RNA modification m6Am: the role in cardiac biology
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
37331009
PubMed Central
PMC10281464
DOI
10.1080/15592294.2023.2218771
Knihovny.cz E-zdroje
- Klíčová slova
- N6,2‘-O-dimethyladenosine, N6-methyladenosine, epitranscriptomics, heart, m6A, m6Am,
- MeSH
- adenosin * metabolismus MeSH
- biologie MeSH
- messenger RNA genetika MeSH
- metylace DNA * MeSH
- RNA metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- adenosin * MeSH
- messenger RNA MeSH
- RNA MeSH
Epitranscriptomic modifications have recently emerged into the spotlight of researchers due to their vast regulatory effects on gene expression and thereby cellular physiology and pathophysiology. N6,2'-O-dimethyladenosine (m6Am) is one of the most prevalent chemical marks on RNA and is dynamically regulated by writers (PCIF1, METTL4) and erasers (FTO). The presence or absence of m6Am in RNA affects mRNA stability, regulates transcription, and modulates pre-mRNA splicing. Nevertheless, its functions in the heart are poorly known. This review summarizes the current knowledge and gaps about m6Am modification and its regulators in cardiac biology. It also points out technical challenges and lists the currently available techniques to measure m6Am. A better understanding of epitranscriptomic modifications is needed to improve our knowledge of the molecular regulations in the heart which may lead to novel cardioprotective strategies.
Bioinformatics Platform Luxembourg Institute of Health Strassen Luxembourg
Department of Physiology Faculty of Science Charles University Prague Czech Republic
Zobrazit více v PubMed
Boccaletto P, Machnicka MA, Purta E, et al. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 2018;46(D1):D303–11. DOI:10.1093/nar/gkx1030 PubMed DOI PMC
Desrosiers R, Friderici K, Rottman F.. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc Natl Acad Sci U S A. 1974;71(10):3971–3975. PubMed PMC
Dominissini D, Moshitch-Moshkovitz S, Salmon-Divon M, et al. Transcriptome-wide mapping of N(6)-methyladenosine by m(6)A-seq based on immunocapturing and massively parallel sequencing. Nat Protoc. 2013;8(1):176–189. DOI:10.1038/nprot.2012.148 PubMed DOI
Wei C, Gershowitz A, Moss B. N6, O2’-dimethyladenosine a novel methylated ribonucleoside next to the 5’ terminal of animal cell and virus mRnas. Nature. 1975;257(5523):251–253. PubMed
Bokar JA. The biosynthesis and functional roles of methylated nucleosides in eukaryotic mRNA, in Fine-Tuning of RNA functions by modification and editing. Grosjean H., Editor. Springer;Berlin Heidelberg: Berlin, Heidelberg: 2005. pp. 141–177. DOI:10.1007/b106365 DOI
Akichika S, Hirano S, Shichino Y, et al. Cap-specific terminal N 6 -methylation of RNA by an RNA polymerase II–associated methyltransferase. Science. 2019;363(6423):363(6423. DOI:10.1126/science.aav0080 PubMed DOI
Mauer J, Luo X, Blanjoie A, et al. Reversible methylation of m6Am in the 5′ cap controls mRNA stability. Nature. 2017;541(7637):371–375. DOI:10.1038/nature21022 PubMed DOI PMC
Mauer J, Sindelar M, Despic V, et al. FTO controls reversible m(6)Am RNA methylation during snRNA biogenesis. Nat Chem Biol. 2019;15(4):340–347. DOI:10.1038/s41589-019-0231-8 PubMed DOI PMC
Wei J, Liu F, Lu Z, et al. Differential m(6)A, m(6)A(m), and m(1)A demethylation mediated by FTO in the cell nucleus and cytoplasm. Mol Cell. 2018;71(6):973–985.e5. DOI:10.1016/j.molcel.2018.08.011 PubMed DOI PMC
Liu J, Li K, Cai J, et al. Landscape and Regulation of m(6)A and m(6)Am methylome across human and mouse tissues. Mol Cell. 2020;77(2):426–440.e6. DOI:10.1016/j.molcel.2019.09.032 PubMed DOI
Ben-Haim MS, Pinto Y, Moshitch-Moshkovitz S, et al. Dynamic regulation of N6,2′-O-dimethyladenosine (m6Am) in obesity. Nat Commun. 2021;12(1):7185. DOI:10.1038/s41467-021-27421-2 PubMed DOI PMC
Relier S, Ripoll J, Guillorit H, et al. FTO-mediated cytoplasmic m(6)A(m) demethylation adjusts stem-like properties in colorectal cancer cell. Nat Commun. 2021;12(1):1716. DOI:10.1038/s41467-021-21758-4 PubMed DOI PMC
Jin MZ, Zhang Y-G, Jin W-L, et al. A pan-cancer analysis of the oncogenic and immunogenic role of m6am methyltransferase PCIF1. Front Oncol. 2021;11:753393. PubMed PMC
Zhuo W, Sun M, Wang K, et al. M(6)am methyltransferase PCIF1 is essential for aggressiveness of gastric cancer cells by inhibiting TM9SF1 mRNA translation. Cell Discov. 2022;8(1):48. DOI:10.1038/s41421-022-00395-1 PubMed DOI PMC
Wang L, Wu L, Zhu Z, et al. Role of PCIF1 -mediated 5′-cap N6 -methyladeonsine mRNA methylation in colorectal cancer and anti-PD -1 immunotherapy. Embo J. 2023;42(2):e111673. DOI:10.15252/embj.2022111673 PubMed DOI PMC
Tartell MA, Boulias, K, Hoffmann, GB, et al. Methylation of viral mRNA cap structures by PCIF1 attenuates the antiviral activity of interferon-β. Proc Natl Acad Sci U S A. 2021;118(29):e2025769118. PubMed PMC
Zhang Q, Kang Y, Wang S, et al. HIV reprograms host m(6)Am RNA methylome by viral Vpr protein-mediated degradation of PCIF1. Nat Commun. 2021;12(1):5543. DOI:10.1038/s41467-021-25683-4 PubMed DOI PMC
Wang L, Wang S, Wu L, et al. PCIF1-mediated deposition of 5′-cap N 6 ,2′- O -dimethyladenosine in ACE2 and TMPRSS2 mRNA regulates susceptibility to SARS-CoV-2 infection. Proc Natl Acad Sci U S A. 2023;120(5):e2210361120. DOI:10.1073/pnas.2210361120 PubMed DOI PMC
Sun H, Zhang M, Li K, et al. Cap-specific, terminal N(6)-methylation by a mammalian m(6)Am methyltransferase. Cell Res. 2019;29(1):80–82. DOI:10.1038/s41422-018-0117-4 PubMed DOI PMC
Yu D, Dai N, Wolf EJ, et al. Enzymatic characterization of mRNA cap adenosine-N6 methyltransferase PCIF1 activity on uncapped RNAs. J Biol Chem. 2022;298(4):101751. DOI:10.1016/j.jbc.2022.101751 PubMed DOI PMC
Hirose Y, Iwamoto Y, Sakuraba K, et al. Human phosphorylated CTD-interacting protein, PCIF1, negatively modulates gene expression by RNA polymerase II. Biochem Biophys Res Commun. 2008;369(2):449–455. DOI:10.1016/j.bbrc.2008.02.042 PubMed DOI
Sendinc E, Valle-Garcia D, Dhall A, et al. PCIF1 catalyzes m6Am mRNA methylation to regulate gene expression. Mol Cell. 2019;75(3):620–630.e9. DOI:10.1016/j.molcel.2019.05.030 PubMed DOI PMC
Cowling VH. CAPAM: the mRNA Cap Adenosine N6-Methyltransferase. Trends Biochem Sci. 2019;44(3):183–185. PubMed PMC
Goh YT, Koh C, Sim DY, et al. METTL4 catalyzes m6Am methylation in U2 snRNA to regulate pre-Mrna splicing. Nucleic Acids Res. 2020;48(16):9250–9261. DOI:10.1093/nar/gkaa684 PubMed DOI PMC
Chen H, Gu L, Orellana EA, et al. METTL4 is an snRNA m(6)Am methyltransferase that regulates RNA splicing. Cell Res. 2020;30(6):544–547. DOI:10.1038/s41422-019-0270-4 PubMed DOI PMC
Hao Z, Wu T, Cui X, et al. N(6)-Deoxyadenosine Methylation in Mammalian Mitochondrial DNA. Mol Cell. 2020;78(3):382–395.e8. DOI:10.1016/j.molcel.2020.02.018 PubMed DOI PMC
Jia G, Fu Y, Zhao X, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011;7(12):885–887. DOI:10.1038/nchembio.687 PubMed DOI PMC
Mauer J, Jaffrey SR. FTO, m(6) A(m), and the hypothesis of reversible epitranscriptomic mRNA modifications. FEBS Lett. 2018;592(12):2012–2022. PubMed
Phan A, Mathiyalangan P, Sahoo S. Abstract 13709: cardioprotective Mechanisms of FTO-Regulated m6A in Heart Failure. Circulation. 2022;146(Suppl_1):A13709–A13709.
Zhang B, Jiang H, Dong Z, et al. The critical roles of m6A modification in metabolic abnormality and cardiovascular diseases. Genes Dis. 2021;8(6):746–758. DOI:10.1016/j.gendis.2020.07.011 PubMed DOI PMC
Longenecker JZ, Gilbert CJ, Golubeva VA, et al. Epitranscriptomics in the Heart: a Focus on m(6)A. Curr Heart Fail Rep. 2020;17(5):205–212. DOI:10.1007/s11897-020-00473-z PubMed DOI PMC
Wu S, Zhang S, Wu X, et al. M(6)a RNA methylation in cardiovascular diseases. Mol Ther. 2020;28(10):2111–2119. DOI:10.1016/j.ymthe.2020.08.010 PubMed DOI PMC
Qin Y, Li L, Luo E, et al. Role of m6A RNA methylation in cardiovascular disease (Review). Int J Mol Med. 2020;46(6):1958–1972. DOI:10.3892/ijmm.2020.4746 PubMed DOI PMC
Paramasivam A, Vijayashree Priyadharsini J, Raghunandhakumar S. N6-adenosine methylation (m6A): a promising new molecular target in hypertension and cardiovascular diseases. Hypertens Res. 2020;43(2):153–154. PubMed
Kumari R, Ranjan P, Suleiman ZG, et al. mRNA modifications in cardiovascular biology and disease: with a focus on m6A modification. Cardiovasc Res. 2022;118(7):1680–1692. DOI:10.1093/cvr/cvab160 PubMed DOI PMC
Leptidis S, Papakonstantinou E, Diakou K, et al. Epitranscriptomics of cardiovascular diseases (Review). Int J Mol Med. 2022;49(1). PubMed PMC
Sikorski V, Karjalainen P, Blokhina D, et al. Epitranscriptomics of ischemic heart disease—The IHD-EPITRAN study design and objectives. Int J Mol Sci. 2021;22(12):6630. DOI:10.3390/ijms22126630 PubMed DOI PMC
Chen YS, Ouyang X-P, Yu X-H, et al. N6-Adenosine Methylation (m(6)A) RNA modification: an emerging role in cardiovascular diseases. J Cardiovasc Transl Res. 2021;14(5):857–872. DOI:10.1007/s12265-021-10108-w PubMed DOI
Dieterich C, Völkers M. Chapter 6 - RNA modifications in cardiovascular disease—An experimental and computational perspective, in Epigenetics in Cardiovascular Disease. Devaux Y. and Robinson E.L., Editors. Academic Press;2021. pp. 113–125. DOI:10.1016/B978-0-12-822258-4.00003-1 DOI
Zhou W, Wang C, Chang J, et al. RNA methylations in cardiovascular diseases, molecular structure, biological functions and regulatory roles in cardiovascular diseases. Front Pharmacol. 2021;12:722728. PubMed PMC
Peng L, Long T, Li F, et al. Emerging role of m 6 a modification in cardiovascular diseases. Cell Biol Int. 2022;46(5):711–722. DOI:10.1002/cbin.11773 PubMed DOI
Xu Z, Lv B, Qin Y, et al. Emerging roles and mechanism of m6a methylation in cardiometabolic diseases. Cells. 2022;11(7):1101. DOI:10.3390/cells11071101 PubMed DOI PMC
Liu C, Gu L, Deng W, et al. N6-Methyladenosine RNA Methylation in Cardiovascular Diseases. Front Cardiovasc Med. 2022;9:887838. PubMed PMC
Li L, Xu N, Liu J, et al. M6a methylation in cardiovascular diseases: from mechanisms to therapeutic potential. Front Genet. 2022;13:908976. PubMed PMC
Fan S, Hu Y. Role of m6A methylation in the occurrence and development of heart failure. Front Cardiovasc Med. 2022;9:892113. PubMed PMC
Sweaad WK, Stefanizzi FM, Chamorro-Jorganes A, et al. Relevance of N6-methyladenosine regulators for transcriptome: implications for development and the cardiovascular system. J Mol Cell Cardiol. 2021;160:56–70. PubMed
Benak D, Holzerova K, Hrdlicka J, et al. Myocardial epitranscriptomics in fasting. J Mol Cell Cardiol, ISHR Berlin. 2022;173:52. DOI:10.1016/j.yjmcc.2022.08.104 DOI
Boissel S, Reish O, Proulx K, et al. Loss-of-function mutation in the dioxygenase-encoding FTO gene causes severe growth retardation and multiple malformations. Am J Hum Genet. 2009;85(1):106–111. DOI:10.1016/j.ajhg.2009.06.002 PubMed DOI PMC
Mathiyalagan P, Adamiak M, Mayourian J, et al. FTO-Dependent N 6- methyladenosine regulates cardiac function during remodeling and repair. Circulation. 2019;139(4):518–532. DOI:10.1161/CIRCULATIONAHA.118.033794 PubMed DOI PMC
Shi X, Cao Y, Zhang X, et al. Comprehensive analysis of N6-Methyladenosine RNA methylation regulators expression identify distinct molecular subtypes of myocardial infarction. Front Cell Dev Biol. 2021;9:756483. PubMed PMC
Zhang B, Jiang H, Wu J, et al. M6a demethylase FTO attenuates cardiac dysfunction by regulating glucose uptake and glycolysis in mice with pressure overload-induced heart failure. Signal Transduct Target Ther. 2021;6(1):377. DOI:10.1038/s41392-021-00699-w PubMed DOI PMC
Zhang B, Xu Y, Cui X, et al. Alteration of m6A RNA methylation in heart failure with preserved ejection fraction. Front Cardiovasc Med. 2021;8:647806. PubMed PMC
Hinger SA, Wei J, Dorn LE, et al. Remodeling of the m(6)A landscape in the heart reveals few conserved post-transcriptional events underlying cardiomyocyte hypertrophy. J Mol Cell Cardiol. 2021;151:46–55. PubMed PMC
Wen C, Lan M, Tan X, et al. GSK3β Exacerbates Myocardial Ischemia/Reperfusion Injury by Inhibiting Myc. Oxid Med Cell Longev. 2022;2022:1–23. PubMed PMC
Wang X, Wu Y, Guo R, et al. Comprehensive analysis of n6-methyladenosine RNA methylation regulators in the diagnosis and subtype classification of acute myocardial infarction. J Immunol Res. 2022;2022:1–21. PubMed PMC
Vausort M, Niedolistek M, Lumley AI, et al. Regulation of N6-Methyladenosine after Myocardial Infarction. Cells. 2022;11(15):2271. DOI:10.3390/cells11152271 PubMed DOI PMC
Liu C, Mou S, Pan C, et al. The FTO gene rs9939609 polymorphism predicts risk of cardiovascular disease: a systematic review and meta-analysis. PLoS ONE. 2013;8(8):e71901. PubMed PMC
Doney ASF, Dannfald J, Kimber CH, et al. The FTO gene is associated with an atherogenic lipid profile and myocardial infarction in patients with type 2 diabetes: a genetics of diabetes audit and research study in Tayside Scotland (Go-DARTS) study. Circ Cardiovasc Genet. 2009;2(3):255–259. DOI:10.1161/CIRCGENETICS.108.822320 PubMed DOI PMC
Hubacek JA, Vrablik M, Dlouha D, et al. Gene variants at FTO, 9p21, and 2q36.3 are age-independently associated with myocardial infarction in Czech men. Clin Chim Acta. 2016;454:119–123. PubMed
Hubacek JA, Stanek V, Gebauerova M, et al. A FTO variant and risk of acute coronary syndrome. Clin Chim Acta. 2010;411(15–16):1069–1072. PubMed
Hubacek JA, Vymetalova J, Lanska V, et al. The fat mass and obesity related gene polymorphism influences the risk of rejection in heart transplant patients. Clin Transplant. 2018;32(12):e13443. DOI:10.1111/ctr.13443 PubMed DOI
Carnevali L, Graiani G, Rossi S, et al. Signs of cardiac autonomic imbalance and proarrhythmic remodeling in FTO deficient mice. PLoS ONE. 2014;9(4):e95499. PubMed PMC
Gan XT, Zhao G, Huang CX, et al. Identification of fat mass and obesity associated (FTO) protein expression in cardiomyocytes: regulation by leptin and its contribution to leptin-induced hypertrophy. PLoS ONE. 2013;8(9):e74235. DOI:10.1371/journal.pone.0074235 PubMed DOI PMC
Berulava T, Buchholz E, Elerdashvili V, et al. Changes in m6A RNA methylation contribute to heart failure progression by modulating translation. Eur J Heart Fail. 2020;22(1):54–66. DOI:10.1002/ejhf.1672 PubMed DOI
Li W, Xing C, Bao L, et al. Comprehensive analysis of RNA m6A methylation in pressure overload-induced cardiac hypertrophy. BMC Genomics. 2022;23(1):576. DOI:10.1186/s12864-022-08833-w PubMed DOI PMC
Dubey PK, Patil M, Singh S, et al. Increased m6A-RNA methylation and FTO suppression is associated with myocardial inflammation and dysfunction during endotoxemia in mice. Mol Cell Biochem. 2022;477(1):129–141. DOI:10.1007/s11010-021-04267-2 PubMed DOI PMC
Xu Z, Qin Y, Lv B, et al. Intermittent fasting improves high-fat diet-induced obesity cardiomyopathy via alleviating lipid deposition and apoptosis and decreasing m6A Methylation in the Heart. Nutrients. 2022;14(2):251. DOI:10.3390/nu14020251 PubMed DOI PMC
Ma Y, Liu X, Bi Y, et al. Alteration of N(6)-Methyladenosine mRNA methylation in a human stem cell-derived cardiomyocyte model of tyrosine kinase inhibitor-induced cardiotoxicity. Front Cardiovasc Med. 2022;9:849175. PubMed PMC
Deng W, Jin Q, Li L. Protective mechanism of demethylase fat mass and obesity-associated protein in energy metabolism disorder of hypoxia-reoxygenation-induced cardiomyocytes. Exp Physiol. 2021;106(12):2423–2433. PubMed
Shen W, Li H, Su H, et al. FTO overexpression inhibits apoptosis of hypoxia/reoxygenation-treated myocardial cells by regulating m6A modification of Mhrt. Mol Cell Biochem. 2021;476(5):2171–2179. DOI:10.1007/s11010-021-04069-6 PubMed DOI
Ke WL, Huang Z-W, Peng C-L, et al. M 6 a demethylase FTO regulates the apoptosis and inflammation of cardiomyocytes via YAP1 in ischemia-reperfusion injury. Bioengineered. 2022;13(3):5443–5452. DOI:10.1080/21655979.2022.2030572 PubMed DOI PMC
Hlavackova M, Benak D, Sotakova D, et al. 4007 Fat mass and obesity-associated protein in chronically hypoxic myocardium. High Altitude Medicine & Biology. 2018;19(4):A–443. https://www.liebertpub.com/doi/10.1089/ham.2018.29015.abstracts DOI
Yu Y, Pan Y, Fan Z, et al. LuHui derivative, a novel compound that inhibits the fat mass and obesity-associated (FTO), alleviates the inflammatory response and injury in hyperlipidemia-induced cardiomyopathy. Front Cell Dev Biol. 2021;9:731365. PubMed PMC
Liu K, Ju W, Ouyang S, et al. Exercise training ameliorates myocardial phenotypes in heart failure with preserved ejection fraction by changing N6-methyladenosine modification in mice model. Front Cell Dev Biol. 2022;10:954769. PubMed PMC
Su X, Shen Y, Jin Y, et al. Aging-Associated Differences in Epitranscriptomic m6A regulation in response to acute cardiac ischemia/reperfusion injury in female mice. Front Pharmacol. 2021;12:654316. PubMed PMC
Semenovykh D, Benak D, Holzerova K, et al. Myocardial m6A regulators in postnatal development: effect of sex. Physiol Res. 2022;71(6):877–882. online. DOI:10.33549/physiolres.934970. PubMed DOI PMC
Bao X, Zhang Y, Li H, et al. Rm2target: a comprehensive database for targets of writers, erasers and readers of RNA modifications. Nucleic Acids Res. 2023;51(D1):D269–d279. DOI:10.1093/nar/gkac945 PubMed DOI PMC
Chen B, Ye F, Yu L, et al. Development of cell-active N6-methyladenosine RNA demethylase FTO inhibitor. J Am Chem Soc. 2012;134(43):17963–17971. DOI:10.1021/ja3064149 PubMed DOI
Zheng G, Cox T, Tribbey L, et al. Synthesis of a FTO inhibitor with anticonvulsant activity. ACS Chem Neurosci. 2014;5(8):658–665. DOI:10.1021/cn500042t PubMed DOI PMC
Huang Y, Yan J, Li Q, et al. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res. 2015;43(1):373–384. DOI:10.1093/nar/gku1276 PubMed DOI PMC
Wang T, Hong T, Huang Y, et al. Fluorescein derivatives as bifunctional molecules for the simultaneous inhibiting and labeling of FTO protein. J Am Chem Soc. 2015;137(43):13736–13739. DOI:10.1021/jacs.5b06690 PubMed DOI
Toh JDW, Sun L, Lau LZM, et al. A strategy based on nucleotide specificity leads to a subfamily-selective and cell-active inhibitor of N 6 -methyladenosine demethylase FTO. Chem Sci. 2015;6(1):112–122. DOI:10.1039/C4SC02554G PubMed DOI PMC
He W, Zhou B, Liu W, et al. Identification of a novel small-molecule binding site of the fat mass and obesity associated protein (FTO). J Med Chem. 2015;58(18):7341–7348. DOI:10.1021/acs.jmedchem.5b00702 PubMed DOI
Svensen N, Jaffrey SR. Fluorescent RNA Aptamers as a Tool to Study RNA-Modifying Enzymes. Cell Chem Biol. 2016;23(3):415–425. PubMed PMC
Huang Y, Su R, Sheng Y, et al. Small- molecule targeting of oncogenic FTO Demethylase in Acute Myeloid Leukemia. Cancer Cell. 2019;35(4):677–691.e10. DOI:10.1016/j.ccell.2019.03.006 PubMed DOI PMC
Su R, Dong L, Li Y, et al. Targeting FTO suppresses cancer stem cell maintenance and immune Evasion. Cancer Cell. 2020;38(1):79–96.e11. DOI:10.1016/j.ccell.2020.04.017 PubMed DOI PMC
Huff S, Tiwari SK, Gonzalez GM, et al. M 6 A-RNA Demethylase FTO inhibitors impair self-renewal in glioblastoma stem cells. ACS Chem Biol. 2021;16(2):324–333. DOI:10.1021/acschembio.0c00841 PubMed DOI PMC
Qin B, Bai Q, Yan D, et al. Discovery of novel mRNA demethylase FTO inhibitors against esophageal cancer. J Enzyme Inhib Med Chem. 2022;37(1):1995–2003. DOI:10.1080/14756366.2022.2098954 PubMed DOI PMC
Liu Y, Liang G, Xu H, et al. Tumors exploit FTO-mediated regulation of glycolytic metabolism to evade immune surveillance. Cell Metab. 2021;33(6):1221–1233.e11. DOI:10.1016/j.cmet.2021.04.001 PubMed DOI
Kruse S, Zhong S, Bodi Z, et al. A novel synthesis and detection method for cap-associated adenosine modifications in mouse mRNA. Sci Rep. 2011;1(1):126. DOI:10.1038/srep00126 PubMed DOI PMC
Wang J, Alvin Chew BL, Lai Y, et al. Quantifying the RNA cap epitranscriptome reveals novel caps in cellular and viral RNA. Nucleic Acids Res. 2019;47(20):e130. DOI:10.1093/nar/gkz751 PubMed DOI PMC
Schwartz S, Mumbach MR, Jovanovic M, et al. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5’ sites. Cell Rep. 2014;8(1):284–296. PubMed PMC
Linder B, Grozhik AV, Olarerin-George AO, et al. Single-nucleotide-resolution mapping of m6A and m6Am throughout the transcriptome. Nat Methods. 2015;12(8):767–772. DOI:10.1038/nmeth.3453 PubMed DOI PMC
Boulias K, Toczydłowska-Socha D, Hawley BR, et al. Identification of the m(6)Am Methyltransferase PCIF1 reveals the location and functions of m(6)Am in the Transcriptome. Mol Cell. 2019;75(3):631–643.e8. DOI:10.1016/j.molcel.2019.06.006 PubMed DOI PMC
Koh CWQ, Goh YT, Goh WSS. Atlas of quantitative single-base-resolution N(6)-methyl-adenine methylomes. Nat Commun. 2019;10(1):5636. PubMed PMC
Sun H, Li K, Zhang X, et al. M(6)am-seq reveals the dynamic m(6)Am methylation in the human transcriptome. Nat Commun. 2021;12(1):4778. DOI:10.1038/s41467-021-25105-5 PubMed DOI PMC
Zhang M, Sun H, Li K, et al. M(6)am RNA modification detection by m(6)Am-seq. Methods. 2022;203:242–248. PubMed
Muthmann N, Albers M, Rentmeister A. CAPturAM, a chemo-enzymatic strategy for selective enrichment and detection of physiological CAPAM-Targets. Angew Chem Int Ed Engl. 2023;62(4):e202211957. PubMed PMC
Jiang J, Song B, Chen K, et al. M6ampred: identifying RNA N6, 2′-O-dimethyladenosine (m6Am) sites based on sequence-derived information. Methods. 2022;203:328–334. PubMed
Song Z, Huang D, Song B, et al. Attention-based multi-label neural networks for integrated prediction and interpretation of twelve widely occurring RNA modifications. Nat Commun. 2021;12(1):4011. DOI:10.1038/s41467-021-24313-3 PubMed DOI PMC
Luo Z, Su W, Lou L, et al. Dlm6am: a deep-learning-based tool for identifying N6,2′-O-Dimethyladenosine Sites in RNA sequences. Int J Mol Sci. 2022;23(19):11026. DOI:10.3390/ijms231911026 PubMed DOI PMC
Unveiling the proteome of the fasting heart: Insights into HIF-1 pathway regulation
Sixty Years of Heart Research in the Institute of Physiology of the Czech Academy of Sciences
Epitranscriptomic Regulations in the Heart
Epitranscriptomic regulation in fasting hearts: implications for cardiac health
The role of m6A and m6Am RNA modifications in the pathogenesis of diabetes mellitus