The snow alga Chloromonas kaweckae sp. nov. (Volvocales, Chlorophyta) causes green surface blooms in the high tatras (Slovakia) and tolerates high irradiance
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
P 29959
Austrian Science Fund FWF - Austria
P 34073
Austrian Science Fund FWF - Austria
PubMed
36461636
PubMed Central
PMC10946730
DOI
10.1111/jpy.13307
Knihovny.cz E-zdroje
- Klíčová slova
- biodiversity, cryoflora, environmental sample, fatty acids, fluorometry, vegetative stages,
- MeSH
- Chlorophyceae * MeSH
- Chlorophyta * fyziologie MeSH
- fotosyntéza fyziologie MeSH
- nízká teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Slovenská republika MeSH
Seasonally slowly melting mountain snowfields are populated by extremophilic microalgae. In alpine habitats, high-light sensitive, green phytoflagellates are usually observed in subsurface layers deeper in the snowpack under dim conditions, while robust orange to reddish cyst stages can be seen exposed on the surface. In this study, uncommon surface green snow was investigated in the High Tatra Mountains (Slovakia). The monospecific community found in the green surface bloom consisted of vegetative Chloromonas cells (Volvocales, Chlorophyta). Molecular data demonstrated that the field sample and the strain isolated and established from the bloom were conspecific, and they represent a new species, Chloromonas kaweckae sp. nov., which is described based on the morphology of the vegetative cells and asexual reproduction and on molecular analyses of the strain. Cells of C. kaweckae accumulated approximately 50% polyunsaturated fatty acids, which is advantageous at low temperatures. In addition, this new species performed active photosynthesis at temperatures close to the freezing point showed a light compensation point of 126 ± 22 μmol photons · m-2 · s-1 and some signs of photoinhibition at irradiances greater than 600 μmol photons · m-2 · s-1 . These data indicate that the photosynthetic apparatus of C. kaweckae could be regarded as adapted to relatively high light intensities, otherwise unusual for most flagellate stages of snow algae.
Department of Ecology Charles University Faculty of Science Prague 128 44 Czech Republic
The Czech Academy of Sciences Institute of Microbiology Vídeňská 1083 Prague 142 20 Czech Republic
Zobrazit více v PubMed
Allorent, G. , Lefebvre‐Legendre, L. , Chappuis, R. , Kuntz, M. , Truong, T. B. , Niyogi, K. K. , Ulm, R. & Goldschmidt‐Clermont, M. 2016. UV‐B photoreceptor‐mediated protection of the photosynthetic machinery in Chlamydomonas reinhardtii . Proc. Natl. Acad. Sci. U.S.A. 113:14864–9. PubMed PMC
Allorent, G. , Tokutsu, R. , Roach, T. , Peers, G. , Cardol, P. , Girard‐Bascou, J. , Seigneurin‐Berny, D. et al. 2013. Dual strategy to cope with high light in Chlamydomonas reinhardtii . Plant Cell 25:545–57. PubMed PMC
Ambach, W. , Blumthaler, M. & Wendler, G. 1991. A comparison of ultraviolet radiation measured at an Arctic and Alpine site. Sol. Energy 47:121–6.
Bidigare, R. R. , Ondrusek, M. E. , Kennicutt, M. , Iturriaga, R. , Harvey, H. R. , Hoham, R. W. & Macko, S. A. 1993. Evidence for a photoprotective function for secondary carotenoids of snow algae. J. Phycol. 29:427–34.
Blumthaler, M. , Ambach, W. & Ellinger, R. 1997. Increase in solar UV radiation with altitude. J. Photoch. Photobio. B 39:130–4.
Chen, S. , Zhou, Y. , Chen, Y. & Gu, J. 2018. Fastp: An ultra‐fast all‐in‐one FASTQ preprocessor. Bioinformatics 34:i884–90. PubMed PMC
Coleman, A. W. 2003. ITS2 is a double‐edged tool for eukaryote evolutionary comparisons. Trends Genet. 19:370–5. PubMed
Coleman, A. W. 2009. Is there a molecular key to the level of “biological species” in eukaryotes? A DNA guide. Mol. Phylogenet. Evol. 50:197–203. PubMed
Czirbesz, A. J. 1772. Kurzgefasste Beschreibung des Karpatischen Gerbirges. K. K. allerg. privill.‐Anz. sämmtl . Erbländer Wien 2:209–10.
Darriba, D. I. , Posada, D. , Kozlov, A. M. , Stamatakis, A. , Morel, B. & Flouri, T. 2020. ModelTest‐NG: A new and scalable tool for the selection of DNA and protein evolutionary models. Mol. Biol. Evol. 37:291–4. PubMed PMC
Davey, M. P. , Norman, L. , Sterk, P. , Heute‐Ortegal, M. , Bunburry, F. , Loh, B. K. W. , Stockton, S. , Pecl, L. S. , Convey, P. , Newsham, K. K. & Smith, A. 2019. Snow algae communities in Antarctica: metabolic and taxonomic composition. New Phytol. 222:1242–55. PubMed PMC
Dolhi, J. M. , Maxwell, D. P. & Morgan‐Kiss, R. M. 2013. Review: The Antarctic Chlamydomonas raudensis: An emerging model for cold adaptation of photosynthesis. Extremophiles 17:711–22. PubMed
Ettl, H. 1961. Zwei neue Chlamydomonaden. Arch. Protistenkunde 105:273–80.
Gates, D. M. 1980. Biophysical Ecology. Springer‐Verlag, New York, 611 pp.
Goff, L. J. , Moon, D. A. & Coleman, A. W. 1994. Molecular delineation of species and species relationships in the red algal agarophytes Gracilariopsis and Gracilaria (Gracilariales). J. Phycol. 30:521–37.
Gorton, H. L. , Williams, W. E. & Vogelmann, T. C. 2001. The light environment and cellular optics of the snow alga Chlamydomonas nivalis (Bauer) Wille. Photochem. Photobiol. 73:611–20. PubMed
Gray, A. , Krolikowski, M. , Fretwell, P. , Convey, P. , Peck, L. S. , Mendelova, M. , Smith, A. G. & Davey, M. P. 2020. Remote sensing reveals Antarctic green snow algae as important terrestrial carbon sink. Nat. Commun. 11:2527. PubMed PMC
Gray, A. , Krolikowski, M. , Fretwell, P. , Convey, P. , Peck, L. S. , Mendelova, M. , Smith, A. G. & Davey, M. P. 2021. Remote sensing phenology of Antarctic green and red snow algae using WorldView satellites. Front. Plant Sci. 12:671981. PubMed PMC
Hanzelová, M. , Vido, J. , Škvarenina, J. , Nalevanková, P. & Perháčová, Z. 2018. Microorganisms in summer snow patches in selected high mountain ranges of Slovakia. Biologia 73:1177–86.
Hindák, F. & Komárek, J. 1968. Cultivation of cryosestonic alga Koliella (Kol) Hind. Biol. Plantarum 10:95–7.
Hoham, R. W. 1975. The life history and ecology of the snow alga Chloromonas pichinchae (Chlorophyta, Volvocales). Phycologia 14:213–26.
Hoham, R. W. , Berman, J. D. , Rogers, H. S. , Felio, J. H. , Ryba, J. B. & Miller, P. R. 2006. Two new species of green snow algae from Upstate New York, Chloromonas chenangoensis sp. nov. and Chloromonas tughillensis sp. nov. (Volvocales, Chlorophyceae) and the effects of light on their life cycle development. Phycologia 45:319–30.
Hoham, R. W. , Bonome, T. A. , Martin, C. W. & Leebens‐Mack, J. H. 2002. A combined 18S rDNA and rbcL phylogenetic analysis of Chloromonas and Chlamydomonas (Chlorophyceae, Volvocales) emphasizing snow and other cold‐temperature habitats. J. Phycol. 38:1051–64.
Hoham, R. W. & Duval, B. 2001. Microbial ecology of snow and freshwater ice with emphasis on snow algae. In Jones, H. G. , Pomeroy, J. W. , Walker, D. A. & Hoham, R. W. [Eds.] Snow Ecology: An Interdisciplinary Examination of Snow‐Covered Ecosystems. Cambridge University Press, UK, Cambridge, pp. 168–228.
Hoham, R. W. , Mullet, J. E. & Roemer, S. C. 1983. The life history and ecology of the snow alga Chloromonas polyptera comb. nov. (Chlorophyta, Volvocales). Phycologia 61:2416–29.
Hoham, R. W. & Remias, D. 2020. Snow and glacial algae: A review. J. Phycol. 56:264–82. PubMed PMC
Kawecka, B. 1981. Biology and ecology of snow algae. 2. Formation of aplanospores in Chlamydomonas nivalis (Bauer) Wille (Chlorophyta, Volvocales). Acta Hydrobiol. 23:211–5.
Kawecka, B. 1983/1984. Biology and ecology of snow algae. 3. Sexual reproduction in Chloromonas rostafinski (Starmach et Kawecka) Gerloff et Ettl (Chlorophyta, Volvocales). Acta Hydrobiol. 25:281–5.
Kawecka, B. & Drake, B. 1978. Biology and ecology of snow algae. 1. The sexual reproduction of Chlamydomonas nivalis (Bauer) Wille (Chlorophyta, Volvocales). Acta Hydrobiol. 20:111–6.
Kawecka, B. & Eloranta, P. 1986. Biology and ecology of snow algae. 4. SEM studies on the cell wall structure of “resting cells” of Chloromonas rostafinski (Starmach et Kawecka) Gerloff et Ettl (Chlorophyta, Volvocales). Acta Hydrobiol. 28:387–91.
Kawecka, B. , Starmach, J. & Zmyślony, J. 1979. Electrophoretic analysis and ecological observations of Chlamydomonas nivalis (Bauer) Wille and Chloromonas rostafinski (Starmach, Kawecka) Ettl in the valley “Za Mnichem”, High Tatra Mts. Poland. B. Acad. Pol. Sci. 27:285–8.
Khan, A. L. , Dierssen, H. M. , Scambos, T. A. , Höfer, J. & Cordero, R. R. 2021. Spectral characterization, radiative forcing and pigment content of coastal Antarctic snow algae: Approaches to spectrally discriminate red and green communities and their impact on snowmelt. Cryosphere 15:133–48.
Kol, E. 1949. Über den grünen Schnee der Karpaten. Verh. Internat. Verein. Limnol. 10:235–42.
Kol, E. 1961. Über roten and grünen Schnee der Alpen. Verh. Internat. Verein. Limnol. XIV:912–7.
Kol, E. 1966. Snow algae from the valley of the Morskie Oko lake in the High Tatra. Ann. Hist. Natur. Mus. Nat. Hung. 58:161–8.
Kol, E. 1968. Kryobiologie. Biologie und Limnologie des Schnees und Eises. I. Kryovegetation. In Elster, H. J. & Ohle, W. [Eds.] Die Binnengewässer, Band XXIV . Schweizerbart'sche Verlagsbuchhandlung, Stuttgart.
Kol, E. 1975. Cryobiological research in the High Tatra I. Acta Bot. Hung. 21:61–75.
Komárek, J. , Hindák, F. & Javornický, P. 1973. Ecology of the green kryophilic algae from Belanské Tatry Mountains (Czechoslovakia) Arch . Hydrobiol./Suppl. 41 Algological Studies 9:427–49.
Kozlov, A. M. , Darriba, D. , Flouri, T. , Morel, B. & Stamatakis, A. 2019. RAxML‐NG: A fast, scalable and user‐friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35:4453–5. PubMed PMC
Krug, L. , Erlacher, A. , Markut, K. , Berg, G. & Cernava, T. 2020. The microbiome of alpine snow algae shows a specific inter‐kingdom connectivity and algae‐bacteria interactions with supportive capacities. ISME J. 14:2197–210. PubMed PMC
Lenarczyk, J. & Tsarenko, P. 2013. Some rare and interesting green algae (Chlorophyta) from subalpine Tatra lakes (High Tatra Mountains, Poland). Oceanol. Hydrobiol. St. 42:225–32.
Leya, T. 2013. Snow algae: Adaptation strategies to survive on snow and ice. In Seckbach, J. , Oren, A. & Stan‐Lotter, H. [Eds.] Cellular origin, life in extreme habitats and astrobiology, volume 27, Polyextremophiles: Life Under Multiple Forms of Stress . Springer, Dordrecht, pp. 401–23.
Lukavský, J. 1994. Algal flora of lakes in the High Tatra Mountains (Slovakia). Hydrobiologia 274:65–74.
Lutz, S. , Procházková, L. , Benning, L. G. , Nedbalová, L. & Remias, D. 2019. Evaluating amplicon high–throughput sequencing data of microalgae living in melting snow: Improvements and limitations. Fottea 19:115–31. PubMed PMC
Matsuzaki, R. , Hara, Y. & Nozaki, H. 2012. A taxonomic revision of Chloromonas reticulata (Volvocales, Chlorophyceae), the type species of the genus Chloromonas, based on multigene phylogeny and comparative light and electron microscopy. Phycologia 51:74–85.
Matsuzaki, R. , Hara, Y. & Nozaki, H. 2014. A taxonomic study of snow Chloromonas species (Volvocales, Chlorophyceae) based on light and electron microscopy and molecular analysis of cultured material. Phycologia 53:293–304.
Matsuzaki, R. , Kawachi, M. , Nozaki, H. , Nohara, S. & Suzuki, I. 2020. Sexual reproduction of the snow alga Chloromonas fukushimae (Volvocales, Chlorophyceae) induced using cultured materials. PloS ONE 15:e0238265. PubMed PMC
Matsuzaki, R. , Kawai‐Toyooka, H. , Hara, Y. & Nozaki, H. 2015. Revisiting the taxonomic significance of aplanozygote morphologies of two cosmopolitan snow species of the genus Chloromonas (Volvocales, Chlorophyceae). Phycologia 54:491–502.
Matsuzaki, R. , Nakada, T. , Hara, Y. & Nozaki, H. 2013. Description of Chloromonas kasaiae sp. nov. (Volvocales, Chlorophyceae), based on comparative electron microscopy and molecular data. Phycologia 52:239–45.
Matsuzaki, R. , Nozaki, H. & Kawachi, M. 2018. Taxonomic revision of Chloromonas nivalis (Volvocales, Chlorophyceae) strains, with the new description of two snow‐inhabiting Chloromonas species. PLoS ONE 13:e0193603. PubMed PMC
Matsuzaki, R. , Nozaki, H. , Takeuchi, N. , Hara, Y. & Kawachi, M. 2019. Taxonomic re‐examination of “Chloromonas nivalis (Volvocales, Chlorophyceae) zygotes” from Japan and description of C. muramotoi sp. nov. PLoS ONE 14:e0210986. PubMed PMC
Matsuzaki, R. , Takashima, Y. , Suzuki, I. , Kawachi, M. , Nozaki, H. , Nohara, S. & Degawa, Y. 2021. The enigmatic snow microorganism, Chionaster nivalis, is closely related to Bartheletia paradoxa (Agaricomycotina, Basidiomycota). Microbes Environ. 36:ME21011. PubMed PMC
Mojzeš, P. , Gao, L. , Ismagulova, T. , Pilátová, J. , Moudříková, Š. , Gorelova, O. , Solovchenko, A. , Nedbal, L. & Salih, A. 2020. Guanine, a high‐capacity and rapid‐turnover nitrogen reserve in microalgal cells. Proc. Natl. Acad. Sci. U.S.A. 117:32722–30. PubMed PMC
Morales‐Sánchez, D. , Schulze, P. S. C. , Kiron, V. & Wijffels, R. H. 2020. Production of carbohydrates, lipids and polyunsaturated fatty acids (PUFA) by the polar marine microalga Chlamydomonas malina RCC2488. Algal Res. 50:102016. PubMed PMC
Morgan‐Kiss, R. M. , Priscu, J. C. , Pocock, T. , Gudynaite‐Savitch, L. & Huner, N. P. A. 2006. Adaptation and acclimation of photosynthetic microorganisms to permanently cold environments. Microbiol. Mol. Biol. R. 70:222–52. PubMed PMC
Müller, T. , Philippi, N. , Dandekar, T. , Schultz, J. & Wolf, M. 2007. Distinguishing species. RNA 13:1469–72. PubMed PMC
Muramoto, K. , Nakada, T. , Shitara, T. , Hara, Y. & Nozaki, H. 2010. Re‐examination of the snow algal species Chloromonas miwae (Fukushima) Muramoto et al., comb. nov. (Volvocales, Chlorophyceae) from Japan, based on molecular phylogeny and cultured material. Eur. J. Phycol. 45: 27–37.
Nakada, T. , Misawa, K. & Nozaki, H. 2008. Molecular systematics of Volvocales (Chlorophyceae, Chlorophyta) based on exhaustive 18 S rRNA phylogenetic analyses. Mol. Phylogenet. Evol. 48:281–91. PubMed
Nakashima, T. , Uetake, J. , Segawa, T. , Procházková, L. , Tsushima, A. & Takeuchi, N. 2021. Spatial and temporal variations in pigment and species compositions of snow algae on Mt. Tateyama in Toyama prefecture, Japan. Front . Plant Sci. 12:689119. PubMed PMC
Nedbalová, L. , Kociánová, M. & Lukavský, J. 2008. Ecology of snow algae in the Giant Mts. Opera Corcontica 45:59–68.
Nedbalová, L. , Stuchlík, E. & Strunecký, O. 2006. Phytoplankton of a mountain lake (Ľadové pleso, the Tatra Mountains, Slovakia): Seasonal development and first indications of a response to decreased acid deposition. Biologia 61:S91–S100.
Novis, P. 2002. Ecology of the snow alga Chlainomonas kolii (Chlamydomonadales, Chlorophyta) in New Zealand. Phycologia 41:280–92.
Ono, M. , Takeuchi, N. & Zawierucha, K. 2021. Snow algae blooms are beneficial for microinvertebrate assemblages (Tardigrada and Rotifera) on seasonal snow patches in Japan. Sci. Rep. 11:1–11. PubMed PMC
Pringsheim, E. G. 1946. Pure Cultures of Algae. Cambridge University Press, Cambridge, 119 pp.
Procházková, L. , Leya, T. , Křížková, H. & Nedbalová, L. 2019b. Sanguina nivaloides and Sanguina aurantia gen. et spp. nov. (Chlorophyta): the taxonomy, phylogeny, biogeography and ecology of two newly recognised algae causing red and orange snow. FEMS Microbiol. Ecol. 95:fiz064. PubMed PMC
Procházková, L. , Remias, D. , Bilger, W. , Křížková, H. , Řezanka, T. & Nedbalová, L. 2020. Cysts of the snow alga Chloromonas krienitzii (Chlorophyceae) show increased tolerance to ultraviolet radiation and elevated visible light. Front. Plant Sci. 11:617250. PubMed PMC
Procházková, L. , Remias, D. , Holzinger, A. , Řezanka, T. & Nedbalová, L. 2018a. Ecophysiological and morphological comparison of two populations of Chlainomonas sp. (Chlorophyta) causing red snow on ice‐covered lakes in the High Tatras and Austrian Alps. Eur. J. Phycol. 53:230–43. PubMed PMC
Procházková, L. , Remias, D. , Řezanka, T. & Nedbalová, L. 2018b. Chloromonas nivalis subsp. tatrae, subsp. nov. (Chlamydomonadales, Chlorophyta): re–examination of a snow alga from the High Tatra Mountains (Slovakia). Fottea 18:1–18. PubMed PMC
Procházková, L. , Remias, D. , Řezanka, T. & Nedbalová, L. 2019a. Ecophysiology of Chloromonas hindakii sp. nov. (Chlorophyceae), causing orange snow blooms at different light conditions. Microorganisms 7:434. PubMed PMC
Pröschold, T. , Marin, B. , Schlösser, U. G. & Melkonian, M. 2001. Molecular Phylogeny and Taxonomic Revision of (Chlorophyta). I. Emendation of Chlamydomonas Ehrenberg and Chloromonas Gobi, and Description of Oogamochlamys gen. nov. and gen. nov. and Lobochlamys gen. nov. Protist 152:265–300. PubMed
Remias, D. , Procházková, L. , Holzinger, A. & Nedbalová, L. 2018. Ecology, cytology and phylogeny of the snow alga Scotiella cryophila K‐1 (Chlamydomonadales, Chlorophyta) from the Austrian Alps. Phycologia 57:581–92. PubMed PMC
Řezanka, T. & Dembitsky, V. 1999. Novel brominated lipidic compounds from lichens of Central Asia. Phytochemistry 51:963–8. PubMed
Rognes, T. , Flouri, T. , Nichols, B. , Quince, C. & Mahé, F. 2016. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016:1–22. PubMed PMC
Ronquist, F. , Teslenko, M. , Van Der Mark, P. , Ayres, D. L. , Darling, A. , Höhna, S. , Larget, B. , Liang, L. , Suchand, M. A. & Huelsenbeck, J. P. 2012. Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61:539–42. PubMed PMC
Sattler, B. , Post, B. , Remias, D. , Lutz, C. , Lettner, H. & Psenner, R. 2012. Cold Alpine Regions. In Bell, E. [Ed.] Life at Extremes. Environments, Organisms, and Strategies for Survival. CABI, Wallingford, OX, pp. 138–54.
Schultz, J. , Maisel, S. , Gerlach, D. , Müller, T. & Wolf, M. 2005. A common core of secondary structure of the internal transcribed spacer 2 (ITS2) throughout the Eukaryota. RNA 11:361–4. PubMed PMC
Soto, D. F. , Fuentes, R. , Huovinen, P. & Gómez, I. 2020. Microbial composition and photosynthesis in Antarctic snow algae communities: Integrating metabarcoding and pulse amplitude modulation fluorometry. Algal Res. 45:101738.
Spijkerman, E. , Wacker, A. , Weithoff, G. & Leya, T. 2012. Elemental and fatty acid composition of snow algae in Arctic habitats. Front. Microbiol. 3:1–15. PubMed PMC
Starmach, K. & Kawecka, B. 1965. The yellowish‐green snow in the valley Za Mnichem in the Tatra Mountains. In Starmach, K. [Ed.] Limnological investigations in the Tatra Mountains and Dunaje River Basin. Komitet Zagospodarovania Ziem Górskych, Polska Akademia Nauk, Zeszyt No. 11, Kraków, pp. 75–80.
Terashima, M. , Umezawa, K. , Mori, S. , Kojima, H. & Fukui, M. 2017. Microbial community analysis of colored snow from an alpine snowfield in Northern Japan reveals the prevalence of Betaproteobacteria with snow algae. Front. Microbiol. 8:1481. PubMed PMC
Vančura, A. , Řezanka, T. , Maršlálek, J. , Melzoch, J. , Basařová, G. & Krišťan, V. 1988. Metabolism of L‐threonine and fatty acids and tylosin biosynthesis in Streptomycetes fradiae . FEMS Microbiol. Lett. 49:411–5.
Walsby, A. E. 1997. Modelling the daily integral of photosynthesis by phytoplankton: Its dependence on the mean depth of the population. Hydrobiologia 349:65–74.
Wawrik, F. 1974. Drei neue Flagellaten aus Streckteichen des Waldviertels. Nova Hedwigia 25:665–71.
Wolf, M. , Chen, S. , Song, J. , Ankenbrand, M. & Müller, T. 2013. Compensatory base changes in ITS2 secondary structures correlate with the biological species concept despite intragenomic variability in ITS2 sequences ‐ a proof of concept. PLoS ONE 8:1–5. PubMed PMC
Yakimovich, K. M. , Engstrom, C. B. & Quarmby, L. M. 2020. Alpine snow algae microbiome diversity in the coast range of British Columbia. Front. Microbiol. 11:1721. PubMed PMC
Zgonik, V. , Mulec, J. , Eleršek, T. , Ogrinc, N. , Jamnik, P. & Ulrih, N. P. 2021. Extremophilic microorganisms in Central Europe. Microorganisms 9:2326. PubMed PMC