Spatial and Temporal Variations in Pigment and Species Compositions of Snow Algae on Mt. Tateyama in Toyama Prefecture, Japan
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34290725
PubMed Central
PMC8289405
DOI
10.3389/fpls.2021.689119
Knihovny.cz E-zdroje
- Klíčová slova
- 18S rRNA, Chloromonas, Sanguina, astaxanthin, phylogenetic analysis, pigment composition, red snow, snow algae,
- Publikační typ
- časopisecké články MeSH
Snow algae are photosynthetic microbes that inhabit the melting snow surface in alpine and polar regions. We analyzed the pigment and species composition of colored snow collected on Mt. Tateyama in Japan during the melting seasons of 2015 and 2016. High-performance liquid chromatographic analyses of the pigments extracted from the colored snow showed that their composition varied within the study area and were classified into four types: Type A (astaxanthin-monoester dominant), Type B (medium astaxanthin-monoester content), Type C (abundant primary carotenoids and free-astaxanthin), and Type D (abundant primary carotenoids and astaxanthin diesters). Types A and B were most commonly observed in the study area, whereas Types C and D appeared only at specific sites. Analysis of the 18S ribosomal RNA (18S rRNA) gene revealed six major amplicon sequence variants (ASVs) of snow algae, belonging to the Sanguina, Chloromonas, and Chlainomonas groups. The relative abundance of the algal ASVs showed that Sanguina was dominant (>48%) in both Types A and B, suggesting that the difference in astaxanthin abundance between the two types was caused by the production of pigments in the algal cells. The algal community structures of Types C and D differed from those of Types A and B, indicating that the primary carotenoids and astaxanthin diesters were derived from certain algal species in these types. Therefore, astaxanthin-rich Sanguina algae mostly induced the red snow that appeared widely in this alpine area; however, they were partially dominated by Chloromonas or Chlainomonas algae, causing different pigment compositions.
Center for Life Science Research University of Yamanashi Kofu Japan
Department of Ecology Faculty of Science Charles University Prague Czechia
Field Science Center for Northern Biosphere Hokkaido University Sapporo Japan
Zobrazit více v PubMed
Bidigare R. R., Ondrusek M. E., Kennicutt M. C., Iturriaga R., Harvey H. R., Hoham R. W., et al. . (1993). Evidence a photoprotective for secondary carotenoids of snow algae 1. J. Phycol. 29, 427–434. 10.1111/j.1529-8817.1993.tb00143.x DOI
Britton J. S., Edgar B. A. (1998). Environmental control of the cell cycle in Drosophila: nutrition activates mitotic and endoreplicative cells by distinct mechanisms. Development 125, 2149–2158. 10.1242/dev.125.11.2149 PubMed DOI
Brown S. P., Tucker A. E. (2020). Distribution and biogeography of Sanguina snow algae: fine-scale sequence analyses reveal previously unknown population structure. Ecol. Evol. 10, 11352–11361. 10.1002/ece3.6772 PubMed DOI PMC
Brown S. P., Ungerer M. C., Jumpponen A. (2016). A community of clones: snow algae are diverse communities of spatially structured clones. Int. J. Plant Sci. 177, 432–439. 10.1086/686019 DOI
Callahan B. J., McMurdie P. J., Rosen M. J., Han A. W., Johnson A. J. A., Holmes S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583. 10.1038/nmeth.3869 PubMed DOI PMC
Davey M. P., Norman L., Sterk P., Huete-Ortega M., Bunbury F., Loh B. K. W., et al. . (2019). Snow algae communities in Antarctica: metabolic and taxonomic composition. New Phytol. 222, 1242–1255. 10.1111/nph.15701 PubMed DOI PMC
Dial R. J., Ganey G. Q., Skiles S. M. (2018). What color should glacier algae be? An ecological role for red carbon in the cryosphere. FEMS Microbiol. Ecol. 94:fiy007. 10.1093/femsec/fiy007 PubMed DOI
Engstrom C. B., Yakimovich K. M., Quarmby L. M. (2020). Variation in snow algae blooms in the Coast Range of British Columbia. Front. Microbiol. 11:569. 10.3389/fmicb.2020.00569 PubMed DOI PMC
Fujii M., Takano Y., Kojima H., Hoshino T., Tanaka R., Fukui M. (2010). Microbial community structure, pigment composition, and nitrogen source of red snow in antarctica. Microb. Ecol. 59, 466–475. 10.1007/s00248-009-9594-9 PubMed DOI PMC
Fukushima H. (1963). Studies on cryophytes in Japan. Yokohama Municipal Univ. Ser. C. Nat. Sci. 43, 1–146.
Hoham R. W. (1974a). Chlainomonas kolii (Hardy et Curl) comb. nov. (Chlorophyta, Volvocales), a revision of the snow alga, Trachelomonas kolii Hardy et Curl (Euglenophyta, Euglenales). J. Phycol. 10, 392–396. 10.1111/j.1529-8817.1974.tb02731.x DOI
Hoham R. W. (1974b). New findings in the life history of the snow alga, Chlainomonas rubra (Stein et Brooke) comb. nov. (Chlorophyta, Volvocales). Syesis 7, 239–247.
Hoham R. W., Remias D. (2020). Snow and glacial algae: a review. J. Phycol. 56, 264–282. 10.1111/jpy.12952 PubMed DOI PMC
Holzinger A., Allen M. C., Deheyn D. D. (2016). Hyperspectral imaging of snow algae and green algae from aeroterrestrial habitats. J. Photochem. Photobiol. B Biol. 162, 412–420. 10.1016/j.jphotobiol.2016.07.001 PubMed DOI PMC
Leya T., Rahn A., Lütz C., Remias D. (2009). Response of arctic snow and permafrost algae to high light and nitrogen stress by changes in pigment composition and applied aspects for biotechnology. FEMS Microbiol. Ecol. 67, 432–443. 10.1111/j.1574-6941.2008.00641.x PubMed DOI
Logares R., Audic S., Santini S., Pernice C. M., Vargas C., Massana R. (2012). Diversity patterns and activity of uncultured marine heterotrophic flagellates unveiled with pyrosequencing, ISME J. 6, 1823–1833. 10.1038/ismej.2012.36 PubMed DOI PMC
Lutz S., Anesio A. M., Edwards A., Benning L. G. (2017). Linking microbial diversity and functionality of arctic glacial surface habitats. Environ. Microbiol. 19, 551–565. 10.1111/1462-2920.13494 PubMed DOI
Lutz S., Anesio A. M., Raiswell R., Edwards A., Newton R. J., Gill F., et al. . (2016). The biogeography of red snow microbiomes and their role in melting arctic glaciers. Nat. Commun. 7, 1–9. 10.1038/ncomms11968 PubMed DOI PMC
Lutz S., Anesio A. M., Villar S. E. J., Benning L. G. (2014). Variations of algal communities cause darkening of a Greenland glacier. FEMS Microbiol. Ecol. 89, 402–414. 10.1111/1574-6941.12351 PubMed DOI
Matsuzaki R., Kawai – Toyooka H., Hara Y., Nozaki H. (2015). Revisiting the taxonomic significance of aplanozygote morphologies of two cosmopolitan snow species of the genus Chloromonas (Volvocales, Chlorophyceae). Phycologia 54, 491–502. 10.2216/15-33.1 DOI
Matsuzaki R., Nozaki H., Takeuchi N., Hara Y., Kawachi M. (2019). Taxonomic re-examination of “Chloromonas nivalis (Volvocales, Chlorophyceae) zygotes” from Japan and description of C. muramotoi sp. nov. PLoS ONE 14:e0210986. 10.1371/journal.pone.0210986 PubMed DOI PMC
McMurdie P. J., Holmes S. (2013). phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8:e61217. 10.1371/journal.pone.0061217 PubMed DOI PMC
Müller T., Bleiß W., Martin C. D., Rogaschewski S., Fuhr G. (1998). Snow algae from northwest Svalbard: their identification, distribution, pigment and nutrient content. Polar Biol. 20, 14–32. 10.1007/s003000050272 DOI
Muramoto K., Kato S., Shitara T., Hara Y., Nozaki H. (2008). Morphological and genetic variation in the cosmopolitan snow alga Chloromonas nivalis (Volvocales, Chlorophyta) from Japanese mountainous area. Cytologia 73, 91–96. 10.1508/cytologia.73.91 DOI
Nakada T., Misawa K., Nozaki H. (2008). Molecular systematics of Volvocales (Chlorophyceae, Chlorophyta) based on exhaustive 18S rRNA phylogenetic analyses. Mol. Phylogenet. Evol. 48, 281–291. 10.1016/j.ympev.2008.03.016 PubMed DOI
Nakashima T., Takeuchi N. (2017). Variations in algal pigment composition of red snow during the melting season at Mount Tateyama, Toyama prefecture, Japan. J. Jpn. Soc. Snow Ice 79, 549–563. 10.5331/seppyo.79.6_549 DOI
Nedbalová L., Kociánová M., Lukavský J. (2008). Ecology of snow algae in the Giant Mts. Opera Corcontica 45, 59–68.
Novis P. M., Hoham R. Q., Beer T., Dawson M. (2008). Two snow species of the quadriflagellate green alga Chlainomonas (Chlorophyta, Volvocales): ultrastructure and phylogenetic position within the Chloromonas clade. J. Phycol. 44, 1001–1012. 10.1111/j.1529-8817.2008.00545.x PubMed DOI
Onuma Y., Takeuchi N., Tanaka S., Nagatsuka N., Niwano M., Aoki T. (2020). Physically based model of the contribution of red snow algal cells to temporal changes in albedo in northwest Greenland. Cryosphere 14, 2087–2101. 10.5194/tc-14-2087-2020 DOI
Osterrothová K., Culka A., Němečková K., Kaftan D., Nedbalová L., Procházková L., et al. . (2019). Analyzing carotenoids of snow algae by Raman microspectroscopy and high-performance liquid chromatography. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 212, 262–271. 10.1016/j.saa.2019.01.013 PubMed DOI
Posada D. (2008). jModelTest: phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256. 10.1093/molbev/msn083 PubMed DOI
Procházková L., Leya T., KríŽková H., Nedbalová L. (2019b). Sanguina nivaloides and Sanguina aurantia gen. et spp. nov. (Chlorophyta): the taxonomy, phylogeny, biogeography and ecology of two newly recognised algae causing red and orange snow. FEMS Microbiol. Ecol. 95:fiz064. 10.1093/femsec/fiz064 PubMed DOI PMC
Procházková L., Remias D., Holzinger A., Řezanka T., Nedbalová L. (2018). Ecophysiological and morphological comparison of two populations of Chlainomonas sp. (Chlorophyta) causing red snow on ice-covered lakes in the High Tatras and Austrian Alps. Euro. J. Phycol. 53, 230–243. 10.1080/09670262.2018.1426789 PubMed DOI PMC
Procházková L., Remias D., Holzinger A., Řezanka T., Nedbalová L. (2021). Ecophysiological and ultrastructural characterisation of the circumpolar orange snow alga Sanguina aurantia compared to the cosmopolitan red snow alga Sanguina nivaloides (Chlorophyta). Polar Biol. 44, 105–117. 10.1007/s00300-020-02778-0 PubMed DOI PMC
Procházková L., Remias D., Řezanka T., Nedbalová L. (2019a). Ecophysiology of Chloromonas hindakii sp. nov. (Chlorophyceae), causing orange snow blooms at different light conditions. Microorganisms 7:434. 10.3390/microorganisms7100434 PubMed DOI PMC
Pröschold T., Marin B., Schlösser U. G., Melkonian M. (2001). Molecular phylogeny and taxonomic revision of (Chlorophyta). I. Emendation of Chlamydomonas Ehrenberg and Chloromonas Gobi, and Description of Oogamochlamys gen. nov. and gen. nov. and Lobochlamys gen. nov. Protist 152, 265–300. 10.1078/1434-4610-00068 PubMed DOI
Quast C., Pruesse E., Yilmaz P., Gerken J., Schweer T., Yarza P., et al. . (2013). The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. 10.1093/nar/gks1219 PubMed DOI PMC
R Core Team (2017). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available online at: https://www.r-project.org/ (accessed May 28, 2021).
Remias D., Karsten U., Lütz C., Leya T. (2010). Physiological and morphological processes in the Alpine snow alga Chloromonas nivalis (Chlorophyceae) during cyst formation. Protoplasma 243, 73–86. 10.1007/s00709-010-0123-y PubMed DOI
Remias D., Lütz C. (2007). Characterisation of esterified secondary carotenoids and of their isomers in green algae: a HPLC approach. Arch. Hydrobiol. Suppl. Algol. Stud. 124, 85–94. 10.1127/1864-1318/2007/0124-0085 DOI
Remias D., Lütz-Meindl U., Lütz C. (2005). Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur. J. Phycol. 40, 259–268. 10.1080/09670260500202148 DOI
Remias D., Pichrtová M., Pangratz M., Lütz C., Holzinger A. (2016). Ecophysiology, secondary pigments and ultrastructure of Chlainomonas sp. (Chlorophyta) from the European Alps compared with Chlamydomonas nivalis forming red snow. FEMS Microbiol. Ecol. 92:fiw030. 10.1093/femsec/fiw030 PubMed DOI PMC
Řezanka T., Nedbalová L., Kolouchová I., Sigler K. (2013). LC–MS/APCI identification of glucoside esters and diesters of astaxanthin from the snow alga Chlamydomonas nivalis including their optical stereoisomers. Phytochemistry 88, 34–42. 10.1016/j.phytochem.2013.01.003 PubMed DOI
Řezanka T., Nedbalová L., Sigler K., Cepák V. (2008). Identification of astaxanthin diglucoside diesters from snow alga Chlamydomonas nivalis by liquid chromatography–atmospheric pressure chemical ionization mass spectrometry. Phytochemistry 69, 479–490. 10.1016/j.phytochem.2007.06.025 PubMed DOI
Ronquist F., Teslenko M., Van Der Mark P., Ayres D. L., Darling A., Höhna S., et al. . (2012). Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542. 10.1093/sysbio/sys029 PubMed DOI PMC
Segawa T., Matsuzaki R., Takeuchi N., Akiyoshi A., Navarro F., Sugiyama S., et al. . (2018). Bipolar dispersal of red-snow algae. Nat. Commun. 9, 1–8. 10.1038/s41467-018-05521-w PubMed DOI PMC
Segawa T., Miyamoto K., Ushida K., Agata K., Okada N., Kohshima S. (2005). Seasonal change in bacterial flora and biomass in mountain snow from the Tateyama Mountains, Japan, analyzed by 16S rRNA gene sequencing and real-time PCR. Appl. Environ. Microbiol. 71, 123–130. 10.1128/AEM.71.1.123-130.2005 PubMed DOI PMC
Skaloud P., Peksa O. (2010). Evolutionary inferences based on ITS rDNA and actin sequences reveal extensive diversity of the common lichen alga Asterochloris (Trebouxiophyceae, Chlorophyta). Mol. Phylogenet. Evolut. 54, 36–46. 10.1016/j.ympev.2009.09.035 PubMed DOI
Takaichi S. (2011). Carotenoids in algae: distributions, biosyntheses and functions. Mar. Drugs 9, 1101–1118. 10.3390/md9061101 PubMed DOI PMC
Tanabe Y., Shitara T., Kashino Y., Hara Y., Kudoh S. (2011). Utilizing the effective xanthophyll cycle for blooming of Ochromonas smithii and O. itoi (Chrysophyceae) on the snow surface. PLoS ONE 6:e14690. 10.1371/journal.pone.0014690 PubMed DOI PMC
Terashima M., Umezawa K., Mori S., Kojima H., Fukui M. (2017). Microbial community analysis of colored snow from an alpine snowfield in northern Japan reveals the prevalence of Betaproteobacteria with snow algae. Front. Microbiol. 8:1481. 10.3389/fmicb.2017.01481 PubMed DOI PMC
Thomas W. H., Duval B. (1995). Sierra Nevada, California, USA, snow algae: snow albedo changes, algal-bacterial interrelationships, and ultraviolet radiation effects. Arctic Alpine Res. 27, 389–399. 10.2307/1552032 DOI
Wang Q., Garrity G. M., Tiedje J. M., Cole J. R. (2007). Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267. 10.1128/AEM.00062-07 PubMed DOI PMC
Yakimovich K. M., Engstrom C. B., Quarmby L. M. (2020). Alpine snow algae microbiome diversity in the Coast Range of British Columbia. Front. Microbiol. 11:1721. 10.3389/fmicb.2020.01721 PubMed DOI PMC
Zwickl D. J. (2006). Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion (dissertation). The University of Texas, Austin, TX, United States.