A novel path towards limiting non-exhaust particulate matter emissions of a commercial friction material through the addition of metallurgical slag
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
36635402
PubMed Central
PMC9837032
DOI
10.1038/s41598-023-27932-6
PII: 10.1038/s41598-023-27932-6
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Keeping recycling and the circular economy in mind, this study explores the reduction in emission of a highly optimized, commercially employed friction material formulation through the addition of metallurgical slags from a basic oxygen furnace in varying quantities from 6 to 38 wt%. The various compositions were paired with a pearlitic grey cast iron counterface and tested on a pin on disc tribometer. The friction coefficient and pin wear increased with the slag addition but were still within the permissible limit when compared to the original formulation. Specimens with higher slag content observed extremely compacted and extended secondary contact plateaus, which also recorded significant slag presence. The extended plateaus detached in the form of chunks from the mating surfaces, which settled on the equipment hardware and restricted the production of airborne particles. From an industrial symbiosis perspective, the addition of metallurgical slags proved to be a promising way of obtaining green friction materials with reduced emissions.
Brembo S P A Stezzano Bergamo Italy
Department of Industrial Engineering University of Trento Via Sommarive 9 Trento Italy
Zobrazit více v PubMed
Leonardi M, Menapace C, Matějka V, Gialanella S, Straffelini G. Pin-on-disc investigation on copper-free friction materials dry sliding against cast iron. Tribol. Int. 2018;119:73–81. doi: 10.1016/j.triboint.2017.10.037. DOI
Federici M, Straffelini G, Gialanella S. Pin-on-disc testing of low-metallic friction material sliding against HVOF coated cast iron: Modelling of the contact temperature evolution. Tribol. Lett. 2017;65:1–12. doi: 10.1007/s11249-017-0904-y. DOI
Chandra P, et al. Braking pad-disc system: Wear mechanisms and formation of wear fragments. Wear. 2015;322–323:251–258. doi: 10.1016/j.wear.2014.11.019. DOI
Jayashree P, Matějka V, Foniok K, Straffelini G. Comparative studies on the dry sliding behavior of a low-metallic friction material with the addition of graphite and exfoliated g-C3N4. Lubricants. 2022;10:27. doi: 10.3390/lubricants10020027. DOI
Acerbi F, Sassanelli C, Terzi S, Taisch M. A systematic literature review on data and information required for circular manufacturing strategies adoption. Sustainability. 2021;13:1–27. doi: 10.3390/su13042047. DOI
Acerbi F, Taisch M. A literature review on circular economy adoption in the manufacturing sector. J. Clean. Prod. 2020;273:123086. doi: 10.1016/j.jclepro.2020.123086. DOI
Acerbi F, Sassanelli C, Taisch M. A conceptual data model promoting data-driven circular manufacturing. Oper. Manag. Res. 2022 doi: 10.1007/s12063-022-00271-x. DOI
Gregson N, Crang M, Fuller S, Holmes H. Interrogating the circular economy: The moral economy of resource recovery in the EU. Econ. Soc. 2015;44:218–243. doi: 10.1080/03085147.2015.1013353. DOI
Baldassarre B, et al. Industrial symbiosis: Towards a design process for eco-industrial clusters by integrating circular economy and industrial ecology perspectives. J. Clean. Prod. 2019;216:446–460. doi: 10.1016/j.jclepro.2019.01.091. DOI
Domenech T, Bleischwitz R, Doranova A, Panayotopoulos D, Roman L. Mapping industrial symbiosis development in Europe_typologies of networks, characteristics, performance and contribution to the Circular Economy. Resour. Conserv. Recycl. 2019;141:76–98. doi: 10.1016/j.resconrec.2018.09.016. DOI
Grigoratos T, Martini G. Brake wear particle emissions: A review. Environ. Sci. Pollut. Res. 2015;22:2491–2504. doi: 10.1007/s11356-014-3696-8. PubMed DOI PMC
Suleiman A, Tight MR, Quinn AD. Assessment and prediction of the impact of road transport on ambient concentrations of particulate matter PM10. Transp. Res. Part D Transp. Environ. 2016;49:301–312. doi: 10.1016/j.trd.2016.10.010. DOI
Kazimirova A, et al. Automotive airborne brake wear debris nanoparticles and cytokinesis-block micronucleus assay in peripheral blood lymphocytes: A pilot study. Environ. Res. 2016;148:443–449. doi: 10.1016/j.envres.2016.04.022. PubMed DOI
Alemani M, Nosko O, Metinoz I, Olofsson U. A study on emission of airborne wear particles from car brake friction pairs. SAE Int. J. Mater. Manuf. 2016;9:147–157. doi: 10.4271/2015-01-2665. DOI
Naidu TS, Sheridan CM, van Dyk LD. Basic oxygen furnace slag: Review of current and potential uses. Miner. Eng. 2020;149:106234. doi: 10.1016/j.mineng.2020.106234. DOI
Öztürk B, Ztürk SÖ, Adigüzel AA. Effect of type and relative amount of solid lubricants and abrasives on the tribological properties of brake friction materials. Tribol. Trans. 2013;56:428–441. doi: 10.1080/10402004.2012.758333. DOI
Leonardi M, Alemani M, Straffelini G, Gialanella S. A pin-on-disc study on the dry sliding behavior of a Cu-free friction material containing different types of natural graphite. Wear. 2020;442–443:203157. doi: 10.1016/j.wear.2019.203157. DOI
Jayashree P, Straffelini G. The influence of the addition of aluminum anodizing waste on the friction and emission behavior of different kinds of friction material formulations. Tribol. Int. 2022;173:107676. doi: 10.1016/j.triboint.2022.107676. DOI
Nogueira APG, et al. Rice husk as a natural ingredient for brake friction material: A pin-on-disc investigation. Wear. 2022;494–495:204272. doi: 10.1016/j.wear.2022.204272. DOI
Gehlen GS, et al. Tribological performance of eco-friendly friction materials with rice husk. Wear. 2022;500–501:204374. doi: 10.1016/j.wear.2022.204374. DOI
Ikpambese KK, Gundu DT, Tuleun LT. Evaluation of palm kernel fibers (PKFs) for production of asbestos-free automotive brake pads. J. King Saud Univ. Eng. Sci. 2016;28:110–118.
Ibrahim RA. Tribological performance of polyester composites reinforced by agricultural wastes. Tribol. Int. 2015;90:463–466. doi: 10.1016/j.triboint.2015.04.042. DOI
Gangwar S, Pathak VK. A critical review on tribological properties, thermal behavior, and different applications of industrial waste reinforcement for composites. Proc. Inst. Mech. Eng Part L J. Mater. Des. Appl. 2021;235:684–706.
Prasad N. Dry sliding wear behavior of aluminium matrix composite using red mud an industrial waste. Int. Res. J. Pure Appl. Chem. 2013;3:59–74. doi: 10.9734/IRJPAC/2013/2906. DOI
Mutlu I, Sugözü I, Keskin A. The effects of porosity in friction performance of brake pad using waste tire dust. Polimeros. 2015;25:440–446. doi: 10.1590/0104-1428.1860. DOI
Singh T, Patnaik A, Chauhan R. Optimization of tribological properties of cement kiln dust-filled brake pad using grey relation analysis. Mater. Des. 2016;89:1335–1342. doi: 10.1016/j.matdes.2015.10.045. DOI
Wang Z, et al. Influence of slag weight fraction on mechanical, thermal and tribological properties of polymer based friction materials. Mater. Des. 2016;90:76–83. doi: 10.1016/j.matdes.2015.10.097. DOI
Erdoğan A, Gök MS, Koç V, Günen A. Friction and wear behavior of epoxy composite filled with industrial wastes. J. Clean. Prod. 2019;237:117588. doi: 10.1016/j.jclepro.2019.07.063. DOI
Jabbar FJ. Study the thermal properties of epoxy resin reinforced with calcium oxide fibers. Smart Sci. 2021;9:61–69. doi: 10.1080/23080477.2021.1895963. DOI
Lyu Y, Ma J, Åström AH, Wahlström J, Olofsson U. Recycling of worn out brake pads—Impact on tribology and environment. Sci. Rep. 2020;10:1–7. doi: 10.1038/s41598-020-65265-w. PubMed DOI PMC
Jayashree P, Rustighi E, Straffelini G. OPEN A novel study on the reduction of non-exhaust particulate matter emissions through system vibration control. Sci. Rep. 2022 doi: 10.1038/s41598-022-11703-w. PubMed DOI PMC
Jayashree P, Sinha A, Gialanella S, Straffelini G. dry sliding behavior and particulate emissions of a SiC-graphite composite friction material paired with HVOF-coated counterface. Atmosphere (Basel) 2022;13:296. doi: 10.3390/atmos13020296. DOI
Nogueira APG, Carlevaris D, Menapace C, Straffelini G. Tribological and emission behavior of novel friction materials. Atmosphere (Basel) 2020;11:1050. doi: 10.3390/atmos11101050. DOI
Nogueira APG, Leonardi M, Straffelini G, Gialanella S. Sliding behavior and particle emissions of Cu-free friction materials with different contents of phenolic resin. Tribol. Trans. 2020;63:770–779. doi: 10.1080/10402004.2020.1753870. DOI
Menapace C, Leonardi M, Matějka V, Gialanella S, Straffelini G. Dry sliding behavior and friction layer formation in copper-free barite containing friction materials. Wear. 2018;398–399:191–200. doi: 10.1016/j.wear.2017.12.008. DOI
Shen H, Forssberg E. An overview of recovery of metals from slags. Waste Manag. 2003;23:933–949. doi: 10.1016/S0956-053X(02)00164-2. PubMed DOI
Jiao W, et al. Utilization of steel slags to produce thermal conductive asphalt concretes for snow melting pavements. J. Clean. Prod. 2020;261:121197. doi: 10.1016/j.jclepro.2020.121197. DOI