Epitranscriptomic signatures in blood: emerging biomarkers for diagnosis of diabetes and its complications
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
41195338
PubMed Central
PMC12583049
DOI
10.3389/fcell.2025.1656769
PII: 1656769
Knihovny.cz E-zdroje
- Klíčová slova
- RNA modification, biomarkers, diabetes, epitranscriptomics, m6A, pseudouridine,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder characterized by chronic hyperglycemia, insulin resistance, and progressive β-cell dysfunction. Traditional biomarkers, such as fasting glucose and glycated hemoglobin (HbA1c), offer diagnostic and prognostic value but have limitations in sensitivity and predictive power for disease progression. Recent advances in molecular biology have identified epitranscriptomic modifications as potential biomarkers for T2DM, offering a novel layer of gene expression regulation through reversible RNA modifications. Dysregulation of these modifications has been implicated in insulin resistance, β-cell failure, and diabetes-related complications. Notably, altered levels of N6-methyladenosine (m6A) and its regulatory enzymes, including the eraser fat mass and obesity-associated protein (FTO) and the writer methyltransferase-like 3 (METTL3), have been detected in peripheral blood of T2DM patients, suggesting their potential as promising diagnostic markers. Similarly, circulating levels of pseudouridine (Ψ) have been associated with diabetic complications such as retinopathy and nephropathy. This review highlights the emerging role of epitranscriptomic modifications in T2DM pathophysiology and discusses their translational potential as biomarkers for early detection, disease monitoring, and personalized therapeutic strategies.
Zobrazit více v PubMed
Ahmed S., Adnan H., Khawaja M. A., Butler A. E. (2025). Novel micro-ribonucleic acid biomarkers for early detection of type 2 diabetes mellitus and associated Complications-A literature review. Int. J. Mol. Sci. 26 (2), 753. 10.3390/ijms26020753 PubMed DOI PMC
Akichika S., Hirano S., Shichino Y., Suzuki T., Nishimasu H., Ishitani R., et al. (2019). Cap-specific terminal N (6)-methylation of RNA by an RNA polymerase II-associated methyltransferase. Science 363 (6423), eaav0080. 10.1126/science.aav0080 PubMed DOI
Alarcón C. R., Goodarzi H., Lee H., Liu X., Tavazoie S., Tavazoie S. F. (2015). HNRNPA2B1 is a mediator of m(6)A-Dependent nuclear RNA processing events. Cell 162 (6), 1299–1308. 10.1016/j.cell.2015.08.011 PubMed DOI PMC
Bacos K., Perfilyev A., Karagiannopoulos A., Cowan E., Ofori J. K., Bertonnier-Brouty L., et al. (2023). Type 2 diabetes candidate genes, including PAX5, cause impaired insulin secretion in human pancreatic islets. J. Clin. Invest 133 (4), e163612. 10.1172/JCI163612 PubMed DOI PMC
Bar-Yaacov D., Frumkin I., Yashiro Y., Chujo T., Ishigami Y., Chemla Y., et al. (2016). Mitochondrial 16S rRNA is methylated by tRNA methyltransferase TRMT61B in all vertebrates. PLoS Biol. 14 (9), e1002557. 10.1371/journal.pbio.1002557 PubMed DOI PMC
Benak D., Benakova S., Plecita-Hlavata L., Hlavackova M. (2023a). The role of m6A and m6Am RNA modifications in the pathogenesis of diabetes mellitus. Front. Endocrinol. (Lausanne) 14, 1223583. 10.3389/fendo.2023.1223583 PubMed DOI PMC
Benak D., Kolar F., Zhang L., Devaux Y., Hlavackova M. (2023b). RNA modification m(6)Am: the role in cardiac biology. Epigenetics 18 (1), 2218771. 10.1080/15592294.2023.2218771 PubMed DOI PMC
Benak D., Kolar F., Hlavackova M. (2024a). Epitranscriptomic regulations in the heart. Physiol. Res. 73, S185–S198. 10.33549/physiolres.935265 PubMed DOI PMC
Benak D., Holzerova K., Hrdlicka J., Kolar F., Olsen M., Karelson M., et al. (2024b). Epitranscriptomic regulation in fasting hearts: implications for cardiac health. RNA Biol. 21 (1), 1–14. 10.1080/15476286.2024.2307732 PubMed DOI PMC
Benak D., Sevcikova A., Holzerova K., Hlavackova M. (2024c). FTO in health and disease. Front. Cell Dev. Biol. 12, 1500394. 10.3389/fcell.2024.1500394 PubMed DOI PMC
Benak D., Alanova P., Holzerova K., Chalupova M., Opletalova B., Kolar F., et al. (2025). Epitranscriptomic regulation of HIF-1: bidirectional regulatory pathways. Mol. Med. 31 (1), 105. 10.1186/s10020-025-01149-x PubMed DOI PMC
Bohnsack K. E., Höbartner C., Bohnsack M. T. (2019). PubMed DOI PMC
Bokar J. A. (2005). “The biosynthesis and functional roles of methylated nucleosides in eukaryotic mRNA,” in Fine-tuning of RNA functions by modification and editing. Editor Grosjean H. (Berlin, Heidelberg: Springer Berlin Heidelberg; ), 141–177.
Borchardt E. K., Martinez N. M., Gilbert W. V. (2020). Regulation and function of RNA pseudouridylation in human cells. Annu. Rev. Genet. 54, 309–336. 10.1146/annurev-genet-112618-043830 PubMed DOI PMC
Brennicke A., Marchfelder A., Binder S. (1999). RNA editing. FEMS Microbiol. Rev. 23 (3), 297–316. 10.1111/j.1574-6976.1999.tb00401.x PubMed DOI
Cai S., Zhu H., Chen L., Yu C., Su L., Chen K., et al. (2024). Berberine inhibits KLF4 promoter methylation and ferroptosis to ameliorate diabetic nephropathy in mice. Chem. Res. Toxicol. 37 (10), 1728–1737. 10.1021/acs.chemrestox.4c00263 PubMed DOI
Cappannini A., Ray A., Purta E., Mukherjee S., Boccaletto P., Moafinejad S. N., et al. (2024). MODOMICS: a database of RNA modifications and related information. 2023 update. Nucleic Acids Res. 52 (D1), D239–d244. 10.1093/nar/gkad1083 PubMed DOI PMC
Chen Z., Qi M., Shen B., Luo G., Wu Y., Li J., et al. (2019a). Transfer RNA demethylase ALKBH3 promotes cancer progression via induction of tRNA-derived small RNAs. Nucleic Acids Res. 47 (5), 2533–2545. 10.1093/nar/gky1250 PubMed DOI PMC
Chen X., Sun B. F., Yang Y., Han Y. N., Yuan X., Chen R. X., et al. (2019b). 5-methylcytosine promotes pathogenesis of bladder cancer through stabilizing mRNAs. Nat. Cell Biol. 21 (8), 978–990. 10.1038/s41556-019-0361-y PubMed DOI
Chen H., Gu L., Orellana E. A., Wang Y., Guo J., Liu Q., et al. (2020). METTL4 is an snRNA m(6)Am methyltransferase that regulates RNA splicing. Cell Res. 30 (6), 544–547. 10.1038/s41422-019-0270-4 PubMed DOI PMC
Chen Y. S., Yang W. L., Zhao Y. L., Yang Y. G. (2021). Dynamic transcriptomic m(5) C and its regulatory role in RNA processing. Wiley Interdiscip. Rev. RNA 12 (4), e1639. 10.1002/wrna.1639 PubMed DOI
Chujo T., Suzuki T. (2012). Trmt61B is a methyltransferase responsible for 1-methyladenosine at position 58 of human mitochondrial tRNAs. Rna 18 (12), 2269–2276. 10.1261/rna.035600.112 PubMed DOI PMC
Cohn W. E. (1951). Some results of the applications of ion-exchange chromatography to nucleic acid chemistry. J. Cell Physiol. Suppl. 38 (Suppl. 1), 21–40. 10.1002/jcp.1030380405 PubMed DOI
Desrosiers R., Friderici K., Rottman F. (1974). Identification of methylated nucleosides in messenger RNA from novikoff hepatoma cells. Proc. Natl. Acad. Sci. U. S. A. 71 (10), 3971–3975. 10.1073/pnas.71.10.3971 PubMed DOI PMC
Dominissini D., Moshitch-Moshkovitz S., Amariglio N., Rechavi G. (2011). Adenosine-to-inosine RNA editing meets cancer. Carcinogenesis 32 (11), 1569–1577. 10.1093/carcin/bgr124 PubMed DOI
Dominissini D., Moshitch-Moshkovitz S., Salmon-Divon M., Amariglio N., Rechavi G. (2013). Transcriptome-wide mapping of N(6)-methyladenosine by m(6)A-seq based on immunocapturing and massively parallel sequencing. Nat. Protoc. 8 (1), 176–189. 10.1038/nprot.2012.148 PubMed DOI
Dominissini D., Nachtergaele S., Moshitch-Moshkovitz S., Peer E., Kol N., Ben-Haim M. S., et al. (2016). The dynamic N(1)-methyladenosine methylome in eukaryotic messenger RNA. Nature 530 (7591), 441–446. 10.1038/nature16998 PubMed DOI PMC
Dorcely B., Katz K., Jagannathan R., Chiang S. S., Oluwadare B., Goldberg I. J., et al. (2017). Novel biomarkers for prediabetes, diabetes, and associated complications. Diabetes Metab. Syndr. Obes. 10, 345–361. 10.2147/DMSO.S100074 PubMed DOI PMC
Dunn D. B. (1961). The occurrence of 1-methyladenine in ribonucleic acid. Biochim. Biophys. Acta 46, 198–200. 10.1016/0006-3002(61)90668-0 PubMed DOI
Fu L., Guerrero C. R., Zhong N., Amato N. J., Liu Y., Liu S., et al. (2014). Tet-mediated formation of 5-hydroxymethylcytosine in RNA. J. Am. Chem. Soc. 136 (33), 11582–11585. 10.1021/ja505305z PubMed DOI PMC
Ganem N. S., Lamm A. T. (2017). A-to-I RNA editing - thinking beyond the single nucleotide. RNA Biol. 14 (12), 1690–1694. 10.1080/15476286.2017.1364830 PubMed DOI PMC
Goh Y. T., Koh C. W. Q., Sim D. Y., Roca X., Goh W. S. S. (2020). METTL4 catalyzes m6Am methylation in U2 snRNA to regulate pre-mRNA splicing. Nucleic Acids Res. 48 (16), 9250–9261. 10.1093/nar/gkaa684 PubMed DOI PMC
Gott J. M., Emeson R. B. (2000). Functions and mechanisms of RNA editing. Annu. Rev. Genet. 34, 499–531. 10.1146/annurev.genet.34.1.499 PubMed DOI
Haag S., Sloan K. E., Ranjan N., Warda A. S., Kretschmer J., Blessing C., et al. (2016). NSUN3 and ABH1 modify the wobble position of mt-tRNAMet to expand codon recognition in mitochondrial translation. Embo J. 35 (19), 2104–2119. 10.15252/embj.201694885 PubMed DOI PMC
Helm M., Giegé R., Florentz C. (1999). A watson-crick base-pair-disrupting methyl group (m1A9) is sufficient for cloverleaf folding of human mitochondrial tRNALys. Biochemistry 38 (40), 13338–13346. 10.1021/bi991061g PubMed DOI
Hsu P. J., Zhu Y., Ma H., Guo Y., Shi X., Liu Y., et al. (2017). Ythdc2 is an N(6)-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res. 27 (9), 1115–1127. 10.1038/cr.2017.99 PubMed DOI PMC
Huang H., Weng H., Sun W., Qin X., Shi H., Wu H., et al. (2018). Recognition of RNA N(6)-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat. Cell Biol. 20 (3), 285–295. 10.1038/s41556-018-0045-z PubMed DOI PMC
Jia G., Fu Y., Zhao X., Dai Q., Zheng G., Yang Y., et al. (2011). N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7 (12), 885–887. 10.1038/nchembio.687 PubMed DOI PMC
Jiang J. J., Sham T. T., Gu X. F., Chan C. O., Dong N. P., Lim W. H., et al. (2024). Insights into serum metabolic biomarkers for early detection of incident diabetic kidney disease in Chinese patients with type 2 diabetes by random forest. Aging (Albany NY) 16 (4), 3420–3530. 10.18632/aging.205542 PubMed DOI PMC
Knebel U. E., Peleg S., Dai C., Cohen-Fultheim R., Jonsson S., Poznyak K., et al. (2024). Disrupted RNA editing in beta cells mimics early-stage type 1 diabetes. Cell Metab. 36 (1), 48–61.e6. 10.1016/j.cmet.2023.11.011 PubMed DOI PMC
Lasman L., Krupalnik V., Viukov S., Mor N., Aguilera-Castrejon A., Schneir D., et al. (2020). Context-dependent functional compensation between Ythdf m(6)A reader proteins. Genes Dev. 34 (19-20), 1373–1391. 10.1101/gad.340695.120 PubMed DOI PMC
Levi O., Arava Y. S. (2021). Pseudouridine-mediated translation control of mRNA by methionine aminoacyl tRNA synthetase. Nucleic Acids Res. 49 (1), 432–443. 10.1093/nar/gkaa1178 PubMed DOI PMC
Li X., Xiong X., Wang K., Wang L., Shu X., Ma S., et al. (2016a). Transcriptome-wide mapping reveals reversible and dynamic N(1)-methyladenosine methylome. Nat. Chem. Biol. 12 (5), 311–316. 10.1038/nchembio.2040 PubMed DOI
Li X., Ma S., Yi C. (2016b). Pseudouridine: the fifth RNA nucleotide with renewed interests. Curr. Opin. Chem. Biol. 33, 108–116. 10.1016/j.cbpa.2016.06.014 PubMed DOI
Li X., Xiong X., Zhang M., Wang K., Chen Y., Zhou J., et al. (2017). Base-resolution mapping reveals distinct m(1)A methylome in Nuclear- and mitochondrial-encoded transcripts. Mol. Cell 68 (5), 993–1005. 10.1016/j.molcel.2017.10.019 PubMed DOI PMC
Liu N., Dai Q., Zheng G., Parisien M., Pan T. (2015). N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature 518 (7540), 560–564. 10.1038/nature14234 PubMed DOI PMC
Liu F., Clark W., Luo G., Wang X., Fu Y., Wei J., et al. (2016). ALKBH1-Mediated tRNA demethylation regulates translation. Cell 167 (3), 816–828. 10.1016/j.cell.2016.09.038 PubMed DOI PMC
Liu N., Zhou K. I., Parisien M., Dai Q., Diatchenko L., Pan T. (2017). N6-methyladenosine alters RNA structure to regulate binding of a low-complexity protein. Nucleic Acids Res. 45 (10), 6051–6063. 10.1093/nar/gkx141 PubMed DOI PMC
Mabley J. G., Rabinovitch A., Suarez-Pinzon W., Haskó G., Pacher P., Power R., et al. (2003). Inosine protects against the development of diabetes in multiple-low-dose streptozotocin and nonobese diabetic mouse models of type 1 diabetes. Mol. Med. 9 (3-4), 96–104. 10.2119/2003-00016.mabley PubMed DOI PMC
Masoud Abd El Gayed E., Kamal El Din Zewain S., Ragheb A., ElNaidany S. S. (2021). Fat mass and obesity-associated gene expression and disease severity in type 2 diabetes mellitus. Steroids 174, 108897. 10.1016/j.steroids.2021.108897 PubMed DOI
Mathew A. V., Kayampilly P., Byun J., Nair V., Afshinnia F., Chai B., et al. (2024). Tubular dysfunction impairs renal excretion of pseudouridine in diabetic kidney disease. Am. J. Physiol. Ren. Physiol. 326 (1), F30–f38. 10.1152/ajprenal.00252.2022 PubMed DOI PMC
Mauer J., Sindelar M., Despic V., Guez T., Hawley B. R., Vasseur J. J., et al. (2019). FTO controls reversible m6Am RNA methylation during snRNA biogenesis. Nat. Chem. Biol. 15 (4), 340–347. 10.1038/s41589-019-0231-8 PubMed DOI PMC
Meyer K. D., Saletore Y., Zumbo P., Elemento O., Mason C. E., Jaffrey S. R. (2012). Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons. Cell 149 (7), 1635–1646. 10.1016/j.cell.2012.05.003 PubMed DOI PMC
Mohanty S. K., Singh K., Kumar M., Verma S. S., Srivastava R., Gnyawali S. C., et al. (2024). Vasculogenic skin reprogramming requires TET-mediated gene demethylation in fibroblasts for rescuing impaired perfusion in diabetes. Nat. Commun. 15 (1), 10277. 10.1038/s41467-024-54385-w PubMed DOI PMC
Niewczas M. A., Mathew A. V., Croall S., Byun J., Major M., Sabisetti V. S., et al. (2017). Circulating modified metabolites and a risk of ESRD in patients with type 1 diabetes and chronic kidney disease. Diabetes Care 40 (3), 383–390. 10.2337/dc16-0173 PubMed DOI PMC
Nishikura K. (2016). A-to-I editing of coding and non-coding RNAs by ADARs. Nat. Rev. Mol. Cell Biol. 17 (2), 83–96. 10.1038/nrm.2015.4 PubMed DOI PMC
Oerum S., Dégut C., Barraud P., Tisné C. (2017). m1A post-transcriptional modification in tRNAs. Biomolecules 7 (1), 20. 10.3390/biom7010020 PubMed DOI PMC
Oerum S., Meynier V., Catala M., Tisné C. (2021). A comprehensive review of m6A/m6Am RNA methyltransferase structures. Nucleic Acids Res. 49 (13), 7239–7255. 10.1093/nar/gkab378 PubMed DOI PMC
Onalan E., Yakar B., Karakulak K., Kaymaz T., Donder E. (2022). m(6)A RNA, FTO, ALKBH5 expression in type 2 diabetic and obesity patients. J. Coll. Physicians Surg. Pak 32 (9), 1143–1148. 10.29271/jcpsp.2022.09.1143 PubMed DOI
Ping X. L., Sun B. F., Wang L., Xiao W., Yang X., Wang W. J., et al. (2014). Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase. Cell Res. 24 (2), 177–189. 10.1038/cr.2014.3 PubMed DOI PMC
Rintala-Dempsey A. C., Kothe U. (2017). Eukaryotic stand-alone pseudouridine synthases - RNA modifying enzymes and emerging regulators of gene expression? RNA Biol. 14 (9), 1185–1196. 10.1080/15476286.2016.1276150 PubMed DOI PMC
Safra M., Sas-Chen A., Nir R., Winkler R., Nachshon A., Bar-Yaacov D., et al. (2017). The m1A landscape on cytosolic and mitochondrial mRNA at single-base resolution. Nature 551 (7679), 251–255. 10.1038/nature24456 PubMed DOI
Santos-Pujol E., Quero-Dotor C., Esteller M. (2024). Clinical perspectives in epitranscriptomics. Curr. Opin. Genet. Dev. 87, 102209. 10.1016/j.gde.2024.102209 PubMed DOI
Semenovykh D., Benak D., Holzerova K., Cerna B., Telensky P., Vavrikova T., et al. (2022). Myocardial m6A regulators in postnatal development: effect of sex. Physiol. Res. 71 (6), 877–882. 10.33549/physiolres.934970 PubMed DOI PMC
Sharma S., Watzinger P., Kötter P., Entian K. D. (2013). Identification of a novel methyltransferase, Bmt2, responsible for the N-1-methyl-adenosine base modification of 25S rRNA in Saccharomyces cerevisiae. Nucleic Acids Res. 41 (10), 5428–5443. 10.1093/nar/gkt195 PubMed DOI PMC
Shen F., Huang W., Huang J. T., Xiong J., Yang Y., Wu K., et al. (2015). Decreased N(6)-methyladenosine in peripheral blood RNA from diabetic patients is associated with FTO expression rather than ALKBH5. J. Clin. Endocrinol. Metab. 100 (1), E148–E154. 10.1210/jc.2014-1893 PubMed DOI PMC
Shi H., Wang X., Lu Z., Zhao B. S., Ma H., Hsu P. J., et al. (2017). YTHDF3 facilitates translation and decay of N(6)-methyladenosine-modified RNA. Cell Res. 27 (3), 315–328. 10.1038/cr.2017.15 PubMed DOI PMC
Shima H., Igarashi K. (2020). N 1-methyladenosine (m1A) RNA modification: the key to ribosome control. J. Biochem. 167 (6), 535–539. 10.1093/jb/mvaa026 PubMed DOI
Song H., Feng X., Zhang H., Luo Y., Huang J., Lin M., et al. (2019). METTL3 and ALKBH5 oppositely regulate m(6)A modification of TFEB mRNA, which dictates the fate of hypoxia/reoxygenation-treated cardiomyocytes. Autophagy 15 (8), 1419–1437. 10.1080/15548627.2019.1586246 PubMed DOI PMC
Song Y., Jiang Y., Shi L., He C., Zhang W., Xu Z., et al. (2022). Comprehensive analysis of key m5C modification-related genes in type 2 diabetes. Front. Genet. 13, 1015879. 10.3389/fgene.2022.1015879 PubMed DOI PMC
Squires J. E., Preiss T. (2010). Function and detection of 5-methylcytosine in eukaryotic RNA. Epigenomics 2 (5), 709–715. 10.2217/epi.10.47 PubMed DOI
Sun H., Zhang M., Li K., Bai D., Yi C. (2019). Cap-specific, terminal N(6)-methylation by a mammalian m(6)Am methyltransferase. Cell Res. 29 (1), 80–82. 10.1038/s41422-018-0117-4 PubMed DOI PMC
Sun Y., Zou H., Li X., Xu S., Liu C. (2021). Plasma Metabolomics reveals Metabolic profiling for diabetic retinopathy and disease progression. Front. Endocrinol. (Lausanne) 12, 757088. 10.3389/fendo.2021.757088 PubMed DOI PMC
Sun H., Li K., Liu C., Yi C. (2023). Regulation and functions of non-m(6)A mRNA modifications. Nat. Rev. Mol. Cell Biol. 24, 714–731. 10.1038/s41580-023-00622-x PubMed DOI
Tan Y., Cao H., Li Q., Sun J. (2021). The role of transcription factor Ap1 in the activation of the Nrf2/ARE pathway through TET1 in diabetic nephropathy. Cell Biol. Int. 45 (8), 1654–1665. 10.1002/cbin.11599 PubMed DOI
Waku T., Nakajima Y., Yokoyama W., Nomura N., Kako K., Kobayashi A., et al. (2016). NML-mediated rRNA base methylation links ribosomal subunit formation to cell proliferation in a p53-dependent manner. J. Cell Sci. 129 (12), 2382–2393. 10.1242/jcs.183723 PubMed DOI
Wang P., Doxtader K. A., Nam Y. (2016). Structural basis for cooperative function of Mettl3 and Mettl14 methyltransferases. Mol. Cell 63 (2), 306–317. 10.1016/j.molcel.2016.05.041 PubMed DOI PMC
Wang X., Lu Z., Gomez A., Hon G. C., Yue Y., Han D., et al. (2014). N6-methyladenosine-dependent regulation of messenger RNA stability. Nature 505 (7481), 117–120. 10.1038/nature12730 PubMed DOI PMC
Wang X., Zhao B. S., Roundtree I. A., Lu Z., Han D., Ma H., et al. (2015). N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell 161 (6), 1388–1399. 10.1016/j.cell.2015.05.014 PubMed DOI PMC
Wang X., Feng J., Xue Y., Guan Z., Zhang D., Liu Z., et al. (2016). Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature 534 (7608), 575–578. 10.1038/nature18298 PubMed DOI
Wang Y., Traugot C. M., Bubenik J. L., Li T., Sheng P., Hiers N. M., et al. (2023a). N(6)-methyladenosine in 7SK small nuclear RNA underlies RNA polymerase II transcription regulation. Mol. Cell 83 (21), 3818–3834.e7. 10.1016/j.molcel.2023.09.020 PubMed DOI PMC
Wang Y. Y., Tian Y., Li Y. Z., Liu Y. F., Zhao Y. Y., Chen L. H., et al. (2023b). The role of m5C methyltransferases in cardiovascular diseases. Front. Cardiovasc Med. 10, 1225014. 10.3389/fcvm.2023.1225014 PubMed DOI PMC
Wang X., Li X., Zong Y., Yu J., Chen Y., Zhao M., et al. (2023c). Identification and validation of genes related to RNA methylation modification in diabetic retinopathy. Curr. Eye Res. 48 (11), 1034–1049. 10.1080/02713683.2023.2238144 PubMed DOI
Wang R., Xue W., Kan F., Zhang H., Wang D., Wang L., et al. (2024). NSUN2 affects diabetic retinopathy progression by regulating MUC1 expression through RNA m(5)C methylation. J. Transl. Med. 22 (1), 476. 10.1186/s12967-024-05287-4 PubMed DOI PMC
Wang R., Qu J., Chen M., Han T., Liu Z., Wang H. (2025). NSUN2 knockdown inhibits macrophage infiltration in diabetic nephropathy via reducing N5-methylcytosine methylation of SOCS1. Int. Urol. Nephrol. 57 (2), 643–653. 10.1007/s11255-024-04214-2 PubMed DOI
Wei C., Gershowitz A., Moss B., N6 (1975). N6, O2'-dimethyladenosine a novel methylated ribonucleoside next to the 5' terminal of animal cell and virus mRNAs. Nature 257 (5523), 251–253. 10.1038/257251a0 PubMed DOI
Wei J., Liu F., Lu Z., Fei Q., Ai Y., He P. C., et al. (2018). Differential m(6)A, m(6)A(m), and m(1)A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol. Cell 71 (6), 973–985. 10.1016/j.molcel.2018.08.011 PubMed DOI PMC
Williams K., Christensen J., Helin K. (2011). DNA methylation: TET proteins-guardians of CpG islands? EMBO Rep. 13 (1), 28–35. 10.1038/embor.2011.233 PubMed DOI PMC
Wu G., Adachi H., Ge J., Stephenson D., Query C. C., Yu Y. T. (2016). Pseudouridines in U2 snRNA stimulate the ATPase activity of Prp5 during spliceosome assembly. Embo J. 35 (6), 654–667. 10.15252/embj.201593113 PubMed DOI PMC
Wu X., Wang W., Fan S., You L., Li F., Zhang X., et al. (2023). U-shaped association between serum IGF2BP3 and T2DM: a cross-sectional study in Chinese population. J. Diabetes 15 (4), 349–361. 10.1111/1753-0407.13378 PubMed DOI PMC
Xiao W., Adhikari S., Dahal U., Chen Y. S., Hao Y. J., Sun B. F., et al. (2016). Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol. Cell 61 (4), 507–519. 10.1016/j.molcel.2016.01.012 PubMed DOI
Xue C., Chu Q., Zheng Q., Jiang S., Bao Z., Su Y., et al. (2022). Role of main RNA modifications in cancer: N(6)-methyladenosine, 5-methylcytosine, and pseudouridine. Signal Transduct. Target Ther. 7 (1), 142. 10.1038/s41392-022-01003-0 PubMed DOI PMC
Yang X., Yang Y., Sun B. F., Chen Y. S., Xu J. W., Lai W. Y., et al. (2017). 5-methylcytosine promotes mRNA export - NSUN2 as the methyltransferase and ALYREF as an m(5)C reader. Cell Res. 27 (5), 606–625. 10.1038/cr.2017.55 PubMed DOI PMC
Yang Y., Shen F., Huang W., Qin S., Huang J. T., Sergi C., et al. (2019). Glucose is involved in the dynamic regulation of m6A in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 104 (3), 665–673. 10.1210/jc.2018-00619 PubMed DOI
Zaccara S., Jaffrey S. R. (2020). A unified model for the function of YTHDF proteins in regulating m(6)A-Modified mRNA. Cell 181 (7), 1582–1595. 10.1016/j.cell.2020.05.012 PubMed DOI PMC
Zha X., Xi X., Fan X., Ma M., Zhang Y., Yang Y. (2020). Overexpression of METTL3 attenuates high-glucose induced RPE cell pyroptosis by regulating miR-25-3p/PTEN/Akt signaling cascade through DGCR8. Aging (Albany NY) 12 (9), 8137–8150. 10.18632/aging.103130 PubMed DOI PMC
Zhao B. S., Roundtree I. A., He C. (2017). Post-transcriptional gene regulation by mRNA modifications. Nat. Rev. Mol. Cell Biol. 18 (1), 31–42. 10.1038/nrm.2016.132 PubMed DOI PMC
Zheng G., Dahl J. A., Niu Y., Fedorcsak P., Huang C. M., Li C. J., et al. (2013). ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell 49 (1), 18–29. 10.1016/j.molcel.2012.10.015 PubMed DOI PMC