Characterization of Endogenous Levels of Brassinosteroids and Related Genes in Grapevines

. 2022 Feb 05 ; 23 (3) : . [epub] 20220205

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35163750

Grantová podpora
13 CTI 18862 CORFO
1150220 FONDECYT
21191848 Agencia Nacional de Investigación y Desarrollo
CZ.02.1.01/0.0/0.0/16_019/0000827 European Regional Development Fund

Agronomic breeding practices for grapevines (Vitis vinifera L.) include the application of growth regulators in the field. Brassinosteroids (BRs) are a family of sterol-derived plant hormones that regulate several physiological processes and responses to biotic and abiotic stress. In grapevine berries, the production of biologically active BRs, castasterone and 6-deoxocastasterone, has been reported. In this work, key BR genes were identified, and their expression profiles were determined in grapevine. Bioinformatic homology analyses of the Arabidopsis genome found 14 genes associated with biosynthetic, perception and signaling pathways, suggesting a partial conservation of these pathways between the two species. The tissue- and development-specific expression profiles of these genes were determined by qRT-PCR in nine different grapevine tissues. Using UHPLC-MS/MS, 10 different BR compounds were pinpointed and quantified in 20 different tissues, each presenting specific accumulation patterns. Although, in general, the expression profile of the biosynthesis pathway genes of BRs did not directly correlate with the accumulation of metabolites, this could reflect the complexity of the BR biosynthesis pathway and its regulation. The development of this work thus generates a contribution to our knowledge about the presence, and diversity of BRs in grapevines.

Zobrazit více v PubMed

Gladstone E.A., Dokoozlian N.K. Influence of leaf area density and trellis/training system on the light microclimate within grapevine canopies. Vitis. 2003;42:123–131.

Keller M. The Science of Grapevines: Anatomy and Physiology. 2nd ed. Elsevier; Amsterdam, The Netherlands: 2015. pp. 1–101.

Fenn M.A., Giovannoni J.J. Phytohormones in fruit development and maturation. Plant J. 2021;105:446–458. doi: 10.1111/tpj.15112. PubMed DOI

Jogawat A., Yadav B., Chhaya, Lakra N., Singh A.K., Narayan O.P. Crosstalk between phytohormones and secondary metabolites in the drought stress tolerance of crop plants: A review. Physiol. Plant. 2020;172:1106–1132. doi: 10.1111/ppl.13328. PubMed DOI

Zhao B., Liu Q., Wang B., Yuan F. Roles of Phytohormones and Their Signaling Pathways in Leaf Development and Stress Responses. J. Agric. Food Chem. 2021;69:3566–3584. doi: 10.1021/acs.jafc.0c07908. PubMed DOI

Bajguz A., Tretyn A. The chemical characteristic and distribution of brassinosteroids in plants. Phytochemistry. 2003;62:1027–1046. doi: 10.1016/S0031-9422(02)00656-8. PubMed DOI

Oklestkova J., Tarkowská D., Eyer L., Elbert T., Marek A., Smržová Z., Novák O., Fránek M., Zhabinskii V.N., Strnad M. Immunoaffinity chromatography combined with tandem mass spectrometry: A new tool for the selective capture and analysis of brassinosteroid plant hormones. Talanta. 2017;170:432–440. doi: 10.1016/j.talanta.2017.04.044. PubMed DOI

Tarkowská D., Novák O., Oklestkova J., Strnad M. The determination of 22 natural brassinosteroids in a minute sample of plant tissue by UHPLC–ESI–MS/MS. Anal. Bioanal. Chem. 2016;408:6799–6812. doi: 10.1007/s00216-016-9807-2. PubMed DOI

Nakashita H., Yasuda M., Nitta T., Asami T., Fujioka S., Arai Y., Sekimata K., Takatsuto S., Yamaguchi I., Yoshida S. Brassinosteroid functions in a broad range of disease resistance in tobacco and rice. Plant J. 2003;33:887–898. doi: 10.1046/j.1365-313X.2003.01675.x. PubMed DOI

Furio R.N., Albornoz P.L., Coll Y., Martínez Zamora G.M., Salazar S.M., Martos G.G., Díaz Ricci J.C. Effect of natural and synthetic Brassinosteroids on strawberry immune response against Colletotrichum acutatum. Eur. J. Plant Pathol. 2019;153:167–181. doi: 10.1007/s10658-018-1551-3. DOI

Ahammed G.J., Li X., Liu A., Chen S. Brassinosteroids in Plant Tolerance to Abiotic Stress. J. Plant Growth Regul. 2020;39:1451–1464. doi: 10.1007/s00344-020-10098-0. DOI

Nolan T.M., Vukasinovic N., Liu D., Russinova E., Yin Y. Brassinosteroids: Multidimensional Regulators of Plant Growth, Development, and Stress Responses. Plant Cell. 2020;32:295–318. doi: 10.1105/tpc.19.00335. PubMed DOI PMC

Anwar A., Liu Y., Dong R., Bai L., Yu X., Li Y. The physiological and molecular mechanism of brassinosteroid in response to stress: A review. Biol. Res. 2018;51:46. doi: 10.1186/s40659-018-0195-2. PubMed DOI PMC

Clouse S.D. Brassinosteroids. Arab. Book. 2011;9:e0151. doi: 10.1199/tab.0151. PubMed DOI PMC

Zhu J., Sae-seaw J., Wang Z. Brassinosteroid signalling. Development. 2013;140:1615–1620. doi: 10.1242/dev.060590. PubMed DOI PMC

Azpiroz R., Wu Y., LoCascio J.C., Feldmann K.A. An Arabidopsis Brassinosteroid-Dependent Mutant Is Blocked in Cell Elongation. Plant Cell. 1998;10:219–230. doi: 10.1105/tpc.10.2.219. PubMed DOI PMC

Goda H., Sawa S., Asami T., Fujioka S., Shimada Y., Yoshida S. Comprehensive Comparison of Auxin-Regulated and Brassinosteroid-Regulated Genes in Arabidopsis. Plant Physiol. 2004;134:1555–1573. doi: 10.1104/pp.103.034736. PubMed DOI PMC

Hu Y., Bao F., Li J. Promotive effect of brassinosteroids on cell division involves a distinct CycD3-induction pathway in Arabidopsis. Plant J. 2000;24:693–701. doi: 10.1046/j.1365-313x.2000.00915.x. PubMed DOI

Pereira-Netto A.B. Genomic and non-genomic events involved in the brassinosteroid promoted plant cell growth. In: Hayat S., Ahmad A., editors. Brassinosteroids: A Class of Plant Hormone. Springer; Dordercht, The Netherlands: 2011.

Clouse S.D. Brassinosteroids Plant Counterparts to animals steroid hormones? Vitam. Horm. 2002;65:195–223. PubMed

Brosa C., Capdevila J.M., Zamora I. Brassinosteroids: A new way to define the structural requirements. Tetrahedron. 1996;52:2435–2448. doi: 10.1016/0040-4020(95)01065-3. DOI

Liu J., Zhang D., Sun X., Ding T., Lei B., Zhang C. Structure-activity relationship of brassinosteroids and their agricultural practical usages. Steroids. 2017;124:1–17. doi: 10.1016/j.steroids.2017.05.005. PubMed DOI

Takatsuto S., Ikekawa N., Morishita T., Abe H. Structure-Activity Relationship of Brassinosteroids with Respect to the A/B-Ring Functional Groups. Chem. Pharm. Bull. 1987;35:211–216. doi: 10.1248/cpb.35.211. DOI

Takatsuto S., Yazawa N. Structure-activity relationship of brassinosteroids. Phytochemistry. 1983;22:2437–2441. doi: 10.1016/0031-9422(83)80135-6. DOI

Kim T.W., Chang S.C., Choo J., Watanabe T., Takatsuto S., Yokota T., Lee J.S., Kim S.Y., Kim S.K. Brassinolide and [26, 28–2H6] brassinolide are differently demethylated by loss of C-26 and C-28, respectively, in Marchantia polymorpha. Plant Cell Physiol. 2000;41:1171–1174. doi: 10.1093/pcp/pcd048. PubMed DOI

Wada K., Marumo S., Mori K., Morisaki M., Ikekawa N., Takatsuto S. The Rice Lamina Inclination-promoting Activity of Synthetic Brassinolide Analogues with a Modified Side Chain. Agr. Biol. Chem. 1983;47:1139–1141.

Watanabe T., Noguchi T., Yokota T., Shibata K., Koshino H., Seto H., Kim S., Takatsuto S. Synthesis and biological activity of 26-norbrassinolide, 26-norcastasterone and 26-nor-6-deoxocastasterone. Phytochemistry. 2001;58:343–349. doi: 10.1016/S0031-9422(01)00213-8. PubMed DOI

Zullo MA T., Bajguz A. The Brassinosteroids Family-Structural Diversity of Natural Compounds and Their Precursors. In: Hayat S., Yusuf M., Bhardwaj R., Bajguz A., editors. Brassinosteroids: Plant Growth and Development. Springer; Berlin/Heidelberg, Germany: 2019.

Nomura T., Kushiro T., Yokota T., Kamiya Y., Bishop G.J., Yamaguchi S. The last reaction producing brassinolide is catalyzed by cytochrome P-450s, CYP85A3 in tomato and CYP85A2 in Arabidopsis. J. Biol. Chem. 2005;280:17873–17879. doi: 10.1074/jbc.M414592200. PubMed DOI

Nakamura A., Fujioka S., Sunohara H., Kamiya N., Hong Z., Inukai Y., Miura K., Takatsuto S., Yoshida S., Ueguchi-Tanaka M., et al. The role of OsBRI1 and its homologous genes, OsBRL1 and OsBRL3, in rice. Plant Physiol. 2006;140:580–590. doi: 10.1104/pp.105.072330. PubMed DOI PMC

Yamamuro C., Ihara Y., Wu X., Noguchi T., Fujioka S., Takatsuto S., Ashikari M., Kitano H., Matsuoka M. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell. 2000;12:1591–1606. doi: 10.1105/tpc.12.9.1591. PubMed DOI PMC

Zullo MA T., Adam G. Brassinosteroid phytohormones—Structure, bioactivity and applications. Braz. J. Plant Physiol. 2002;14:143–181. doi: 10.1590/S1677-04202002000300001. DOI

Bajguz A., Chmur M., Gruszka D. Comprehensive overview of the brassinosteroid biosynthesis pathways: Substrates, products, inhibitors, and connnections. Front. Plant Sci. 2020;11:1–9. doi: 10.3389/fpls.2020.01034. PubMed DOI PMC

Fujioka S., Yokota T. Biosynthesis and Metabolism of Brassinosteroids. Annu. Rev. Plant Biol. 2003;54:137–164. doi: 10.1146/annurev.arplant.54.031902.134921. PubMed DOI

Joo S.H., Jang M.S., Kim M.K., Lee J.E., Kim S.K. Biosynthetic relationship between C28-brassinosteroids and C29-brassinosteroids in rice (Oryza sativa) seedlings. Phytochemistry. 2015;111:84–90. doi: 10.1016/j.phytochem.2014.11.006. PubMed DOI

McMorris T.C., Patil P.A., Chavez R.G., Baker M.E., Clouse S.D. Synthesis and biological activity of 28-homobrassinolide and analogues. Phytochemistry. 1994;36:585–589. doi: 10.1016/S0031-9422(00)89779-4. DOI

Nomura T., Sato T., Bishop G.J., Kamiya Y., Takatsuto S., Yokota T. Accumulation of 6-deoxocathasterone and 6-deoxocastasterone in Arabidopsis, pea and tomato is suggestive of common rate-limiting steps in brassinosteroid biosynthesis. Phytochemistry. 2001;57:171–178. doi: 10.1016/S0031-9422(00)00440-4. PubMed DOI

Symons G.M., Davies C., Shavrukov Y., Dry I.B., Reid J.B., Thomas M.R. Grapes on steroids. Brassinosteroids are involved in grape berry ripening. Plant Physiol. 2006;140:150–158. doi: 10.1104/pp.105.070706. PubMed DOI PMC

Champa WA H., Gill MI S., Mahajan B.V.C., Aror N.K., Bedi S. Brassinosteroids Improve Quality of Table Grapes (Vitis vinifera L.) cv. Flame Seedless. Trop. Agric. Res. 2015;26:368–379. doi: 10.4038/tar.v26i2.8099. PubMed DOI PMC

Luan L., Zhang Z., Xi Z., Huo S., Ma L. Brassinosteroids Regulate Anthocyanin Biosynthesis in the Ripening of Grape Berries. S. Afr. J. Enol. Vitic. 2013;34:196–203. doi: 10.21548/34-2-1094. DOI

Xi Z.M., Zhang Z.W., Huo S.S., Luan L.Y., Gao X., Ma L.N., Fang Y.L. Regulating the secondary metabolism in grape berry using exogenous 24-epibrassinolide for enhanced phenolics content and antioxidant capacity. Food Chem. 2013;141:3056–3065. doi: 10.1016/j.foodchem.2013.05.137. PubMed DOI

Xu F., Xi Z.-M., Zhang H., Zhang C.-J., Zhang Z.-W. Brassinosteroids are involved in controlling sugar unloading in Vitis vinifera “Cabernet Sauvignon” berries during véraison. Plant Physiol. Biochem. 2015;94:197–208. doi: 10.1016/j.plaphy.2015.06.005. PubMed DOI

Babalık Z., Demirci T., Aşcı Ö.A., Baydar N.G. Brassinosteroids Modify Yield, Quality, and Antioxidant Components in Grapes (Vitis vinifera cv. Alphonse Lavallée) J. Plant Growth Regul. 2019;39:147–156. doi: 10.1007/s00344-019-09970-5. DOI

Friedrichsen D.M., Joazeiro C.A.P., Li J., Hunter T., Chory J. Brassinosteroid-Insensitive-1 Is a Ubiquitously Expressed Leucine-Rich Repeat Receptor Serine/Threonine Kinase. Plant Physiol. 2000;123:1247–1256. doi: 10.1104/pp.123.4.1247. PubMed DOI PMC

Li J., Nam K.H., Vafeados D., Chory J. BIN2, a new brassinosteroid -insensitive locus in Arabidopsis. Plant Physiol. 2001;127:14–22. doi: 10.1104/pp.127.1.14. PubMed DOI PMC

Shimada Y., Fujioka S., Miyauchi N., Kushiro M., Takatsuto S., Nomura T., Yokota T., Kamiya Y., Bishop G.J., Yoshida S. Brassinosteroid-6-Oxidases from Arabidopsis and Tomato Catalyze Multiple C-6 Oxidations in Brassinosteroid Biosynthesis. Plant Physiol. 2001;126:770–779. doi: 10.1104/pp.126.2.770. PubMed DOI PMC

Bai M.-Y., Zhang L.-Y., Gampala S.S., Zhu S.-W., Song W.-Y., Chong K., Wang Z.-Y. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proc. Natl. Acad. Sci. USA. 2007;104:13839–13844. doi: 10.1073/pnas.0706386104. PubMed DOI PMC

Holton N., Can A., Bishop G.J. Tomato BRASSINOSTEROID INSENSITIVE1 Is Required for Systemin-Induced Root Elongation in Solanum pimpinellifolium but Is Not Essential for Wound Signaling. Plant Cell. 2007;19:1709–1717. doi: 10.1105/tpc.106.047795. PubMed DOI PMC

Corvalán C., Choe S. Identification of brassinosteroid genes in Brachypodium distachyon. BMC Plant Biol. 2017;17:5. doi: 10.1186/s12870-016-0965-3. PubMed DOI PMC

Fasoli M., Dal Santo S., Zenoni S., Tornielli G.B., Farina L., Zamboni A., Porceddu A., Venturini L., Bicego M., Murino V., et al. The grapevine expression atlas reveals a deep transcriptome shift driving the entire plant into a maturation program. Plant Cell. 2012;24:3489–3505. doi: 10.1105/tpc.112.100230. PubMed DOI PMC

Joo S.H., Kim T.W., Son S.H., Lee W.S., Yokota T., Kim S.K. Biosynthesis of a cholesterol-derived brassinosteroid, 28-norcastasterone, in Arabidopsis thaliana. J. Exp. Bot. 2012;63:1823–1833. doi: 10.1093/jxb/err354. PubMed DOI PMC

Lee S.C., Hwang J.Y., Joo S.H., Son S.H., Youn J.H., Kim S.K. Biosynthesis and metabolism of dolichosterone in Arabidopsis thaliana. Bull. Korean Chem. Soc. 2010;31:3475–3478. doi: 10.5012/bkcs.2010.31.11.3475. DOI

Youn J.H., Kim T.W., Joo S.H., Son S.H., Roh J., Kim S., Kim T.W., Kim S.K. Function and molecular regulation of DWARF1 as a C-24 reductase in brassinosteroid biosynthesis in Arabidopsis. J. Exp. Bot. 2018;69:1873–1886. doi: 10.1093/jxb/ery038. PubMed DOI PMC

Sun H., Xu H., Li B., Shang Y., Wei M., Zhang S., Zhao C., Qin R., Cui F., Wu Y. The brassinosteroid biosynthesis gene, ZmD11, increases seed size and quality in rice and maize. Plant Physiol. Biochem. 2021;160:281–293. doi: 10.1016/j.plaphy.2021.01.031. PubMed DOI

Tanabe S., Ashikari M., Fujioka S., Takatsuto S., Yoshida S., Yano M., Yoshimura A., Kitano H., Matsuoka M., Fujisawa Y., et al. A Novel Cytochrome P450 Is Implicated in Brassinosteroid Biosynthesis via the Characterization of a Rice Dwarf Mutant, dwarf11, with Reduced Seed Length. Plant Cell. 2005;17:776–790. doi: 10.1105/tpc.104.024950. PubMed DOI PMC

Ohnishi T., Godza B., Watanabe B., Fujioka S., Hategan L., Ide K., Shibata K., Yokota T., Szekeres M., Mizutani M. CYP90A1/CPD, a brassinosteroid biosynthetic cytochrome P450 of Arabidopsis, catalyzes C-3 oxidation. J. Biol. Chem. 2012;87:31551–31560. doi: 10.1074/jbc.M112.392720. PubMed DOI PMC

Li J., Biswas M.G., Chao A., Russell D.W., Chory J. Conservation of function between mammalian and plant steroid 5alpha-reductases. Proc. Natl. Acad. Sci. USA. 1997;94:3554–3559. doi: 10.1073/pnas.94.8.3554. PubMed DOI PMC

Choe S., Dilkes B.P., Fujioka S., Takatsuto S., Sakurai A., Feldmann K.A. The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22α-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell. 1998;10:231–243. doi: 10.1105/tpc.10.2.231. PubMed DOI PMC

Fujita S., Ohnishi T., Watanabe B., Yokota T., Takatsuto S., Fujioka S., Yoshida S., Sakata K., Mizutani M. Arabidopsis CYP90B1 catalyses the early C-22 hydroxylation of C27,C28 and C29 sterols. Plant J. 2006;45:765–774. doi: 10.1111/j.1365-313X.2005.02639.x. PubMed DOI

Kim G.T., Fujioka S., Kozuka T., Tax F.E., Takatsuto S., Yoshida S., Tsukaya H. CYP90C1 and CYP90D1 are involved in different steps in the brassinosteroid biosynthesis pathway in Arabidopsis thaliana. Plant J. 2005;41:710–721. doi: 10.1111/j.1365-313X.2004.02330.x. PubMed DOI

Shimada Y., Goda H., Nakamura A., Takatsuto S., Fujioka S., Yoshida S. Organ-Specific Expression of Brassinosteroid-Biosynthetic Genes and Distribution of Endogenous Brassinosteroids in Arabidopsis. Plant Physiol. 2003;131:287–297. doi: 10.1104/pp.013029. PubMed DOI PMC

Belkhadir Y., Jaillais Y. The molecular circuitry of brassinosteroids Signaling. New Phytol. 2015;206:522–540. doi: 10.1111/nph.13269. PubMed DOI

Benveniste P. Biosynthesis and Accumulation of Sterols. Annu. Rev. Plant Biol. 2004;55:429–457. doi: 10.1146/annurev.arplant.55.031903.141616. PubMed DOI

Bajguz A. Brassinosteroids-occurence and chemical structures in plants. In: Hayat S., Ahmad A., editors. Brassinosteroids: A Class of Plant Hormone. Springer; Berlin/Heidelberg, Germany: 2011. pp. 1–27.

Fujioka S., Noguchi T., Yokota T., Takatsuto S., Yoshida S. Brassinosteroids in Arabidopsis thaliana. Phytochemistry. 1998;48:595–599. doi: 10.1016/S0031-9422(98)00065-X. PubMed DOI

Suzuki H., Fujioka S., Yokota T., Murofushi N., Sakurai A. Identification of Brassinolide, Castasterone, Typhasterol, and Teasterone from the Pollen of Lilium elegans. Biosci. Biotechnol. Biochem. 1994;58:2075–2076. doi: 10.1271/bbb.58.2075. DOI

Nomura T., Ueno M., Yamada Y., Takatsuto S., Takeuchi Y., Yokota T. Roles of Brassinosteroids and Related mRNAs in Pea Seed Growth and Germination. Plant Physiol. 2007;143:1680–1688. doi: 10.1104/pp.106.093096. PubMed DOI PMC

Yokota T., Baba J., Takahashi N. A new steroidal lactone with plant growth-regulatory activity from Dolichos lablab seed. Tetrahedron Lett. 1982;23:4965–4966. doi: 10.1016/S0040-4039(00)85761-5. DOI

Bancoş S., Nomura T., Sato T., Molnár G., Bishop G.J., Koncz C., Yokota T., Nagy F., Szekeres M. Regulation of Transcript Levels of the Arabidopsis Cytochrome P450 Genes Involved in Brassinosteroid Biosynthesis. Plant Physiol. 2002;130:504–513. doi: 10.1104/pp.005439. PubMed DOI PMC

Ikekawa N., Nishiyama F., Fujimoto Y. Identification of 24-epibrassinolide in bee pollen of the broad bean, Vicia faba L. Chem. Pharm. Bull. 1988;36:405–407. doi: 10.1248/cpb.36.405. DOI

Symons G.M., Ross J.J., Jager C.E., Reid J.B. Brassinosteroid transport. J. Exp. Bot. 2008;59:17–24. doi: 10.1093/jxb/erm098. PubMed DOI

Wei Z., Li J. Regulation of Brassinosteroid Homeostasis in Higher Plants. Front. Plant Sci. 2020;11:583622. doi: 10.3389/fpls.2020.583622. PubMed DOI PMC

Symons G.M., Reid J.B. Brassinosteroids Do Not Undergo Long-Distance Transport in Pea. Implications for the Regulation of Endogenous Brassinosteroid Levels. Plant Physiol. 2004;135:2196–2206. doi: 10.1104/pp.104.043034. PubMed DOI PMC

Montoya T., Nomura T., Yokota T., Farrar K., Harrison K., Jones J.G.D., Kaneta T., Kamiya Y., Szekeres M., Bishop G.J. Patterns of Dwarf expression and brassinosteroid accumulation in tomato reveal the importance of brassinosteroid synthesis during fruit development. Plant J. 2005;42:262–269. doi: 10.1111/j.1365-313X.2005.02376.x. PubMed DOI

Szekeres M., Németh K., Koncz-Kálmán Z., Mathur J., Kauschmann A., Altmann T., Rédei G.P., Nagy F., Schell J., Koncz C. Brassinosteroids Rescue the Deficiency of CYP90, a Cytochrome P450, Controlling Cell Elongation and De-etiolation in Arabidopsis. Cell. 1996;85:171–182. doi: 10.1016/S0092-8674(00)81094-6. PubMed DOI

Panchy N., Lehti-Shiu M., Shiu S.-H. Evolution of Gene Duplication in Plants. Plant Physiol. 2016;171:2294–2316. doi: 10.1104/pp.16.00523. PubMed DOI PMC

Ohnishi T., Szatmari A.-M., Watanabe B., Fujita S., Bancos S., Koncz C., Lafos M., Shibata K., Yokota T., Sakata K., et al. C-23 Hydroxylation by Arabidopsis CYP90C1 and CYP90D1 Reveals a Novel Shortcut in Brassinosteroid Biosynthesis. Plant Cell. 2006;18:3275–3288. doi: 10.1105/tpc.106.045443. PubMed DOI PMC

Kim G.-T., Tsukaya H., Saito Y., Uchimiya H. Changes in the shapes of leaves and flowers upon overexpression of cytochrome P450 in Arabidopsis. Proc. Natl. Acad. Sci. USA. 1999;96:9433–9437. doi: 10.1073/pnas.96.16.9433. PubMed DOI PMC

Castle J., Szekeres M., Jenkins G., Bishop G.J. Unique and overlapping expression patterns of Arabidopsis CYP85 genes involved in brassinosteroid C-6 oxidation. Plant Mol. Biol. 2005;57:129–140. doi: 10.1007/s11103-004-6851-7. PubMed DOI

Hategan L., Godza B., Szekeres M. Regulation of brassinosteroid metabolism. In: Hayat S., Ahmad A., editors. Brassinosteroids: A Class of Plant Hormone. Springer; Dordercht, The Netherlands: 2011.

Codreanu M.C., Russinova E. Regulatory mechanisms of brassinosteroid signaling in plants. In: Hayat S., Ahmad A., editors. Brassinosteroids: A Class of Plant Hormone. Springer; Dordercht, The Netherlands: 2011.

Coombe B.G. Growth Stages of the Grapevine: Adoption of a system for identifying grapevine growth stages. Aust. J. Grape Wine Res. 1995;1:104–110. doi: 10.1111/j.1755-0238.1995.tb00086.x. DOI

Rozen S., Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 2000;132:365–386. PubMed

Loyola R., Herrera D., Mas A., Chern D., Wong J., Höll J., Cavallini E., Amato A., Azuma A., Ziegler T., et al. The photomorphogenic factors UV-B RECEPTOR 1, ELONGATED HYPOCOTYL 5, and HY5 HOMOLOGUE are part of the UV-B signalling pathway in grapevine and mediate flavonol accumulation in response to the environment. J. Exp. Bot. 2016;67:5429–5445. doi: 10.1093/jxb/erw307. PubMed DOI PMC

Muñoz C., Gomez-Talquenca S., Chialva C., Ibáñez J., Martinez-Zapater J.M., Peña-Neira Á., Lijavetzky D. Relationships among gene expression and anthocyanin composition of malbec grapevine clones. J. Agric. Food Chem. 2014;62:6716–6725. doi: 10.1021/jf501575m. PubMed DOI

Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace