Different prevalence of T2DM risk alleles in Roma population in comparison with the majority Czech population
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32578971
PubMed Central
PMC7507457
DOI
10.1002/mgg3.1361
Knihovny.cz E-zdroje
- Klíčová slova
- Czech population, Roma population, T2DM, gene score, polymorphism,
- MeSH
- adipozita MeSH
- cholesterol krev MeSH
- diabetes mellitus 2. typu krev etnologie genetika MeSH
- dospělí MeSH
- frekvence genu * MeSH
- genetické lokusy * MeSH
- krevní glukóza analýza MeSH
- lidé středního věku MeSH
- lidé MeSH
- polymorfismus genetický MeSH
- Romové genetika MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- cholesterol MeSH
- krevní glukóza MeSH
BACKGROUND: The Czech governmental study suggests up to a 25% higher prevalence of type 2 diabetes mellitus (T2DM) in the Roma population than within the majority population. It is not known whether and to what extent these differences have a genetic background. METHODS: To analyze whether the frequencies of the alleles/genotypes of the FTO, TCF7L2, CDKN2A/2B, MAEA, TLE4, IGF2BP2, ARAP1, and KCNJ11 genes differ between the two major ethnic groups in the Czech Republic, we examined them in DNA samples from 302 Roma individuals and 298 Czech individuals. RESULTS: Compared to the majority population, Roma are more likely to carry risk alleles in the FTO (26% vs. 16% GG homozygotes, p < .01), IGF2BP2 (22% vs. 10% TT homozygotes, p < .0001), ARAP1 (98% vs. 95% of A allele carriers, p < .005), and CDKN2A/2B (81% vs. 66% of TT homozygotes, p < .001) genes; however, less frequently they are carriers of the TCF7L2 risk allele (34% vs. 48% of the T allele p < .0005). Finally, we found significant accumulation of T2DM-associated alleles between the Roma population in comparison with the majority population (25.4% vs. 15.2% of the carriers of at least 12 risk alleles; p < .0001). CONCLUSION: The increased prevalence of T2DM in the Roma population may have a background in different frequencies of the risk alleles of genes associated with T2DM development.
Zobrazit více v PubMed
Adámková, V. , Hubáček, J. A. , Nováková, D. , Dolák, F. , Adámek, V. , Lánská, V. , … Šedová, L. (2015). Genetic and biochemical characteristics in the Roma minority in the South Bohemia Region. Neuro Endocrinology Letters, 36(Suppl 2), 29–34. PubMed
Adams, J. D. , & Vella, A. (2018). What can diabetes‐associated genetic variation in TCF7L2 teach us about the pathogenesis of type 2 diabetes? Metabolic Syndrome Related Disorders, 16(8), 383–389. 10.1089/met.2018.0024 PubMed DOI PMC
Alhyas, L. , McKay, A. , & Majeed, A. (2012). Prevalence of type 2 diabetes in the States of the co‐operation council for the Arab States of the Gulf: A systematic review. PLoS One, 7(8), e40948 10.1371/journal.pone.0040948 PubMed DOI PMC
Arora, G. P. , Almgren, P. , Brøns, C. , Thaman, R. G. , Vaag, A. A. , Groop, L. , & Prasad, R. B. (2018). Association between genetic risk variants and glucose intolerance during pregnancy in north Indian women. BMC Medical Genomics, 11(1), 64 10.1186/s12920-018-0380-8 PubMed DOI PMC
Bhupathiraju, S. N. , & Hu, F. B. (2016). Epidemiology of obesity and diabetes and their cardiovascular complications. Circulation Research, 118(11), 1723–1735. 10.1161/CIRCRESAHA.115.306825 PubMed DOI PMC
Cauchi, S. , Meyre, D. , Durand, E. , Proença, C. , Marre, M. , Hadjadj, S. , … Froguel, P. (2008). Post genome‐wide association studies of novel genes associated with type 2 diabetes show gene‐gene interaction and high predictive value. PLoS One, 3(5), e2031 10.1371/journal.pone.0002031 PubMed DOI PMC
Chidambaram, M. , Liju, S. , Saboo, B. , Sathyavani, K. , Viswanathan, V. , Pankratz, N. , … Radha, V. (2016). Replication of genome‐wide association signals in Asian Indians with early‐onset type 2 diabetes. Acta Diabetologica, 53(6), 915–923. 10.1007/s00592-016-0889-2 PubMed DOI
Dlouhá, L. , Adámková, V. , Šedová, L. , Olišarová, V. , Hubáček, J. A. , & Tóthová, V. Five genetic polymorphisms of cytochrome P450 enzymes in the Czech non‐Roma and Czech Roma population samples. Drug Metabolism and Personalized Therapy, In press. PubMed
Emerging Risk Factors Collaboration . (2010). Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A collaborative meta‐analysis of 102 prospective studies. Lancet (London, England), 375(9733), 2215–2222. 10.1016/S0140-6736(10)60484-9 PubMed DOI PMC
Gaulton, K. J. (2017). Mechanisms of type 2 diabetes risk loci. Current Diabetes Reports, 17(9), 72 10.1007/s11892-017-0908-x PubMed DOI
Gu, T. , Horová, E. , Möllsten, A. , Seman, N. A. , Falhammar, H. , Prázný, M. , … Gu, H. F. (2012). IGF2BP2 and IGF2 genetic effects in diabetes and diabetic nephropathy. Journal of Diabetes and Its Complications, 26(5), 393–398. 10.1016/j.jdiacomp.2012.05.012 PubMed DOI
Hubácek, J. A. , Adámková, V. , Šedová, L. , Olišarová, V. , Adámek, V. , & Tóthová, V. (2017b). Frequency of adult type‐associated lactase persistence LCT‐13910C/T genotypes in the Czech/Slav and Czech Roma/Gypsy populations. Genetics and Molecular Biology, 40(2), 450–452. 10.1590/1678-4685-GMB-2016-0071 PubMed DOI PMC
Hubacek, J. A. , Dlouha, D. , Adamkova, V. , Schwarzova, L. , Lanska, V. , Ceska, R. , … Vrablik, M. (2019). The gene score for predicting hypertriglyceridemia: New insights from a Czech case‐control study. Molecular Diagnosis & Therapy, 23(4), 555–562. 10.1007/s40291-019-00412-2 PubMed DOI
Hubacek, J. A. , Dlouha, D. , Klementova, M. , Lanska, V. , Neskudla, T. , & Pelikanova, T. (2018). The FTO variant is associated with chronic complications of diabetes mellitus in Czech population. Gene, 642, 220–224. 10.1016/j.gene.2017.11.040 PubMed DOI
Hubáček, J. A. , Neškudla, T. , Klementová, M. , Adámková, V. , & Pelikánová, T. (2013). Tagging rs10811661 variant at CDKN2A/2B locus is not associated with type 2 diabetes mellitus in Czech population. Folia Biologica, 59(4), 168–171. PubMed
Hubáček, J. A. , Pikhart, H. , Peasey, A. , Kubínová, R. , & Bobák, M. (2015). Nobody is perfect: Comparison of the accuracy of PCR‐RFLP and KASP™ method for genotyping. ADH1B and FTO polymorphisms as examples. Folia Biologica, 61(4), 156–160. PubMed
Hubacek, J. A. , Stanek, V. , Gebauerova, M. , Adamkova, V. , Lesauskaite, V. , Zaliaduonyte‐peksiene, D. , … Pitha, J. (2017). Traditional risk factors of acute coronary syndrome in four different male populations ‐ total cholesterol value does not seem to be relevant risk factor. Physiological Research, 66(Suppl 1), S121–S128. 10.33549/physiolres.933597 PubMed DOI
Hughes, A. O. , Fenton, S. , Hine, C. E. , Pilgrim, S. , & Tibbs, N. (1995). Strategies for sampling black and ethnic minority populations. Journal of Public Health Medicine, 17(2), 187–192. 10.1093/oxfordjournals.pubmed.a043091 PubMed DOI
Kodama, S. , Fujihara, K. , Ishiguro, H. , Horikawa, C. , Ohara, N. , Yachi, Y. , … Sone, H. (2018). Quantitative relationship between cumulative risk alleles based on genome‐wide association studies and type 2 diabetes mellitus: A systematic review and meta‐analysis. Journal of Epidemiology, 28(1), 3–18. 10.2188/jea.JE20160151 PubMed DOI PMC
Mačeková, S. , Bernasovský, I. , Gabriková, D. , Bôžiková, A. , Bernasovská, J. , Boroňová, I. , … Čarnogurská, J. (2012). Association of the FTO rs9939609 polymorphism with obesity in Roma/Gypsy population. American Journal of Physical Anthropology, 147(1), 30–34. 10.1002/ajpa.21604 PubMed DOI
McCarthy, M. I. (2017). Genetics of T2DM in 2016: Biological and translational insights from T2DM genetics. Nature Reviews Endocrinology, 13(2), 71–72. 10.1038/nrendo.2016.212 PubMed DOI
Mydlárová Blaščáková, M. , Blaščáková, Ľ. , Poráčová, J. , Mydlár, J. , Vašková, J. , Bernasovská, J. , … Bernasovský, I. (2017). Relationship between A163G osteoprotegerin gene polymorphism and other osteoporosis parameters in Roma and non‐Roma postmenopausal women in eastern Slovakia. Journal of Clinical Laboratory Analysis, 31(5), e22093 10.1002/jcla.22093 PubMed DOI PMC
Nagy, D. , Tömöry, G. , Csányi, B. , Bogácsi‐Szabó, E. , Czibula, Á. , Priskin, K. , … Raskó, I. (2011). Comparison of lactase persistence polymorphism in ancient and present‐day Hungarian populations. American Journal of Physical Anthropology, 145(2), 262–269. 10.1002/ajpa.21490 PubMed DOI
Nagy, K. , Fiatal, S. , Sándor, J. , & Ádány, R. (2017). Distinct penetrance of obesity‐associated susceptibility alleles in the Hungarian general and Roma populations. Obesity Facts, 10(5), 444–457. 10.1159/000478094 PubMed DOI PMC
Nemr, R. , Almawi, A. W. , Echtay, A. , Sater, M. S. , Daher, H. S. , & Almawi, W. Y. (2012). Replication study of common variants in CDKAL1 and CDKN2A/2B genes associated with type 2 diabetes in Lebanese Arab population. Diabetes Research and Clinical Practice, 95(2), e37–e40. 10.1016/j.diabres.2011.11.002 PubMed DOI
Nielsen, T. , Sparsø, T. , Grarup, N. , Jørgensen, T. , Pisinger, C. , Witte, D. R. , … Pedersen, O. (2011). Type 2 diabetes risk allele near CENTD2 is associated with decreased glucose‐stimulated insulin release. Diabetologia, 54(5), 1052–1056. 10.1007/s00125-011-2054-3 PubMed DOI
Nunes, M. A. , Kučerová, K. , Lukáč, O. , Kvapil, M. , & Brož, J. (2018). Prevalence of diabetes mellitus among Roma populations ‐ a systematic review. International Journal of Environmental Research and Public Health, 15(11), 2607 10.3390/ijerph15112607 PubMed DOI PMC
Peters, S. A. , Huxley, R. R. , & Woodward, M. (2014). Diabetes as risk factor for incident coronary heart disease in women compared with men: A systematic review and meta‐analysis of 64 cohorts including 858,507 individuals and 28,203 coronary events. Diabetologia, 57(8), 1542–1551. 10.1007/s00125-014-3260-6 PubMed DOI
Poveda, A. , Ibáñez, M. E. , & Rebato, E. (2014). Common variants in BDNF, FAIM2, FTO, MC4R, NEGR1, and SH2B1 show association with obesity‐related variables in Spanish Roma population. American Journal of Human Biology, 26(5), 660–669. 10.1002/ajhb.22576 PubMed DOI
Rees, S. D. , Hydrie, M. Z. I. , Shera, A. S. , Kumar, S. , O’Hare, J. P. , Barnett, A. H. , … Kelly, M. A. (2011). Replication of 13 genome‐wide association (GWA)‐validated risk variants for type 2 diabetes in Pakistani populations. Diabetologia, 54(6), 1368–1374. 10.1007/s00125-011-2063-2 PubMed DOI
Rodríguez Vicente, A. E. , Herrero Cervera, M. J. , Bernal, M. L. , Rojas, L. , & Peiró, A. M. (2018). Personalized medicine into health national services: Barriers and potentialities. Drug Metabolism and Personalized Therapy, 33(4), 159–163. 10.1515/dmpt-2018-0017 PubMed DOI
Šedová, L. , Tóthová, V. , Olišarová, V. , Adámkova, V. , Bártlová, S. , Dolák, F. , … Prokešová, R. (2015). Evaluation of selected indicators of overweight and obesity of Roma minority in the region of South Bohemia. Neuro Endocrinology Letters, 36(Suppl 2), 35–42. PubMed
Talmud, P. J. , Cooper, J. A. , Morris, R. W. , Dudbridge, F. , Shah, T. , Engmann, J. , …, Humphries, S. E. (2015). Sixty‐five common genetic variants and prediction of type 2 diabetes. Diabetes, 64(5), 1830–1840. 10.2337/db14-1504 PubMed DOI PMC
Tomas, Ž. , Kuhanec, A. , Škarić‐Jurić, T. , Petranović, M. Z. , Narančić, N. S. , Janićijević, B. , & Salihović, M. P. (2017). Distinctiveness of the Roma population within CYP2B6 worldwide variation. Pharmacogenomics, 18(17), 1575–1587. 10.2217/pgs-2017-0105 PubMed DOI
Včelák, J. , Vejražková, D. , Vaňková, M. , Lukášová, P. , Bradnová, O. , Hálková, T. , … Bendlová, B. (2012). T2D risk haplotypes of the TCF7L2 gene in the Czech population sample: The association with free fatty acids composition. Physiological Research, 61(3), 229–240. 10.33549/physiolres.932272 PubMed DOI
Vozarova de Courten, B. , de Courten, M. , Hanson, R. L. , Zahorakova, A. , Egyenes, H. P. , Tataranni, P. A. , … Vozar, J. (2003). Higher prevalence of type 2 diabetes, metabolic syndrome and cardiovascular diseases in gypsies than in non‐gypsies in Slovakia. Diabetes Research and Clinical Practice, 62(2), 95–103. 10.1016/s0168-8227(03)00162-1 PubMed DOI
Walter, S. D. (1989). The feasibility of matching and quota sampling in epidemiologic studies. American Journal of Epidemiology, 130(2), 379–389. 10.1093/oxfordjournals.aje.a115344 PubMed DOI
Werissa, N. A. , Piko, P. , Fiatal, S. , Kosa, Z. , Sandor, J. , & Adany, R. (2019). SNP‐based genetic risk score modeling suggests no increased genetic susceptibility of the Roma population to type 2 diabetes mellitus. Genes, 10(11), 942 10.3390/genes10110942 PubMed DOI PMC
Xiang, L. , Wu, H. , Pan, A. N. , Patel, B. , Xiang, G. , Qi, L. U. , … Qi, Q. (2016). FTO genotype and weight loss in diet and lifestyle interventions: A systematic review and meta‐analysis. The American Journal of Clinical Nutrition, 103(4), 1162–1170. 10.3945/ajcn.115.123448 PubMed DOI PMC
Zhao, Y. , Ma, Y. S. , Fang, Y. , Liu, L. , Wu, S. D. , Fu, D. , & Wang, X. F. (2012). IGF2BP2 genetic variation and type 2 diabetes: A global meta‐analysis. DNA and Cell Biology, 31(5), 713–720. 10.1089/dna.2011.1400 PubMed DOI
Zheng, Y. , Ley, S. H. , & Hu, F. B. (2018). Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nature Reviews Endocrinology, 14(2), 88–98. 10.1038/nrendo.2017.151 PubMed DOI
Zlatohlavek, L. , Vrablik, M. , Motykova, E. , Ceska, R. , Vasickova, L. , Dlouha, D. , & Hubacek, J. A. (2013). FTO and MC4R gene variants determine BMI changes in children after intensive lifestyle intervention. Clinical Biochemistry, 46(4–5), 313–316. 10.1016/j.clinbiochem.2012.11.017 PubMed DOI
The role of m6A and m6Am RNA modifications in the pathogenesis of diabetes mellitus