A novel path towards limiting non-exhaust particulate matter emissions of a commercial friction material through the addition of metallurgical slag

. 2023 Jan 12 ; 13 (1) : 666. [epub] 20230112

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36635402
Odkazy

PubMed 36635402
PubMed Central PMC9837032
DOI 10.1038/s41598-023-27932-6
PII: 10.1038/s41598-023-27932-6
Knihovny.cz E-zdroje

Keeping recycling and the circular economy in mind, this study explores the reduction in emission of a highly optimized, commercially employed friction material formulation through the addition of metallurgical slags from a basic oxygen furnace in varying quantities from 6 to 38 wt%. The various compositions were paired with a pearlitic grey cast iron counterface and tested on a pin on disc tribometer. The friction coefficient and pin wear increased with the slag addition but were still within the permissible limit when compared to the original formulation. Specimens with higher slag content observed extremely compacted and extended secondary contact plateaus, which also recorded significant slag presence. The extended plateaus detached in the form of chunks from the mating surfaces, which settled on the equipment hardware and restricted the production of airborne particles. From an industrial symbiosis perspective, the addition of metallurgical slags proved to be a promising way of obtaining green friction materials with reduced emissions.

Zobrazit více v PubMed

Leonardi M, Menapace C, Matějka V, Gialanella S, Straffelini G. Pin-on-disc investigation on copper-free friction materials dry sliding against cast iron. Tribol. Int. 2018;119:73–81. doi: 10.1016/j.triboint.2017.10.037. DOI

Federici M, Straffelini G, Gialanella S. Pin-on-disc testing of low-metallic friction material sliding against HVOF coated cast iron: Modelling of the contact temperature evolution. Tribol. Lett. 2017;65:1–12. doi: 10.1007/s11249-017-0904-y. DOI

Chandra P, et al. Braking pad-disc system: Wear mechanisms and formation of wear fragments. Wear. 2015;322–323:251–258. doi: 10.1016/j.wear.2014.11.019. DOI

Jayashree P, Matějka V, Foniok K, Straffelini G. Comparative studies on the dry sliding behavior of a low-metallic friction material with the addition of graphite and exfoliated g-C3N4. Lubricants. 2022;10:27. doi: 10.3390/lubricants10020027. DOI

Acerbi F, Sassanelli C, Terzi S, Taisch M. A systematic literature review on data and information required for circular manufacturing strategies adoption. Sustainability. 2021;13:1–27. doi: 10.3390/su13042047. DOI

Acerbi F, Taisch M. A literature review on circular economy adoption in the manufacturing sector. J. Clean. Prod. 2020;273:123086. doi: 10.1016/j.jclepro.2020.123086. DOI

Acerbi F, Sassanelli C, Taisch M. A conceptual data model promoting data-driven circular manufacturing. Oper. Manag. Res. 2022 doi: 10.1007/s12063-022-00271-x. DOI

Gregson N, Crang M, Fuller S, Holmes H. Interrogating the circular economy: The moral economy of resource recovery in the EU. Econ. Soc. 2015;44:218–243. doi: 10.1080/03085147.2015.1013353. DOI

Baldassarre B, et al. Industrial symbiosis: Towards a design process for eco-industrial clusters by integrating circular economy and industrial ecology perspectives. J. Clean. Prod. 2019;216:446–460. doi: 10.1016/j.jclepro.2019.01.091. DOI

Domenech T, Bleischwitz R, Doranova A, Panayotopoulos D, Roman L. Mapping industrial symbiosis development in Europe_typologies of networks, characteristics, performance and contribution to the Circular Economy. Resour. Conserv. Recycl. 2019;141:76–98. doi: 10.1016/j.resconrec.2018.09.016. DOI

Grigoratos T, Martini G. Brake wear particle emissions: A review. Environ. Sci. Pollut. Res. 2015;22:2491–2504. doi: 10.1007/s11356-014-3696-8. PubMed DOI PMC

Suleiman A, Tight MR, Quinn AD. Assessment and prediction of the impact of road transport on ambient concentrations of particulate matter PM10. Transp. Res. Part D Transp. Environ. 2016;49:301–312. doi: 10.1016/j.trd.2016.10.010. DOI

Kazimirova A, et al. Automotive airborne brake wear debris nanoparticles and cytokinesis-block micronucleus assay in peripheral blood lymphocytes: A pilot study. Environ. Res. 2016;148:443–449. doi: 10.1016/j.envres.2016.04.022. PubMed DOI

Alemani M, Nosko O, Metinoz I, Olofsson U. A study on emission of airborne wear particles from car brake friction pairs. SAE Int. J. Mater. Manuf. 2016;9:147–157. doi: 10.4271/2015-01-2665. DOI

Naidu TS, Sheridan CM, van Dyk LD. Basic oxygen furnace slag: Review of current and potential uses. Miner. Eng. 2020;149:106234. doi: 10.1016/j.mineng.2020.106234. DOI

Öztürk B, Ztürk SÖ, Adigüzel AA. Effect of type and relative amount of solid lubricants and abrasives on the tribological properties of brake friction materials. Tribol. Trans. 2013;56:428–441. doi: 10.1080/10402004.2012.758333. DOI

Leonardi M, Alemani M, Straffelini G, Gialanella S. A pin-on-disc study on the dry sliding behavior of a Cu-free friction material containing different types of natural graphite. Wear. 2020;442–443:203157. doi: 10.1016/j.wear.2019.203157. DOI

Jayashree P, Straffelini G. The influence of the addition of aluminum anodizing waste on the friction and emission behavior of different kinds of friction material formulations. Tribol. Int. 2022;173:107676. doi: 10.1016/j.triboint.2022.107676. DOI

Nogueira APG, et al. Rice husk as a natural ingredient for brake friction material: A pin-on-disc investigation. Wear. 2022;494–495:204272. doi: 10.1016/j.wear.2022.204272. DOI

Gehlen GS, et al. Tribological performance of eco-friendly friction materials with rice husk. Wear. 2022;500–501:204374. doi: 10.1016/j.wear.2022.204374. DOI

Ikpambese KK, Gundu DT, Tuleun LT. Evaluation of palm kernel fibers (PKFs) for production of asbestos-free automotive brake pads. J. King Saud Univ. Eng. Sci. 2016;28:110–118.

Ibrahim RA. Tribological performance of polyester composites reinforced by agricultural wastes. Tribol. Int. 2015;90:463–466. doi: 10.1016/j.triboint.2015.04.042. DOI

Gangwar S, Pathak VK. A critical review on tribological properties, thermal behavior, and different applications of industrial waste reinforcement for composites. Proc. Inst. Mech. Eng Part L J. Mater. Des. Appl. 2021;235:684–706.

Prasad N. Dry sliding wear behavior of aluminium matrix composite using red mud an industrial waste. Int. Res. J. Pure Appl. Chem. 2013;3:59–74. doi: 10.9734/IRJPAC/2013/2906. DOI

Mutlu I, Sugözü I, Keskin A. The effects of porosity in friction performance of brake pad using waste tire dust. Polimeros. 2015;25:440–446. doi: 10.1590/0104-1428.1860. DOI

Singh T, Patnaik A, Chauhan R. Optimization of tribological properties of cement kiln dust-filled brake pad using grey relation analysis. Mater. Des. 2016;89:1335–1342. doi: 10.1016/j.matdes.2015.10.045. DOI

Wang Z, et al. Influence of slag weight fraction on mechanical, thermal and tribological properties of polymer based friction materials. Mater. Des. 2016;90:76–83. doi: 10.1016/j.matdes.2015.10.097. DOI

Erdoğan A, Gök MS, Koç V, Günen A. Friction and wear behavior of epoxy composite filled with industrial wastes. J. Clean. Prod. 2019;237:117588. doi: 10.1016/j.jclepro.2019.07.063. DOI

Jabbar FJ. Study the thermal properties of epoxy resin reinforced with calcium oxide fibers. Smart Sci. 2021;9:61–69. doi: 10.1080/23080477.2021.1895963. DOI

Lyu Y, Ma J, Åström AH, Wahlström J, Olofsson U. Recycling of worn out brake pads—Impact on tribology and environment. Sci. Rep. 2020;10:1–7. doi: 10.1038/s41598-020-65265-w. PubMed DOI PMC

Jayashree P, Rustighi E, Straffelini G. OPEN A novel study on the reduction of non-exhaust particulate matter emissions through system vibration control. Sci. Rep. 2022 doi: 10.1038/s41598-022-11703-w. PubMed DOI PMC

Jayashree P, Sinha A, Gialanella S, Straffelini G. dry sliding behavior and particulate emissions of a SiC-graphite composite friction material paired with HVOF-coated counterface. Atmosphere (Basel) 2022;13:296. doi: 10.3390/atmos13020296. DOI

Nogueira APG, Carlevaris D, Menapace C, Straffelini G. Tribological and emission behavior of novel friction materials. Atmosphere (Basel) 2020;11:1050. doi: 10.3390/atmos11101050. DOI

Nogueira APG, Leonardi M, Straffelini G, Gialanella S. Sliding behavior and particle emissions of Cu-free friction materials with different contents of phenolic resin. Tribol. Trans. 2020;63:770–779. doi: 10.1080/10402004.2020.1753870. DOI

Menapace C, Leonardi M, Matějka V, Gialanella S, Straffelini G. Dry sliding behavior and friction layer formation in copper-free barite containing friction materials. Wear. 2018;398–399:191–200. doi: 10.1016/j.wear.2017.12.008. DOI

Shen H, Forssberg E. An overview of recovery of metals from slags. Waste Manag. 2003;23:933–949. doi: 10.1016/S0956-053X(02)00164-2. PubMed DOI

Jiao W, et al. Utilization of steel slags to produce thermal conductive asphalt concretes for snow melting pavements. J. Clean. Prod. 2020;261:121197. doi: 10.1016/j.jclepro.2020.121197. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...