 1983. The life history and ecology of the snow alga
Hoham, R. W. & Remias, D. 2020. Snow and glacial algae: A review. J. Phycol. 56:264–82. PubMed PMC
Kawecka, B. 1981. Biology and ecology of snow algae. 2. Formation of aplanospores in
Kawecka, B. 1983/1984. Biology and ecology of snow algae. 3. Sexual reproduction in
Kawecka, B. & Drake, B. 1978. Biology and ecology of snow algae. 1. The sexual reproduction of
Kawecka, B. & Eloranta, P. 1986. Biology and ecology of snow algae. 4. SEM studies on the cell wall structure of “resting cells” of
Kawecka, B. , Starmach, J. & Zmyślony, J. 1979. Electrophoretic analysis and ecological observations of
Khan, A. L. , Dierssen, H. M. , Scambos, T. A. , Höfer, J. & Cordero, R. R. 2021. Spectral characterization, radiative forcing and pigment content of coastal Antarctic snow algae: Approaches to spectrally discriminate red and green communities and their impact on snowmelt. Cryosphere 15:133–48.
Kol, E. 1949. Über den grünen Schnee der Karpaten. Verh. Internat. Verein. Limnol. 10:235–42.
Kol, E. 1961. Über roten and grünen Schnee der Alpen. Verh. Internat. Verein. Limnol. XIV:912–7.
Kol, E. 1966. Snow algae from the valley of the Morskie Oko lake in the High Tatra. Ann. Hist. Natur. Mus. Nat. Hung. 58:161–8.
Kol, E. 1968. Kryobiologie. Biologie und Limnologie des Schnees und Eises. I. Kryovegetation.
Kol, E. 1975. Cryobiological research in the High Tatra I. Acta Bot. Hung. 21:61–75.
Komárek, J. , Hindák, F. & Javornický, P. 1973. Ecology of the green kryophilic algae from Belanské Tatry Mountains (Czechoslovakia)
Kozlov, A. M. , Darriba, D. , Flouri, T. , Morel, B. & Stamatakis, A. 2019. RAxML‐NG: A fast, scalable and user‐friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35:4453–5. PubMed PMC
Krug, L. , Erlacher, A. , Markut, K. , Berg, G. & Cernava, T. 2020. The microbiome of alpine snow algae shows a specific inter‐kingdom connectivity and algae‐bacteria interactions with supportive capacities. ISME J. 14:2197–210. PubMed PMC
Lenarczyk, J. & Tsarenko, P. 2013. Some rare and interesting green algae (Chlorophyta) from subalpine Tatra lakes (High Tatra Mountains, Poland). Oceanol. Hydrobiol. St. 42:225–32.
Leya, T. 2013. Snow algae: Adaptation strategies to survive on snow and ice.
Lukavský, J. 1994. Algal flora of lakes in the High Tatra Mountains (Slovakia). Hydrobiologia 274:65–74.
Lutz, S. , Procházková, L. , Benning, L. G. , Nedbalová, L. & Remias, D. 2019. Evaluating amplicon high–throughput sequencing data of microalgae living in melting snow: Improvements and limitations. Fottea 19:115–31. PubMed PMC
Matsuzaki, R. , Hara, Y. & Nozaki, H. 2012. A taxonomic revision of
Matsuzaki, R. , Hara, Y. & Nozaki, H. 2014. A taxonomic study of snow
Matsuzaki, R. , Kawachi, M. , Nozaki, H. , Nohara, S. & Suzuki, I. 2020. Sexual reproduction of the snow alga PubMed PMC
Matsuzaki, R. , Kawai‐Toyooka, H. , Hara, Y. & Nozaki, H. 2015. Revisiting the taxonomic significance of aplanozygote morphologies of two cosmopolitan snow species of the genus
Matsuzaki, R. , Nakada, T. , Hara, Y. & Nozaki, H. 2013. Description of
Matsuzaki, R. , Nozaki, H. & Kawachi, M. 2018. Taxonomic revision of PubMed PMC
Matsuzaki, R. , Nozaki, H. , Takeuchi, N. , Hara, Y. & Kawachi, M. 2019. Taxonomic re‐examination of “ PubMed PMC
Matsuzaki, R. , Takashima, Y. , Suzuki, I. , Kawachi, M. , Nozaki, H. , Nohara, S. & Degawa, Y. 2021. The enigmatic snow microorganism, PubMed PMC
Mojzeš, P. , Gao, L. , Ismagulova, T. , Pilátová, J. , Moudříková, Š. , Gorelova, O. , Solovchenko, A. , Nedbal, L. & Salih, A. 2020. Guanine, a high‐capacity and rapid‐turnover nitrogen reserve in microalgal cells. Proc. Natl. Acad. Sci. U.S.A. 117:32722–30. PubMed PMC
Morales‐Sánchez, D. , Schulze, P. S. C. , Kiron, V. & Wijffels, R. H. 2020. Production of carbohydrates, lipids and polyunsaturated fatty acids (PUFA) by the polar marine microalga PubMed PMC
Morgan‐Kiss, R. M. , Priscu, J. C. , Pocock, T. , Gudynaite‐Savitch, L. & Huner, N. P. A. 2006. Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol. Mol. Biol. R. 70:222–52. PubMed PMC
Müller, T. , Philippi, N. , Dandekar, T. , Schultz, J. & Wolf, M. 2007. Distinguishing species. RNA 13:1469–72. PubMed PMC
Muramoto, K. , Nakada, T. , Shitara, T. , Hara, Y. & Nozaki, H. 2010. Re‐examination of the snow algal species
Nakada, T. , Misawa, K. & Nozaki, H. 2008. Molecular systematics of Volvocales (Chlorophyceae, Chlorophyta) based on exhaustive 18 S rRNA phylogenetic analyses. Mol. Phylogenet. Evol. 48:281–91. PubMed
Nakashima, T. , Uetake, J. , Segawa, T. , Procházková, L. , Tsushima, A. & Takeuchi, N. 2021. Spatial and temporal variations in pigment and species compositions of snow algae on Mt. Tateyama in Toyama prefecture, Japan. PubMed PMC
Nedbalová, L. , Kociánová, M. & Lukavský, J. 2008. Ecology of snow algae in the Giant Mts. Opera Corcontica 45:59–68.
Nedbalová, L. , Stuchlík, E. & Strunecký, O. 2006. Phytoplankton of a mountain lake (Ľadové pleso, the Tatra Mountains, Slovakia): Seasonal development and first indications of a response to decreased acid deposition. Biologia 61:S91–S100.
Novis, P. 2002. Ecology of the snow alga
Ono, M. , Takeuchi, N. & Zawierucha, K. 2021. Snow algae blooms are beneficial for microinvertebrate assemblages (Tardigrada and Rotifera) on seasonal snow patches in Japan. Sci. Rep. 11:1–11. PubMed PMC
Pringsheim, E. G. 1946. Pure Cultures of Algae. Cambridge University Press, Cambridge, 119 pp.
Procházková, L. , Leya, T. , Křížková, H. & Nedbalová, L. 2019b. PubMed PMC
Procházková, L. , Remias, D. , Bilger, W. , Křížková, H. , Řezanka, T. & Nedbalová, L. 2020. Cysts of the snow alga PubMed PMC
Procházková, L. , Remias, D. , Holzinger, A. , Řezanka, T. & Nedbalová, L. 2018a. Ecophysiological and morphological comparison of two populations of PubMed PMC
Procházková, L. , Remias, D. , Řezanka, T. & Nedbalová, L. 2018b. PubMed PMC
Procházková, L. , Remias, D. , Řezanka, T. & Nedbalová, L. 2019a. Ecophysiology of PubMed PMC
Pröschold, T. , Marin, B. , Schlösser, U. G. & Melkonian, M. 2001. Molecular Phylogeny and Taxonomic Revision of (Chlorophyta). I. Emendation of PubMed
Remias, D. , Procházková, L. , Holzinger, A. & Nedbalová, L. 2018. Ecology, cytology and phylogeny of the snow alga PubMed PMC
Řezanka, T. & Dembitsky, V. 1999. Novel brominated lipidic compounds from lichens of Central Asia. Phytochemistry 51:963–8. PubMed
Rognes, T. , Flouri, T. , Nichols, B. , Quince, C. & Mahé, F. 2016. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016:1–22. PubMed PMC
Ronquist, F. , Teslenko, M. , Van Der Mark, P. , Ayres, D. L. , Darling, A. , Höhna, S. , Larget, B. , Liang, L. , Suchand, M. A. & Huelsenbeck, J. P. 2012. Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61:539–42. PubMed PMC
Sattler, B. , Post, B. , Remias, D. , Lutz, C. , Lettner, H. & Psenner, R. 2012. Cold Alpine Regions.
Schultz, J. , Maisel, S. , Gerlach, D. , Müller, T. & Wolf, M. 2005. A common core of secondary structure of the internal transcribed spacer 2 (ITS2) throughout the Eukaryota. RNA 11:361–4. PubMed PMC
Soto, D. F. , Fuentes, R. , Huovinen, P. & Gómez, I. 2020. Microbial composition and photosynthesis in Antarctic snow algae communities: Integrating metabarcoding and pulse amplitude modulation fluorometry. Algal Res. 45:101738.
Spijkerman, E. , Wacker, A. , Weithoff, G. & Leya, T. 2012. Elemental and fatty acid composition of snow algae in Arctic habitats. Front. Microbiol. 3:1–15. PubMed PMC
Starmach, K. & Kawecka, B. 1965. The yellowish‐green snow in the valley Za Mnichem in the Tatra Mountains.
Terashima, M. , Umezawa, K. , Mori, S. , Kojima, H. & Fukui, M. 2017. Microbial community analysis of colored snow from an alpine snowfield in Northern Japan reveals the prevalence of Betaproteobacteria with snow algae. Front. Microbiol. 8:1481. PubMed PMC
Vančura, A. , Řezanka, T. , Maršlálek, J. , Melzoch, J. , Basařová, G. & Krišťan, V. 1988. Metabolism of L‐threonine and fatty acids and tylosin biosynthesis in
Walsby, A. E. 1997. Modelling the daily integral of photosynthesis by phytoplankton: Its dependence on the mean depth of the population. Hydrobiologia 349:65–74.
Wawrik, F. 1974. Drei neue Flagellaten aus Streckteichen des Waldviertels. Nova Hedwigia 25:665–71.
Wolf, M. , Chen, S. , Song, J. , Ankenbrand, M. & Müller, T. 2013. Compensatory base changes in ITS2 secondary structures correlate with the biological species concept despite intragenomic variability in ITS2 sequences ‐ a proof of concept. PLoS ONE 8:1–5. PubMed PMC
Yakimovich, K. M. , Engstrom, C. B. & Quarmby, L. M. 2020. Alpine snow algae microbiome diversity in the coast range of British Columbia. Front. Microbiol. 11:1721. PubMed PMC
Zgonik, V. , Mulec, J. , Eleršek, T. , Ogrinc, N. , Jamnik, P. & Ulrih, N. P. 2021. Extremophilic microorganisms in Central Europe. Microorganisms 9:2326. PubMed PMC