Myocardial m6A regulators in postnatal development: effect of sex
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
36426889
PubMed Central
PMC9814979
DOI
10.33549/physiolres.934970
PII: 934970
Knihovny.cz E-zdroje
- MeSH
- krysa rodu Rattus MeSH
- myokard * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
N6-methyladenosine (m6A) is an abundant mRNA modification affecting mRNA stability and protein expression. It is a highly dynamic process, and its outcomes during postnatal heart development are poorly understood. Here we studied m6A machinery in the left ventricular (LV) myocardium of Fisher344 male and female rats (postnatal days one to ninety; P1-P90) using Western Blot. A downward pattern of target protein levels (demethylases FTO and ALKBH5, methyltransferase METTL3, reader YTHDF2) was revealed in male and female rat LVs during postnatal development. On P1, the FTO protein level was significantly higher in male LVs compared to females.
Zobrazit více v PubMed
Jarrell DK, Lennon ML, Jacot JG. Epigenetics and Mechanobiology in Heart Development and Congenital Heart Disease. Diseases. 2019;7(3) doi: 10.3390/diseases7030052. PubMed DOI PMC
Peer E, Rechavi G, Dominissini D. Epitranscriptomics: regulation of mRNA metabolism through modifications. Curr Opin Chem Biol. 2017;41:93–98. doi: 10.1016/j.cbpa.2017.10.008. PubMed DOI
Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X, Dai Q, Chen W, He C. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2014;10(2):93–95. doi: 10.1038/nchembio.1432. PubMed DOI PMC
Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG, He C. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011;7(12):885–887. doi: 10.1038/nchembio.687. PubMed DOI PMC
Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vågbø CB, Shi Y, Wang WL, Song SH, Lu Z, Bosmans RP, Dai Q, Hao YJ, Yang X, Zhao WM, Tong WM, Wang XJ, Bogdan F, Furu K, Fu Y, Jia G, Zhao X, Liu J, Krokan HE, Klungland A, Yang YG, He C. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 2013;49(1):18–29. doi: 10.1016/j.molcel.2012.10.015. PubMed DOI PMC
Wei J, Liu F, Lu Z, Fei Q, Ai Y, He PC, Shi H, Cui X, Su R, Klungland A, Jia G, Chen J, He C. Differential m(6)A, m(6)A(m), and m(1)A Demethylation Mediated by FTO in the Cell Nucleus and Cytoplasm. Mol Cell. 2018;71(6):973–985. doi: 10.1016/j.molcel.2018.08.011. PubMed DOI PMC
Lasman L, Krupalnik V, Viukov S, Mor N, Aguilera-Castrejon A, Schneir D, Bayerl J, Mizrahi O, Peles S, Tawil S, Sathe S, Nachshon A, Shani T, Zerbib M, Kilimnik I, Aigner S, Shankar A, Mueller JR, Schwartz S, Stern-Ginossar N, Yeo GW, Geula S, Novershtern N, Hanna JH. Context-dependent functional compensation between Ythdf m(6)A reader proteins. Genes Dev. 2020;34(19–20):1373–1391. doi: 10.1101/gad.340695.120. PubMed DOI PMC
Boissel S, Reish O, Proulx K, Kawagoe-Takaki H, Sedgwick B, Yeo GS, Meyre D, Golzio C, Molinari F, Kadhom N, Etchevers HC, Saudek V, Farooqi IS, Froguel P, Lindahl T, O’Rahilly S, Munnich A, Colleaux L. Loss-of-function mutation in the dioxygenase-encoding FTO gene causes severe growth retardation and multiple malformations. Am J Hum Genet. 2009;85(1):106–111. doi: 10.1016/j.ajhg.2009.06.002. PubMed DOI PMC
Su X, Shen Y, Jin Y, Kim IM, Weintraub NL, Tang Y. Aging-Associated Differences in Epitranscriptomic m6A Regulation in Response to Acute Cardiac Ischemia/Reperfusion Injury in Female Mice. Front Pharmacol. 2021;12:654316. doi: 10.3389/fphar.2021.654316. PubMed DOI PMC
Han Z, Wang X, Xu Z, Cao Y, Gong R, Yu Y, Yu Y, Guo X, Liu S, Yu M, Ma W, Zhao Y, Xu J, Li X, Li S, Xu Y, Song R, Xu B, Yang F, Bamba D, Sukhareva N, Lei H, Gao M, Zhang W, Zagidullin N, Zhang Y, Yang B, Pan Z, Cai B. ALKBH5 regulates cardiomyocyte proliferation and heart regeneration by demethylating the mRNA of YTHDF1. Theranostics. 2021;11(6):3000–3016. doi: 10.7150/thno.47354. PubMed DOI PMC
Gong R, Wang X, Li H, Liu S, Jiang Z, Zhao Y, Yu Y, Han Z, Yu Y, Dong C, Li S, Xu B, Zhang W, Wang N, Li X, Gao X, Yang F, Bamba D, Ma W, Liu Y, Cai B. Loss of m(6)A methyltransferase METTL3 promotes heart regeneration and repair after myocardial injury. Pharmacol Res. 2021;174:105845. doi: 10.1016/j.phrs.2021.105845. PubMed DOI
Yang C, Zhao K, Zhang J, Wu X, Sun W, Kong X, Shi J. Comprehensive Analysis of the Transcriptome-Wide m6A Methylome of Heart via MeRIP After Birth: Day 0 vs. Day 7. Front Cardiovasc Med. 2021;8:633631. doi: 10.3389/fcvm.2021.633631. PubMed DOI PMC
Yang Y, Shen S, Cai Y, Zeng K, Liu K, Li S, Zeng L, Chen L, Tang J, Hu Z, Xia Z, Zhang L. Dynamic Patterns of N6-Methyladenosine Profiles of Messenger RNA Correlated with the Cardiomyocyte Regenerability during the Early Heart Development in Mice. Oxid Med Cell Longev. 2021;2021:5537804. doi: 10.1155/2021/5537804. PubMed DOI PMC
Holzerová K, Hlaváčková M, Žurmanová J, Borchert G, Neckář J, Kolář F, Novák F, Nováková O. Involvement of PKCepsilon in cardioprotection induced by adaptation to chronic continuous hypoxia. Phys Res. 2015;64(2):191–201. doi: 10.33549/physiolres.932860. PubMed DOI
Solomon S, Wise P, Ratner A. Postnatal Changes of Water and Electrolytes of Rat Tissues. 1976;153(2):359–362. doi: 10.3181/00379727-153-39545. PubMed DOI
Sander H, Wallace S, Plouse R, Tiwari S, Gomes AV. Ponceau S waste: Ponceau S staining for total protein normalization. Anal Biochem. 2019;575:44–53. doi: 10.1016/j.ab.2019.03.010. PubMed DOI PMC
Ferenc K, Pilzys T, Garbicz D, Marcinkowski M, Skorobogatov O, Dylewska M, Gajewski Z, Grzesiuk E, Zabielski R. Intracellular and tissue specific expression of FTO protein in pig: changes with age, energy intake and metabolic status. Sci Rep. 2020;10(1):13029. doi: 10.1038/s41598-020-69856-5. PubMed DOI PMC
Church C, Moir L, McMurray F, Girard C, Banks GT, Teboul L, Wells S, Brüning JC, Nolan PM, Ashcroft FM, Cox RD. Overexpression of Fto leads to increased food intake and results in obesity. Nat Genet. 2010;42(12):1086–1092. https://doi.org/10.1038/ng.713. https://doi.org/10.1038/ng.713. PubMed DOI PMC
Gao X, Shin YH, Li M, Wang F, Tong Q, Zhang P. The fat mass and obesity associated gene FTO functions in the brain to regulate postnatal growth in mice. PLoS One. 2010;5(11):e14005. doi: 10.1371/journal.pone.0014005. PubMed DOI PMC
Unveiling the proteome of the fasting heart: Insights into HIF-1 pathway regulation
Sixty Years of Heart Research in the Institute of Physiology of the Czech Academy of Sciences
Epitranscriptomic Regulations in the Heart
Epitranscriptomic regulation in fasting hearts: implications for cardiac health
RNA modification m6Am: the role in cardiac biology
The role of m6A and m6Am RNA modifications in the pathogenesis of diabetes mellitus