The role of m6A and m6Am RNA modifications in the pathogenesis of diabetes mellitus
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
37484960
PubMed Central
PMC10360938
DOI
10.3389/fendo.2023.1223583
Knihovny.cz E-zdroje
- Klíčová slova
- RNA, T2DM, diabetes, epigenetics, epitranscriptomics, m6A, m6Am, type 2 diabetes mellitus,
- MeSH
- adenosin metabolismus MeSH
- diabetes mellitus 2. typu * genetika MeSH
- lidé MeSH
- messenger RNA metabolismus MeSH
- posttranskripční úpravy RNA MeSH
- RNA genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- adenosin MeSH
- messenger RNA MeSH
- RNA MeSH
The rapidly developing research field of epitranscriptomics has recently emerged into the spotlight of researchers due to its vast regulatory effects on gene expression and thereby cellular physiology and pathophysiology. N6-methyladenosine (m6A) and N6,2'-O-dimethyladenosine (m6Am) are among the most prevalent and well-characterized modified nucleosides in eukaryotic RNA. Both of these modifications are dynamically regulated by a complex set of epitranscriptomic regulators called writers, readers, and erasers. Altered levels of m6A and also several regulatory proteins were already associated with diabetic tissues. This review summarizes the current knowledge and gaps about m6A and m6Am modifications and their respective regulators in the pathophysiology of diabetes mellitus. It focuses mainly on the more prevalent type 2 diabetes mellitus (T2DM) and its treatment by metformin, the first-line antidiabetic agent. A better understanding of epitranscriptomic modifications in this highly prevalent disease deserves further investigation and might reveal clinically relevant discoveries in the future.
1st Faculty of Medicine Charles University Prague Czechia
Department of Physiology Faculty of Science Charles University Prague Czechia
Zobrazit více v PubMed
WHO . Diabetes (2022). Available at: https://www.who.int/news-room/fact-sheets/detail/diabetes.
Goyal R, Jialal I. Diabetes mellitus type 2. Treasure Island, Florida StatPearls Publishing; (2023).
Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, et al. . Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci (2020) 21(17):6275. doi: 10.3390/ijms21176275 PubMed DOI PMC
Malone JI, Hansen BC. Does obesity cause type 2 diabetes mellitus (T2DM)? or is it the opposite? Pediatr Diabetes (2019) 20(1):5–9. doi: 10.1111/pedi.12787 PubMed DOI
Ottosson-Laakso E, Krus U, Storm P, Prasad RB, Oskolkov N, Ahlqvist E, et al. . Glucose-induced changes in gene expression in human pancreatic islets: causes or consequences of chronic hyperglycemia. Diabetes (2017) 66(12):3013–28. doi: 10.2337/db17-0311 PubMed DOI
Lother A, Bondareva O, Saadatmand AR, Pollmeier L, Härdtner C, Hilgendorf I, et al. . Diabetes changes gene expression but not DNA methylation in cardiac cells. J Mol Cell Cardiol (2021) 151:74–87. doi: 10.1016/j.yjmcc.2020.11.004 PubMed DOI
Patti ME. Gene expression in the pathophysiology of type 2 diabetes mellitus. Curr Diabetes Rep (2004) 4(3):176–81. doi: 10.1007/s11892-004-0020-x PubMed DOI
Boccaletto P, Machnicka MA, Purta E, Piatkowski P, Baginski B, Wirecki TK, et al. . MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res (2018) 46(D1):D303–d7. doi: 10.1093/nar/gkx1030 PubMed DOI PMC
Desrosiers R, Friderici K, Rottman F. Identification of methylated nucleosides in messenger RNA from novikoff hepatoma cells. Proc Natl Acad Sci USA (1974) 71(10):3971–5. doi: 10.1073/pnas.71.10.3971 PubMed DOI PMC
Dominissini D, Moshitch-Moshkovitz S, Salmon-Divon M, Amariglio N, Rechavi G. Transcriptome-wide mapping of N(6)-methyladenosine by m(6)A-seq based on immunocapturing and massively parallel sequencing. Nat Protoc (2013) 8(1):176–89. doi: 10.1038/nprot.2012.148 PubMed DOI
Wei C, Gershowitz A, Moss B. N6, O2'-dimethyladenosine a novel methylated ribonucleoside next to the 5' terminal of animal cell and virus mRNAs. Nature (1975) 257(5523):251–3. doi: 10.1038/257251a0 PubMed DOI
Bokar JA. The biosynthesis and functional roles of methylated nucleosides in eukaryotic mRNA. In: Grosjean H, editor. Fine-tuning of RNA functions by modification and editing. Berlin, Heidelberg: Springer Berlin Heidelberg; (2005). p. 141–77.
Lee Y, Choe J, Park OH, Kim YK. Molecular mechanisms driving mRNA degradation by m(6)A modification. Trends Genet (2020) 36(3):177–88. doi: 10.1016/j.tig.2019.12.007 PubMed DOI
Boo SH, Kim YK. The emerging role of RNA modifications in the regulation of mRNA stability. Exp Mol Med (2020) 52(3):400–8. doi: 10.1038/s12276-020-0407-z PubMed DOI PMC
Oerum S, Meynier V, Catala M, Tisné C. A comprehensive review of m6A/m6Am RNA methyltransferase structures. Nucleic Acids Res (2021) 49(13):7239–55. doi: 10.1093/nar/gkab378 PubMed DOI PMC
Wang P, Doxtader KA, Nam Y. Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol Cell (2016) 63(2):306–17. doi: 10.1016/j.molcel.2016.05.041 PubMed DOI PMC
Wang X, Feng J, Xue Y, Guan Z, Zhang D, Liu Z, et al. . Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature (2016) 534(7608):575–8. doi: 10.1038/nature18298 PubMed DOI
Ping XL, Sun BF, Wang L, Xiao W, Yang X, Wang WJ, et al. . Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res (2014) 24(2):177–89. doi: 10.1038/cr.2014.3 PubMed DOI PMC
Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, et al. . N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol (2011) 7(12):885–7. doi: 10.1038/nchembio.687 PubMed DOI PMC
Dieterich C, Völkers M. Chapter 6 - RNA modifications in cardiovascular disease–an experimental and computational perspective. In: Devaux Y, Robinson EL, editors. Epigenetics in cardiovascular disease. London, United Kingdom: Academic Press; (2021). p. 113–25.
Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, et al. . ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell (2013) 49(1):18–29. doi: 10.1016/j.molcel.2012.10.015 PubMed DOI PMC
Zaccara S, Jaffrey SR. A unified model for the function of YTHDF proteins in regulating m(6)A-modified mRNA. Cell (2020) 181(7):1582–95.e18. doi: 10.1016/j.cell.2020.05.012 PubMed DOI PMC
Lasman L, Krupalnik V, Viukov S, Mor N, Aguilera-Castrejon A, Schneir D, et al. . Context-dependent functional compensation between ythdf m6A reader proteins. Genes Dev (2020) 34(19-20):1373–91. doi: 10.1101/gad.340695.120 PubMed DOI PMC
Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, et al. . N6-methyladenosine-dependent regulation of messenger RNA stability. Nature (2014) 505(7481):117–20. doi: 10.1038/nature12730 PubMed DOI PMC
Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, et al. . N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell (2015) 161(6):1388–99. doi: 10.1016/j.cell.2015.05.014 PubMed DOI PMC
Xiao W, Adhikari S, Dahal U, Chen YS, Hao YJ, Sun BF, et al. . Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol Cell (2016) 61(4):507–19. doi: 10.1016/j.molcel.2016.01.012 PubMed DOI
Hsu PJ, Zhu Y, Ma H, Guo Y, Shi X, Liu Y, et al. . Ythdc2 is an N(6)-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res (2017) 27(9):1115–27. doi: 10.1038/cr.2017.99 PubMed DOI PMC
Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, et al. . YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA. Cell Res (2017) 27(3):315–28. doi: 10.1038/cr.2017.15 PubMed DOI PMC
Huang H, Weng H, Sun W, Qin X, Shi H, Wu H, et al. . Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat Cell Biol (2018) 20(3):285–95. doi: 10.1038/s41556-018-0045-z PubMed DOI PMC
Akichika S, Hirano S, Shichino Y, Suzuki T, Nishimasu H, Ishitani R, et al. . Cap-specific terminal n (6)-methylation of RNA by an RNA polymerase II-associated methyltransferase. Science (2019) 363(6423):eaav0080. doi: 10.1126/science.aav0080 PubMed DOI
Mauer J, Luo X, Blanjoie A, Jiao X, Grozhik AV, Patil DP, et al. . Reversible methylation of m(6)A(m) in the 5' cap controls mRNA stability. Nature (2017) 541(7637):371–5. doi: 10.1038/nature21022 PubMed DOI PMC
Mauer J, Sindelar M, Despic V, Guez T, Hawley BR, Vasseur JJ, et al. . FTO controls reversible m(6)Am RNA methylation during snRNA biogenesis. Nat Chem Biol (2019) 15(4):340–7. doi: 10.1038/s41589-019-0231-8 PubMed DOI PMC
Sun H, Zhang M, Li K, Bai D, Yi C. Cap-specific, terminal N(6)-methylation by a mammalian m(6)Am methyltransferase. Cell Res (2019) 29(1):80–2. doi: 10.1038/s41422-018-0117-4 PubMed DOI PMC
Yu D, Dai N, Wolf EJ, Corrêa IR, Jr., Zhou J, Wu T, et al. . Enzymatic characterization of mRNA cap adenosine-N6 methyltransferase PCIF1 activity on uncapped RNAs. J Biol Chem (2022) 298(4):101751. doi: 10.1016/j.jbc.2022.101751 PubMed DOI PMC
Liu A, Desai BM, Stoffers DA. Identification of PCIF1, a POZ domain protein that inhibits PDX-1 (MODY4) transcriptional activity. Mol Cell Biol (2004) 24(10):4372–83. doi: 10.1128/MCB.24.10.4372-4383.2004 PubMed DOI PMC
Claiborn KC, Sachdeva MM, Cannon CE, Groff DN, Singer JD, Stoffers DA. Pcif1 modulates Pdx1 protein stability and pancreatic β cell function and survival in mice. J Clin Invest (2010) 120(10):3713–21. doi: 10.1172/JCI40440 PubMed DOI PMC
Chen H, Gu L, Orellana EA, Wang Y, Guo J, Liu Q, et al. . METTL4 is an snRNA m(6)Am methyltransferase that regulates RNA splicing. Cell Res (2020) 30(6):544–7. doi: 10.1038/s41422-019-0270-4 PubMed DOI PMC
Goh YT, Koh CWQ, Sim DY, Roca X, Goh WSS. METTL4 catalyzes m6Am methylation in U2 snRNA to regulate pre-mRNA splicing. Nucleic Acids Res (2020) 48(16):9250–61. doi: 10.1093/nar/gkaa684 PubMed DOI PMC
Mauer J, Jaffrey SR. FTO, m6Am, and the hypothesis of reversible epitranscriptomic mRNA modifications. FEBS Lett (2018) 592(12):2012–22. doi: 10.1002/1873-3468.13092 PubMed DOI
Wei J, Liu F, Lu Z, Fei Q, Ai Y, He PC, et al. . Differential m(6)A, m(6)A(m), and m(1)A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol Cell (2018) 71(6):973–85.e5. doi: 10.1016/j.molcel.2018.08.011 PubMed DOI PMC
Relier S, Ripoll J, Guillorit H, Amalric A, Achour C, Boissière F, et al. . FTO-mediated cytoplasmic m(6)A(m) demethylation adjusts stem-like properties in colorectal cancer cell. Nat Commun (2021) 12(1):1716. doi: 10.1038/s41467-021-21758-4 PubMed DOI PMC
Benak D, Kolar F, Zhang L, Devaux Y, Hlavackova M. RNA Modification m(6)Am: the role in cardiac biology. Epigenetics (2023) 18(1):2218771. doi: 10.1080/15592294.2023.2218771 PubMed DOI PMC
Ali O. Genetics of type 2 diabetes. World J Diabetes (2013) 4(4):114–23. doi: 10.4239/wjd.v4.i4.114 PubMed DOI PMC
Hubacek JA, Dlouha L, Adamkova V, Dlouha D, Pacal L, Kankova K, et al. . Genetic risk score is associated with T2DM and diabetes complications risks. Gene (2023) 849:146921. doi: 10.1016/j.gene.2022.146921 PubMed DOI
Yang Y, Liu B, Xia W, Yan J, Liu HY, Hu L, et al. . FTO genotype and type 2 diabetes mellitus: spatial analysis and meta-analysis of 62 case-control studies from different regions. Genes (Basel) (2017) 8(2):70. doi: 10.3390/genes8020070 PubMed DOI PMC
Hubáček JA, Šedová L, Olišarová V, Adámková V, Tóthová V. Different prevalence of T2DM risk alleles in Roma population in comparison with the majority Czech population. Mol Genet Genomic Med (2020) 8(9):e1361. doi: 10.1002/mgg3.1361 PubMed DOI PMC
Sabarneh A, Ereqat S, Cauchi S, AbuShamma O, Abdelhafez M, Ibrahim M, et al. . Common FTO rs9939609 variant and risk of type 2 diabetes in Palestine. BMC Med Genet (2018) 19(1):156. doi: 10.1186/s12881-018-0668-8 PubMed DOI PMC
Sarkar P, Chatterjee D, Bandyopadhyay AR. Effect of MTHFR (rs1801133) and FTO (rs9939609) genetic polymorphisms and obesity in T2DM: a study among bengalee Hindu caste population of West Bengal, India. Ann Hum Biol (2021) 48(1):62–5. doi: 10.1080/03014460.2021.1876920 PubMed DOI
Bakhashab S, Filimban N, Altall RM, Nassir R, Qusti SY, Alqahtani MH, et al. . The effect sizes of PPARγ rs1801282, FTO rs9939609, and MC4R rs2229616 variants on type 2 diabetes mellitus risk among the Western Saudi population: a cross-sectional prospective study. Genes (Basel) (2020) 11(1):98. doi: 10.3390/genes11010098 PubMed DOI PMC
Bazzi MD, Nasr FA, Alanazi MS, Alamri A, Turjoman AA, Moustafa AS, et al. . MC4R, SLC30A8, and KCNQ1 gene variants and type 2 diabetes in Saudi population. Genet Mol Res (2014) 13(4):10194–203. doi: 10.4238/2014.December.4.14 PubMed DOI
Younus LA, Algenabi AHA, Abdul-Zhara MS, Hussein MK. FTO gene polymorphisms (rs9939609 and rs17817449) as predictors of type 2 diabetes mellitus in obese Iraqi population. Gene (2017) 627:79–84. doi: 10.1016/j.gene.2017.06.005 PubMed DOI
Nasser FA, Algenabi AA, Hadi NR, Hussein MK, Fatima G, Al-Aubaidy HA. The association of the common fat mass and obesity associated gene polymorphisms with type 2 diabetes in obese Iraqi population. Diabetes Metab Syndr (2019) 13(4):2451–5. doi: 10.1016/j.dsx.2019.06.024 PubMed DOI
Chauhan G, Tabassum R, Mahajan A, Dwivedi OP, Mahendran Y, Kaur I, et al. . Common variants of FTO and the risk of obesity and type 2 diabetes in indians. J Hum Genet (2011) 56(10):720–6. doi: 10.1038/jhg.2011.87 PubMed DOI
Bressler J, Kao WH, Pankow JS, Boerwinkle E. Risk of type 2 diabetes and obesity is differentially associated with variation in FTO in whites and African-americans in the ARIC study. PloS One (2010) 5(5):e10521. doi: 10.1371/journal.pone.0010521 PubMed DOI PMC
Sanghera DK, Ortega L, Han S, Singh J, Ralhan SK, Wander GS, et al. . Impact of nine common type 2 diabetes risk polymorphisms in Asian Indian sikhs: PPARG2 (Pro12Ala), IGF2BP2, TCF7L2 and FTO variants confer a significant risk. BMC Med Genet (2008) 9:59. doi: 10.1186/1471-2350-9-59 PubMed DOI PMC
Vasan SK, Karpe F, Gu HF, Brismar K, Fall CH, Ingelsson E, et al. . FTO genetic variants and risk of obesity and type 2 diabetes: a meta-analysis of 28,394 indians. Obes (Silver Spring) (2014) 22(3):964–70. doi: 10.1002/oby.20606 PubMed DOI
Yajnik CS, Janipalli CS, Bhaskar S, Kulkarni SR, Freathy RM, Prakash S, et al. . FTO gene variants are strongly associated with type 2 diabetes in south Asian indians. Diabetologia (2009) 52(2):247–52. doi: 10.1007/s00125-008-1186-6 PubMed DOI PMC
Hubacek JA, Dlouha D, Klementova M, Lanska V, Neskudla T, Pelikanova T. The FTO variant is associated with chronic complications of diabetes mellitus in Czech population. Gene (2018) 642:220–4. doi: 10.1016/j.gene.2017.11.040 PubMed DOI
Ghafarian-Alipour F, Ziaee S, Ashoori MR, Zakeri MS, Boroumand MA, Aghamohammadzadeh N, et al. . Association between FTO gene polymorphisms and type 2 diabetes mellitus, serum levels of apelin and androgen hormones among Iranian obese women. Gene (2018) 641:361–6. doi: 10.1016/j.gene.2017.10.082 PubMed DOI
McFadden MJ, Sacco MT, Murphy KA, Park M, Gokhale NS, Somfleth KY, et al. . FTO suppresses STAT3 activation and modulates proinflammatory interferon-stimulated gene expression. J Mol Biol (2022) 434(6):167247. doi: 10.1016/j.jmb.2021.167247 PubMed DOI PMC
Han L, Li Y, Tang L, Chen Z, Zhang T, Chen S, et al. . IGF2BP2 rs11705701 polymorphisms are associated with prediabetes in a Chinese population: a population-based case-control study. Exp Ther Med (2016) 12(3):1849–56. doi: 10.3892/etm.2016.3554 PubMed DOI PMC
Montesanto A, Bonfigli AR, Crocco P, Garagnani P, De Luca M, Boemi M, et al. . Genes associated with type 2 diabetes and vascular complications. Aging (Albany NY) (2018) 10(2):178–96. doi: 10.18632/aging.101375 PubMed DOI PMC
Eizirik DL, Pasquali L, Cnop M. Pancreatic β-cells in type 1 and type 2 diabetes mellitus: different pathways to failure. Nat Rev Endocrinol (2020) 16(7):349–62. doi: 10.1038/s41574-020-0355-7 PubMed DOI
De Jesus DF, Kulkarni RN. Epigenetic modifiers of islet function and mass. Trends Endocrinol Metab (2014) 25(12):628–36. doi: 10.1016/j.tem.2014.08.006 PubMed DOI
De Jesus DF, Zhang Z, Kahraman S, Brown NK, Chen M, Hu J, et al. . m(6)A mRNA methylation regulates human β-cell biology in physiological states and in type 2 diabetes. Nat Metab (2019) 1(8):765–74. doi: 10.1038/s42255-019-0089-9 PubMed DOI PMC
Bornaque F, Delannoy CP, Courty E, Rabhi N, Carney C, Rolland L, et al. . Glucose regulates m(6)A methylation of RNA in pancreatic islets. Cells (2022) 11(2):291. doi: 10.3390/cells11020291 PubMed DOI PMC
Taneera J, Prasad RB, Dhaiban S, Mohammed AK, Haataja L, Arvan P, et al. . Silencing of the FTO gene inhibits insulin secretion: an in vitro study using GRINCH cells. Mol Cell Endocrinol (2018) 472:10–7. doi: 10.1016/j.mce.2018.06.003 PubMed DOI PMC
Kirkpatrick CL, Marchetti P, Purrello F, Piro S, Bugliani M, Bosco D, et al. . Type 2 diabetes susceptibility gene expression in normal or diabetic sorted human alpha and beta cells: correlations with age or BMI of islet donors. PloS One (2010) 5(6):e11053. doi: 10.1371/journal.pone.0011053 PubMed DOI PMC
Wang Y, Sun J, Lin Z, Zhang W, Wang S, Wang W, et al. . m(6)A mRNA methylation controls functional maturation in neonatal murine β-cells. Diabetes (2020) 69(8):1708–22. doi: 10.2337/db19-0906 PubMed DOI
Li X, Yang Y, Li Z, Wang Y, Qiao J, Chen Z. Deficiency of WTAP in islet beta cells results in beta cell failure and diabetes in mice. Diabetologia (2023) 66(6):1084–96. doi: 10.1007/s00125-023-05900-z PubMed DOI
Li X, Yang Y, Chen Z. Downregulation of the m(6)A reader protein YTHDC1 leads to islet β-cell failure and diabetes. Metabolism (2023) 138:155339. doi: 10.1016/j.metabol.2022.155339 PubMed DOI
Wu X, Wang W, Fan S, You L, Li F, Zhang X, et al. . U-Shaped association between serum IGF2BP3 and T2DM: a cross-sectional study in Chinese population. J Diabetes (2023) 15(4):349–61. doi: 10.1111/1753-0407.13378 PubMed DOI PMC
Marselli L, Thorne J, Dahiya S, Sgroi DC, Sharma A, Bonner-Weir S, et al. . Gene expression profiles of beta-cell enriched tissue obtained by laser capture microdissection from subjects with type 2 diabetes. PloS One (2010) 5(7):e11499. doi: 10.1371/journal.pone.0011499 PubMed DOI PMC
Fan HQ, He W, Xu KF, Wang ZX, Xu XY, Chen H. FTO inhibits insulin secretion and promotes NF-κB activation through positively regulating ROS production in pancreatic β cells. PloS One (2015) 10(5):e0127705. doi: 10.1371/journal.pone.0127705 PubMed DOI PMC
Li X, Jiang Y, Sun X, Wu Y, Chen Z. METTL3 is required for maintaining β-cell function. Metabolism (2021) 116:154702. doi: 10.1016/j.metabol.2021.154702 PubMed DOI
Liu J, Luo G, Sun J, Men L, Ye H, He C, et al. . METTL14 is essential for β-cell survival and insulin secretion. Biochim Biophys Acta Mol Basis Dis (2019) 1865(9):2138–48. doi: 10.1016/j.bbadis.2019.04.011 PubMed DOI
Men L, Sun J, Luo G, Ren D. Acute deletion of METTL14 in β-cells of adult mice results in glucose intolerance. Endocrinology (2019) 160(10):2388–94. doi: 10.1210/en.2019-00350 PubMed DOI PMC
Yang K, Sun J, Zhang Z, Xiao M, Ren D, Liu SM. Reduction of mRNA m(6)A associates with glucose metabolism via YTHDC1 in human and mice. Diabetes Res Clin Pract (2023) 198:110607. doi: 10.1016/j.diabres.2023.110607 PubMed DOI
Einarson TR, Acs A, Ludwig C, Panton UH. Prevalence of cardiovascular disease in type 2 diabetes: a systematic literature review of scientific evidence from across the world in 2007-2017. Cardiovasc Diabetol (2018) 17(1):83. doi: 10.1186/s12933-018-0728-6 PubMed DOI PMC
Paolillo S, Marsico F, Prastaro M, Renga F, Esposito L, De Martino F, et al. . Diabetic cardiomyopathy: definition, diagnosis, and therapeutic implications. Heart Fail Clin (2019) 15(3):341–7. doi: 10.1016/j.hfc.2019.02.003 PubMed DOI
Geng X, Li Z, Yang Y. Emerging role of epitranscriptomics in diabetes mellitus and its complications. Front Endocrinol (Lausanne) (2022) 13:907060. doi: 10.3389/fendo.2022.907060 PubMed DOI PMC
Longenecker JZ, Gilbert CJ, Golubeva VA, Martens CR, Accornero F. Epitranscriptomics in the heart: a focus on m(6)A. Curr Heart Fail Rep (2020) 17(5):205–12. doi: 10.1007/s11897-020-00473-z PubMed DOI PMC
Wu S, Zhang S, Wu X, Zhou X. m(6)A RNA methylation in cardiovascular diseases. Mol Ther (2020) 28(10):2111–9. doi: 10.1016/j.ymthe.2020.08.010 PubMed DOI PMC
Kumari R, Ranjan P, Suleiman ZG, Goswami SK, Li J, Prasad R, et al. . mRNA modifications in cardiovascular biology and disease: with a focus on m6A modification. Cardiovasc Res (2022) 118(7):1680–92. doi: 10.1093/cvr/cvab160 PubMed DOI PMC
Semenovykh D, Benak D, Holzerova K, Cerna B, Telensky P, Vavrikova T, et al. . Myocardial m6A regulators in postnatal development: effect of sex. Physiol Res (2022) 71(6):877–82. doi: 10.33549/physiolres.934970 PubMed DOI PMC
Kmietczyk V, Riechert E, Kalinski L, Boileau E, Malovrh E, Malone B, et al. . m(6)A-mRNA methylation regulates cardiac gene expression and cellular growth. Life Sci Alliance (2019) 2(2):e201800233. doi: 10.26508/lsa.201800233 PubMed DOI PMC
Mathiyalagan P, Adamiak M, Mayourian J, Sassi Y, Liang Y, Agarwal N, et al. . FTO-dependent N(6)-methyladenosine regulates cardiac function during remodeling and repair. Circulation (2019) 139(4):518–32. doi: 10.1161/CIRCULATIONAHA.118.033794 PubMed DOI PMC
Berulava T, Buchholz E, Elerdashvili V, Pena T, Islam MR, Lbik D, et al. . Changes in m6A RNA methylation contribute to heart failure progression by modulating translation. Eur J Heart Fail (2020) 22(1):54–66. doi: 10.1002/ejhf.1672 PubMed DOI
Zhang B, Xu Y, Cui X, Jiang H, Luo W, Weng X, et al. . Alteration of m6A RNA methylation in heart failure with preserved ejection fraction. Front Cardiovasc Med (2021) 8:647806. doi: 10.3389/fcvm.2021.647806 PubMed DOI PMC
Zhang B, Jiang H, Wu J, Cai Y, Dong Z, Zhao Y, et al. . m6A demethylase FTO attenuates cardiac dysfunction by regulating glucose uptake and glycolysis in mice with pressure overload-induced heart failure. Signal Transduct Target Ther (2021) 6(1):377. doi: 10.1038/s41392-021-00699-w PubMed DOI PMC
Ju W, Liu K, Ouyang S, Liu Z, He F, Wu J. Changes in N6-methyladenosine modification modulate diabetic cardiomyopathy by reducing myocardial fibrosis and myocyte hypertrophy. Front Cell Dev Biol (2021) 9:702579. doi: 10.3389/fcell.2021.702579 PubMed DOI PMC
Shao Y, Li M, Yu Q, Gong M, Wang Y, Yang X, et al. . CircRNA CDR1as promotes cardiomyocyte apoptosis through activating hippo signaling pathway in diabetic cardiomyopathy. Eur J Pharmacol (2022) 922:174915. doi: 10.1016/j.ejphar.2022.174915 PubMed DOI
Hölscher ME, Bode C, Bugger H. Diabetic cardiomyopathy: does the type of diabetes matter? Int J Mol Sci (2016) 17(12):2136. doi: 10.3390/ijms17122136 PubMed DOI PMC
Meng L, Lin H, Huang X, Weng J, Peng F, Wu S. METTL14 suppresses pyroptosis and diabetic cardiomyopathy by downregulating TINCR lncRNA. Cell Death Dis (2022) 13(1):38. doi: 10.1038/s41419-021-04484-z PubMed DOI PMC
Peng T, Liu M, Hu L, Guo D, Wang D, Qi B, et al. . LncRNA airn alleviates diabetic cardiac fibrosis by inhibiting activation of cardiac fibroblasts via a m6A-IMP2-p53 axis. Biol Direct (2022) 17(1):32. doi: 10.1186/s13062-022-00346-6 PubMed DOI PMC
Faselis C, Katsimardou A, Imprialos K, Deligkaris P, Kallistratos M, Dimitriadis K. Microvascular complications of type 2 diabetes mellitus. Curr Vasc Pharmacol (2020) 18(2):117–24. doi: 10.2174/1570161117666190502103733 PubMed DOI
Natesan V, Kim SJ. Diabetic nephropathy - a review of risk factors, progression, mechanism, and dietary management. Biomol Ther (Seoul) (2021) 29(4):365–72. doi: 10.4062/biomolther.2020.204 PubMed DOI PMC
Xu Z, Jia K, Wang H, Gao F, Zhao S, Li F, et al. . METTL14-regulated PI3K/Akt signaling pathway via PTEN affects HDAC5-mediated epithelial-mesenchymal transition of renal tubular cells in diabetic kidney disease. Cell Death Dis (2021) 12(1):32. doi: 10.1038/s41419-020-03312-0 PubMed DOI PMC
Jiang L, Liu X, Hu X, Gao L, Zeng H, Wang X, et al. . METTL3-mediated m(6)A modification of TIMP2 mRNA promotes podocyte injury in diabetic nephropathy. Mol Ther (2022) 30(4):1721–40. doi: 10.1016/j.ymthe.2022.01.002 PubMed DOI PMC
Tang W, Zhao Y, Zhang H, Peng Y, Rui Z. METTL3 enhances NSD2 mRNA stability to reduce renal impairment and interstitial fibrosis in mice with diabetic nephropathy. BMC Nephrol (2022) 23(1):124. doi: 10.1186/s12882-022-02753-3 PubMed DOI PMC
Li M, Deng L, Xu G. METTL14 promotes glomerular endothelial cell injury and diabetic nephropathy via m6A modification of α-klotho. Mol Med (2021) 27(1):106. doi: 10.1186/s10020-021-00365-5 PubMed DOI PMC
Lu Z, Liu H, Song N, Liang Y, Zhu J, Chen J, et al. . METTL14 aggravates podocyte injury and glomerulopathy progression through N(6)-methyladenosine-dependent downregulating of Sirt1. Cell Death Dis (2021) 12(10):881. doi: 10.1038/s41419-021-04156-y PubMed DOI PMC
Lan J, Xu B, Shi X, Pan Q, Tao Q. WTAP-mediated N(6)-methyladenosine modification of NLRP3 mRNA in kidney injury of diabetic nephropathy. Cell Mol Biol Lett (2022) 27(1):51. doi: 10.1186/s11658-022-00350-8 PubMed DOI PMC
Sun Q, Geng H, Zhao M, Li Y, Chen X, Sha Q, et al. . FTO-mediated m(6) a modification of SOCS1 mRNA promotes the progression of diabetic kidney disease. Clin Transl Med (2022) 12(6):e942. doi: 10.1002/ctm2.942 PubMed DOI PMC
Wan SJ, Hua Q, Xing YJ, Cheng Y, Zhou SM, Sun Y, et al. . Decreased urine N6-methyladenosine level is closely associated with the presence of diabetic nephropathy in type 2 diabetes mellitus. Front Endocrinol (Lausanne) (2022) 13:986419. doi: 10.3389/fendo.2022.986419 PubMed DOI PMC
Tolman KG, Fonseca V, Dalpiaz A, Tan MH. Spectrum of liver disease in type 2 diabetes and management of patients with diabetes and liver disease. Diabetes Care (2007) 30(3):734–43. doi: 10.2337/dc06-1539 PubMed DOI
Loria P, Lonardo A, Anania F. Liver and diabetes. A vicious circle. Hepatol Res (2013) 43(1):51–64. doi: 10.1111/j.1872-034X.2012.01031.x PubMed DOI PMC
Powell EE, Wong VW, Rinella M. Non-alcoholic fatty liver disease. Lancet (2021) 397(10290):2212–24. doi: 10.1016/S0140-6736(20)32511-3 PubMed DOI
Akshintala D, Chugh R, Amer F, Cusi K. Nonalcoholic fatty liver disease: the overlooked complication of type 2 diabetes. Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, editors. South Dartmouth (MA: MDText.com, Inc) (2000).
Anstee QM, McPherson S, Day CP. How big a problem is non-alcoholic fatty liver disease? Bmj (2011) 343:d3897. doi: 10.1136/bmj.d3897 PubMed DOI
Yang Y, Cai J, Yang X, Wang K, Sun K, Yang Z, et al. . Dysregulated m6A modification promotes lipogenesis and development of non-alcoholic fatty liver disease and hepatocellular carcinoma. Mol Ther (2022) 30(6):2342–53. doi: 10.1016/j.ymthe.2022.02.021 PubMed DOI PMC
Tang J, Zhao X, Wei W, Liu W, Fan H, Liu XP, et al. . METTL16-mediated translation of CIDEA promotes non-alcoholic fatty liver disease progression via m6A-dependent manner. PeerJ (2022) 10:e14379. doi: 10.7717/peerj.14379 PubMed DOI PMC
Peng Z, Gong Y, Wang X, He W, Wu L, Zhang L, et al. . METTL3-m(6)A-Rubicon axis inhibits autophagy in nonalcoholic fatty liver disease. Mol Ther (2022) 30(2):932–46. doi: 10.1016/j.ymthe.2021.09.016 PubMed DOI PMC
Chen X, Gao Y, Yang X, Zhang H, Mo Z, Tan A. Relationship of FTO gene variations with NAFLD risk in Chinese men. Open Life Sci (2020) 15(1):860–7. doi: 10.1515/biol-2020-0081 PubMed DOI PMC
Cheng W, Li M, Zhang L, Zhou C, Yu S, Peng X, et al. . New roles of N6-methyladenosine methylation system regulating the occurrence of non-alcoholic fatty liver disease with N6-methyladenosine-modified MYC. Front Pharmacol (2022) 13:973116. doi: 10.3389/fphar.2022.973116 PubMed DOI PMC
Wei X, Zhang J, Tang M, Wang X, Fan N, Peng Y. Fat mass and obesity-associated protein promotes liver steatosis by targeting PPARα. Lipids Health Dis (2022) 21(1):29. doi: 10.1186/s12944-022-01640-y PubMed DOI PMC
Xie W, Ma LL, Xu YQ, Wang BH, Li SM. METTL3 inhibits hepatic insulin sensitivity via N6-methyladenosine modification of fasn mRNA and promoting fatty acid metabolism. Biochem Biophys Res Commun (2019) 518(1):120–6. doi: 10.1016/j.bbrc.2019.08.018 PubMed DOI
Jiang H, Yao Q, An Y, Fan L, Wang J, Li H. Baicalin suppresses the progression of type 2 diabetes-induced liver tumor through regulating METTL3/m(6)A/HKDC1 axis and downstream p-JAK2/STAT1/clevaged Capase3 pathway. Phytomedicine (2022) 94:153823. doi: 10.1016/j.phymed.2021.153823 PubMed DOI
Kumari N, Karmakar A, Ahamad Khan MM, Ganesan SK. The potential role of m6A RNA methylation in diabetic retinopathy. Exp Eye Res (2021) 208:108616. doi: 10.1016/j.exer.2021.108616 PubMed DOI
Hsiao YT, Shen FC, Weng SW, Wang PW, Chen YJ, Lee JJ. Multiple single nucleotide polymorphism testing improves the prediction of diabetic retinopathy risk with type 2 diabetes mellitus. J Pers Med (2021) 11(8):689. doi: 10.3390/jpm11080689 PubMed DOI PMC
Zha X, Xi X, Fan X, Ma M, Zhang Y, Yang Y. Overexpression of METTL3 attenuates high-glucose induced RPE cell pyroptosis by regulating miR-25-3p/PTEN/Akt signaling cascade through DGCR8. Aging (Albany NY) (2020) 12(9):8137–50. doi: 10.18632/aging.103130 PubMed DOI PMC
Suo L, Liu C, Zhang QY, Yao MD, Ma Y, Yao J, et al. . METTL3-mediated N(6)-methyladenosine modification governs pericyte dysfunction during diabetes-induced retinal vascular complication. Theranostics (2022) 12(1):277–89. doi: 10.7150/thno.63441 PubMed DOI PMC
Cao X, Song Y, Huang LL, Tian YJ, Wang XL, Hua LY. m(6)A transferase METTL3 regulates endothelial-mesenchymal transition in diabetic retinopathy via lncRNA SNHG7/KHSRP/MKL1 axis. Genomics (2022) 114(6):110498. doi: 10.1016/j.ygeno.2022.110498 PubMed DOI
Liang D, Lin WJ, Ren M, Qiu J, Yang C, Wang X, et al. . m(6)A reader YTHDC1 modulates autophagy by targeting SQSTM1 in diabetic skin. Autophagy (2022) 18(6):1318–37. doi: 10.1080/15548627.2021.1974175 PubMed DOI PMC
Wang Y, Li Y, Toth JI, Petroski MD, Zhang Z, Zhao JC. N6-methyladenosine modification destabilizes developmental regulators in embryonic stem cells. Nat Cell Biol (2014) 16(2):191–8. doi: 10.1038/ncb2902 PubMed DOI PMC
Shen F, Huang W, Huang JT, Xiong J, Yang Y, Wu K, et al. . Decreased N(6)-methyladenosine in peripheral blood RNA from diabetic patients is associated with FTO expression rather than ALKBH5. J Clin Endocrinol Metab (2015) 100(1):E148–54. doi: 10.1210/jc.2014-1893 PubMed DOI PMC
Onalan E, Yakar B, Onalan EE, Karakulak K, Kaymaz T, Donder E. m(6)A RNA, FTO, ALKBH5 expression in type 2 diabetic and obesity patients. J Coll Physicians Surg Pak (2022) 32(9):1143–8. doi: 10.29271/jcpsp.2022.09.1143 PubMed DOI
Masoud Abd El Gayed E, Kamal El Din Zewain S, Ragheb A, ElNaidany SS. Fat mass and obesity-associated gene expression and disease severity in type 2 diabetes mellitus. Steroids (2021) 174:108897. doi: 10.1016/j.steroids.2021.108897 PubMed DOI
Yang Y, Shen F, Huang W, Qin S, Huang JT, Sergi C, et al. . Glucose is involved in the dynamic regulation of m6A in patients with type 2 diabetes. J Clin Endocrinol Metab (2019) 104(3):665–73. doi: 10.1210/jc.2018-00619 PubMed DOI
LaMoia TE, Shulman GI. Cellular and molecular mechanisms of metformin action. Endocr Rev (2021) 42(1):77–96. doi: 10.1210/endrev/bnaa023 PubMed DOI PMC
Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B. Metformin: from mechanisms of action to therapies. Cell Metab (2014) 20(6):953–66. doi: 10.1016/j.cmet.2014.09.018 PubMed DOI
Cheng L, Zhang X, Huang YZ, Zhu YL, Xu LY, Li Z, et al. . Metformin exhibits antiproliferation activity in breast cancer via miR-483-3p/METTL3/m(6)A/p21 pathway. Oncogenesis (2021) 10(1):7. doi: 10.1038/s41389-020-00290-y PubMed DOI PMC
Zhang Q, Xiong L, Wei T, Liu Q, Yan L, Chen J, et al. . Hypoxia-responsive PPARGC1A/BAMBI/ACSL5 axis promotes progression and resistance to lenvatinib in hepatocellular carcinoma. Oncogene (2023) 42(19):1509–23. doi: 10.1038/s41388-023-02665-y PubMed DOI
Chen CJ, Huang JY, Huang JQ, Deng JY, Shangguan XH, Chen AZ, et al. . Metformin attenuates multiple myeloma cell proliferation and encourages apoptosis by suppressing METTL3-mediated m6A methylation of THRAP3, RBM25, and USP4. Cell Cycle (2023) 22(8):986–1004. doi: 10.1080/15384101.2023.2170521 PubMed DOI PMC
Li K, Gao S, Ma L, Sun Y, Peng ZY, Wu J, et al. . Stimulation of let-7 maturation by metformin improved the response to tyrosine kinase inhibitor therapy in an m6A dependent manner. Front Oncol (2021) 11:731561. doi: 10.3389/fonc.2021.731561 PubMed DOI PMC
Yuan J, Liu Y, Zhou L, Xue Y, Lu Z, Gan J. YTHDC2-mediated circYTHDC2 N6-methyladenosine modification promotes vascular smooth muscle cells dysfunction through inhibiting ten-eleven translocation 2. Front Cardiovasc Med (2021) 8:686293. doi: 10.3389/fcvm.2021.686293 PubMed DOI PMC
Liao X, Liu J, Chen Y, Liu Y, Chen W, Zeng B, et al. . Metformin combats obesity by targeting FTO in an m(6)A-YTHDF2-dependent manner. J Drug Targeting (2022) 30(9):983–91. doi: 10.1080/1061186X.2022.2071906 PubMed DOI
Sixty Years of Heart Research in the Institute of Physiology of the Czech Academy of Sciences
Epitranscriptomic Regulations in the Heart
Epitranscriptomic regulation in fasting hearts: implications for cardiac health