Turnover of sex chromosomes in the Lake Tanganyika cichlid tribe Tropheini (Teleostei: Cichlidae)
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
DEB-1830753
National Science Foundation
PubMed
38291228
PubMed Central
PMC10828463
DOI
10.1038/s41598-024-53021-3
PII: 10.1038/s41598-024-53021-3
Knihovny.cz E-zdroje
- MeSH
- cichlidy * genetika MeSH
- fylogeneze MeSH
- jezera MeSH
- mitochondriální DNA genetika MeSH
- molekulární evoluce MeSH
- pohlavní chromozomy genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Tanzanie MeSH
- Názvy látek
- mitochondriální DNA MeSH
Sex chromosome replacement is frequent in many vertebrate clades, including fish, frogs, and lizards. In order to understand the mechanisms responsible for sex chromosome turnover and the early stages of sex chromosome divergence, it is necessary to study lineages with recently evolved sex chromosomes. Here we examine sex chromosome evolution in a group of African cichlid fishes (tribe Tropheini) which began to diverge from one another less than 4 MYA. We have evidence for a previously unknown sex chromosome system, and preliminary indications of several additional systems not previously reported in this group. We find a high frequency of sex chromosome turnover and estimate a minimum of 14 turnovers in this tribe. We date the origin of the most common sex determining system in this tribe (XY-LG5/19) near the base of one of two major sub-clades of this tribe, about 3.4 MY ago. Finally, we observe variation in the size of one sex-determining region that suggests independent evolution of evolutionary strata in species with a shared sex-determination system. Our results illuminate the rapid rate of sex chromosome turnover in the tribe Tropheini and set the stage for further studies of the dynamics of sex chromosome evolution in this group.
Department of Biology University of Maryland College Park MD 20742 USA
Department of Ecology and Vertebrate Zoology University of Łódź Łódź Poland
Institute of Biology University of Graz Universitätsplatz 2 8010 Graz Austria
Institute of Vertebrate Biology Czech Academy of Sciences Květná 8 603 00 Brno Czech Republic
Zobrazit více v PubMed
Ezaz T, et al. The dragon lizard Pogona vitticeps has ZZ/ZW micro-sex chromosomes. Chromosome Res. 2005;13:763–776. doi: 10.1007/s10577-005-1010-9. PubMed DOI
Valenzuela N, Adams DC, Janzen FJ. Pattern does not equal process: Exactly when is sex environmentally determined? Am. Nat. 2003;161:676–683. doi: 10.1086/368292. PubMed DOI
Iannucci A, et al. Conserved sex chromosomes and karyotype evolution in monitor lizards (Varanidae) Heredity. 2019;123:215–227. doi: 10.1038/s41437-018-0179-6. PubMed DOI PMC
Kawai A, et al. Different origins of bird and reptile sex chromosomes inferred from comparative mapping of chicken Z-linked genes. Cytogenet. Genome Res. 2007;117:92–102. doi: 10.1159/000103169. PubMed DOI
Bull, J. J. Evolution of sex determining mechanisms. (Benjamin/Cummings Publishing Company, 1983).
Charlesworth D, Charlesworth B, Marais G. Steps in the evolution of heteromorphic sex chromosomes. Heredity. 2005;95:118–128. doi: 10.1038/sj.hdy.6800697. PubMed DOI
Charlesworth D, Charlesworth B. Sex differences in fitness and selection for centric fusions between sex-chromosomes and autosomes. Genet. Res. 1980;35:205–214. doi: 10.1017/S0016672300014051. PubMed DOI
Rice WR. The accumulation of sexually antagonistic genes as a selective agent promoting the evolution of reduced recombination between primitive sex chromosomes. Evolution. 1987;41:911–914. doi: 10.2307/2408899. PubMed DOI
Terao M, et al. Turnover of mammal sex chromosomes in the Sry-deficient Amami spiny rat is due to male-specific upregulation of Sox9. Proc. Natl. Acad. Sci. U. S. A. 2022;119:e2211574119. doi: 10.1073/pnas.2211574119. PubMed DOI PMC
Zhou Q, et al. Complex evolutionary trajectories of sex chromosomes across bird taxa. Science. 2014;346:1246338. doi: 10.1126/science.1246338. PubMed DOI PMC
Cortez D, et al. Origins and functional evolution of y chromosomes across mammals. Nature. 2014;508:488–493. doi: 10.1038/nature13151. PubMed DOI
Pennell MW, Mank JE, Peichel CL. Transitions in sex determination and sex chromosomes across vertebrate species. Mol. Ecol. 2018;27:3950–3963. doi: 10.1111/mec.14540. PubMed DOI PMC
Mank JE, Avise JC. Evolutionary diversity and turn-over of sex determination in teleost fishes. Sex. Dev. 2009;3:60–67. doi: 10.1159/000223071. PubMed DOI
Jeffries DL, et al. A rapid rate of sex-chromosome turnover and non-random transitions in true frogs. Nat. Commun. 2018;9:4088. doi: 10.1038/s41467-018-06517-2. PubMed DOI PMC
Tao W, et al. High-quality chromosome-level genomes of two tilapia species reveal their evolution of repeat sequences and sex chromosomes. Mol. Ecol. Resour. 2021;21:543–560. doi: 10.1111/1755-0998.13273. PubMed DOI
Van Doorn GS, Kirkpatrick M. Turnover of sex chromosomes induced by sexual conflict. Nature. 2007;449:909–912. doi: 10.1038/nature06178. PubMed DOI
Van Doorn GS, Kirkpatrick M. Transitions between male and female heterogamety caused by sex-antagonistic selection. Genetics. 2010;186:629–645. doi: 10.1534/genetics.110.118596. PubMed DOI PMC
Blaser O, Neuenschwander S, Perrin N. Sex-chromosome turnovers: The hot-potato model. Am. Nat. 2014;183:140–146. doi: 10.1086/674026. PubMed DOI
Blaser O, Grossen C, Neuenschwander S, Perrin N. Sex-chromosome turnovers induced by deleterious mutation load. Evolution. 2013;67:635–645. doi: 10.1111/j.1558-5646.2012.01810.x. PubMed DOI
Bull JJ, Charnov EL. Changes in the heterogametic mechanism of sex determination. Heredity. 1977;39:1–14. doi: 10.1038/hdy.1977.38. PubMed DOI
Cavoto E, Neuenschwander S, Goudet J, Perrin N. Sex-antagonistic genes, XY recombination and feminized Y chromosomes. J. Evol. Biol. 2018;31:416–427. doi: 10.1111/jeb.13235. PubMed DOI
Charlesworth D. Evolution of recombination rates between sex chromosomes. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2017;372:20160456. doi: 10.1098/rstb.2016.0456. PubMed DOI PMC
Ponnikas S, Sigeman H, Abbott JK, Hansson B. Why do sex chromosomes stop recombining? Trends Genet. 2018;34:492–503. doi: 10.1016/j.tig.2018.04.001. PubMed DOI
Ironside JE. No amicable divorce? Challenging the notion that sexual antagonism drives sex chromosome evolution. BioEssays. 2010;32:718–726. doi: 10.1002/bies.200900124. PubMed DOI
Jay P, Tezenas E, Véber A, Giraud T. Sheltering of deleterious mutations explains the stepwise extension of recombination suppression on sex chromosomes and other supergenes. PLoS Biol. 2022;20:e3001698. doi: 10.1371/journal.pbio.3001698. PubMed DOI PMC
Lenormand T, Roze D. Y recombination arrest and degeneration in the absence of sexual dimorphism. Science. 2022;375:663–666. doi: 10.1126/science.abj1813. PubMed DOI
Charlesworth D. When and how do sex-linked regions become sex chromosomes? Evolution. 2021;75:569–581. doi: 10.1111/evo.14196. PubMed DOI
Lahn BT, Page DC. Four evolutionary strata on the human X chromosome. Science. 1999;286:964–967. doi: 10.1126/science.286.5441.964. PubMed DOI
Olito C, Ponnikas S, Hansson B, Abbott JK. Consequences of partially recessive deleterious genetic variation for the evolution of inversions suppressing recombination between sex chromosomes. Evol. Int. J. Org. Evol. 2022;76:1320–1330. doi: 10.1111/evo.14496. PubMed DOI PMC
Rice, W. R. Evolution of the Y sex chromosome in animals. BioScience46, (1996).
Skaletsky H, et al. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature. 2003;423:825–837. doi: 10.1038/nature01722. PubMed DOI
Dagilis, A. J. et al. Searching for signatures of sexually antagonistic selection on stickleback sex chromosomes. Philos. Trans. R. Soc. B Biol. Sci.377, 1–9 (2022). PubMed PMC
Sardell JM, Josephson MP, Dalziel AC, Peichel CL, Kirkpatrick M. Heterogeneous histories of recombination suppression on stickleback sex chromosomes. Mol. Biol. Evol. 2021;38:4403–4418. doi: 10.1093/molbev/msab179. PubMed DOI PMC
Yoshida K, et al. Sex chromosome turnover contributes to genomic divergence between incipient stickleback species. PLOS Genet. 2014;10:e1004223. doi: 10.1371/journal.pgen.1004223. PubMed DOI PMC
Charlesworth D, Mank JE. The birds and the bees and the flowers and the trees: Lessons from genetic mapping of sex determination in plants and animals. Genetics. 2010;186:9–31. doi: 10.1534/genetics.110.117697. PubMed DOI PMC
Devlin RH, Nagahama Y. Sex determination and sex differentiation in fish: An overview of genetic, physiological, and environmental influences. Aquaculture. 2002;208:191–364. doi: 10.1016/S0044-8486(02)00057-1. DOI
Gamble T. Using RAD-seq to recognize sex-specific markers and sex chromosome systems. Mol. Ecol. 2016;25:2114–2116. doi: 10.1111/mec.13648. PubMed DOI
Kitano J, Peichel CL. Turnover of sex chromosomes and speciation in fishes. Environ. Biol. Fishes. 2012;94:549–558. doi: 10.1007/s10641-011-9853-8. PubMed DOI PMC
Sember, A. et al. Multiple sex chromosomes in teleost fishes from a cytogenetic perspective: state of the art and future challenges. Philos. Trans. R. Soc. B Biol. Sci.376, 20200098 (2021). PubMed PMC
Pennell MW, et al. Y Fuse? Sex chromosome fusions in fishes and reptiles. PLOS Genet. 2015;11:e1005237. doi: 10.1371/journal.pgen.1005237. PubMed DOI PMC
Kocher TD. Adaptive evolution and explosive speciation: The cichlid fish model. Nat. Rev. Genet. 2004;5:288–298. doi: 10.1038/nrg1316. PubMed DOI
El Taher, A., Ronco, F., Matschiner, M., Salzburger, W. & Böhne, A. Dynamics of sex chromosome evolution in a rapid radiation of cichlid fishes. Sci. Adv.7, eabe8215 (2021). PubMed PMC
Gammerdinger WJ, et al. Novel sex chromosomes in 3 cichlid fishes from Lake Tanganyika. J. Hered. 2018;109:489–500. doi: 10.1093/jhered/esy003. PubMed DOI
Ronco F, et al. Drivers and dynamics of a massive adaptive radiation in cichlid fishes. Nature. 2021;589:76–81. doi: 10.1038/s41586-020-2930-4. PubMed DOI
Koblmüller S, Egger B, Sturmbauer C, Sefc KM. Rapid radiation, ancient incomplete lineage sorting and ancient hybridization in the endemic Lake Tanganyika cichlid tribe Tropheini. Mol. Phylogenet. Evol. 2010;55:318–334. doi: 10.1016/j.ympev.2009.09.032. PubMed DOI
Koblmüller S, Sefc KM, Sturmbauer C. The Lake Tanganyika cichlid species assemblage: recent advances in molecular phylogenetics. Hydrobiologia. 2008;615:5–20. doi: 10.1007/s10750-008-9552-4. DOI
Ad Konigs. Tanganyika cichlids in their natural habitat. (Cichlid Press, 2019).
Singh P, et al. Phylogenomics of trophically diverse cichlids disentangles processes driving adaptive radiation and repeated trophic transitions. Ecol. Evol. 2022;12:1–15. doi: 10.1002/ece3.9077. PubMed DOI PMC
Poll, M. Classification des Cichlidae du lac Tanganika. Tribus, genres et aspeces. Mem Acad. R Belg. Cl Sci.45, 1–163 (1986).
Genner MJ, et al. Revision of the African cichlid fish genus Ctenochromis (Teleostei, Cichliformes), including a description of the new genus Shuja from Lake Tanganyika and the new species Ctenochromis scatebra fromnorthern Tanzania. Eur. J. Taxon. 2022;819:23–54. doi: 10.5852/ejt.2022.819.1775. DOI
Percie du Sert, N. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. BMC Vet. Res.16, 242 (2020). PubMed PMC
Behrens KA, Koblmüller S, Kocher TD. Sex chromosomes in the tribe Cyprichromini (Teleostei: Cichlidae) of Lake Tanganyika. Sci. Rep. 2022;12:1–13. doi: 10.1038/s41598-022-23017-y. PubMed DOI PMC
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC
Conte, M. A. et al. Chromosome-scale assemblies reveal the structural evolution of African cichlid genomes. GigaScience8, giz030 (2019). PubMed PMC
Conte MA, Kocher TD. An improved genome reference for the African cichlid Metriaclima zebra. BMC Genomics. 2015;16:724. doi: 10.1186/s12864-015-1930-5. PubMed DOI PMC
Quinlan AR, Hall IM. BEDTools: A flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–842. doi: 10.1093/bioinformatics/btq033. PubMed DOI PMC
Kocher TD, et al. New sex chromosomes in lake victoria cichlid fishes (Cichlidae: Haplochromini) Genes Basel. 2022;13:804. doi: 10.3390/genes13050804. PubMed DOI PMC
Darolti I, Almeida P, Wright AE, Mank JE. Comparison of methodological approaches to the study of young sex chromosomes: A case study in Poecilia. J. Evol. Biol. 2022;35:1646–1658. doi: 10.1111/jeb.14013. PubMed DOI PMC
R Core Development Team. R: A language and environment for statistical computing. Vienna Austria (2019).
Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): High-performance genomics data visualization and exploration. Brief. Bioinform. 2013;14:178–192. doi: 10.1093/bib/bbs017. PubMed DOI PMC
Marçais G, Kingsford C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics. 2011;27:764–770. doi: 10.1093/bioinformatics/btr011. PubMed DOI PMC
Szwarc MM, Kommagani R, Lessey BA, Lydon JP. The p160/steroid receptor coactivator family: Potent arbiters of uterine physiology and dysfunction. Biol. Reprod. 2014;91(122):1–11. PubMed PMC
Villavicencio A, et al. Androgen and estrogen receptors and co-regulators levels in endometria from patients with polycystic ovarian syndrome with and without endometrial hyperplasia. Gynecol. Oncol. 2006;103:307–314. doi: 10.1016/j.ygyno.2006.03.029. PubMed DOI
Yoshida H, et al. Steroid receptor coactivator-3, a homolog of Taiman that controls cell migration in the Drosophila ovary, regulates migration of human ovarian cancer cells. Mol. Cell. Endocrinol. 2005;245:77–85. doi: 10.1016/j.mce.2005.10.008. PubMed DOI
Massari ME, Murre C. Helix-loop-helix proteins: Regulators of transcription in eucaryotic organisms. Mol. Cell. Biol. 2000;20:429–440. doi: 10.1128/MCB.20.2.429-440.2000. PubMed DOI PMC
Korchynskyi O, ten Dijke P. Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. J. Biol. Chem. 2002;277:4883–4891. doi: 10.1074/jbc.M111023200. PubMed DOI
Kamiya T, et al. A trans-species missense SNP in Amhr2 is associated with sex determination in the tiger pufferfish, Takifugu rubripes (Fugu) PLoS Genet. 2012;8:e1002798. doi: 10.1371/journal.pgen.1002798. PubMed DOI PMC
Li M, et al. A tandem duplicate of anti-Müllerian hormone with a missense SNP on the Y chromosome is essential for male sex determination in Nile Tilapia, Oreochromis niloticus. PLoS Genet. 2015;11:e1005678. doi: 10.1371/journal.pgen.1005678. PubMed DOI PMC
Nacif CL, et al. Molecular parallelism in the evolution of a master sex-determining role for the anti-Mullerian hormone receptor 2 gene (amhr2) in Midas cichlids. Mol. Ecol. 2023;32:1–13. doi: 10.1111/mec.16466. PubMed DOI
Rice WR. On the instability of polygenic sex determination: the effect of sex-specific selection. Evolution. 1986;40:633–639. PubMed
Schartl M, Georges A, Graves JAM. Polygenic sex determination in vertebrates—is there any such thing? Trends Genet. 2023;39:242–250. doi: 10.1016/j.tig.2022.12.002. PubMed DOI PMC
Meisel, R. P. et al. Is multifactorial sex determination in the house fly, Musca domestica (L.), stable over time? J. Hered.107, 615–625 (2016). PubMed
Meisel, R. P. The maintenance of polygenic sex determination depends on the dominance of fitness effects which are predictive of the role of sexual antagonism. G3 Bethesda11, jkab149 (2021). PubMed PMC
Böhne A, Wilson CA, Postlethwait JH, Salzburger W. Variations on a theme: Genomics of sex determination in the cichlid fish Astatotilapia burtoni. BMC Genomics. 2016;17:883. doi: 10.1186/s12864-016-3178-0. PubMed DOI PMC
Heule C, Göppert C, Salzburger W, Böhne A. Genetics and timing of sex determination in the East African cichlid fish Astatotilapia burtoni. BMC Genet. 2014;15:140. doi: 10.1186/s12863-014-0140-5. PubMed DOI PMC
Conte MA, et al. Origin of a giant sex chromosome. Mol. Biol. Evol. 2021;38:1554–1569. doi: 10.1093/molbev/msaa319. PubMed DOI PMC
Lichilín, N., Salzburger, W. & Böhne, A. No evidence for sex chromosomes in natural populations of the cichlid fish Astatotilapia burtoni. G3 Bethesda13, jkad011 (2023). PubMed PMC
Roberts NB, et al. Polygenic sex determination in the cichlid fish Astatotilapia burtoni. BMC Genomics. 2016;17:835. doi: 10.1186/s12864-016-3177-1. PubMed DOI PMC
Payseur BA, Presgraves DC, Filatov DA. Introduction: Sex chromosomes and speciation. Mol. Ecol. 2018;27:3745–3748. doi: 10.1111/mec.14828. PubMed DOI PMC
de Vos, J. M., Augustijnen, H., Bätscher, L. & Lucek, K. Speciation through chromosomal fusion and fission in Lepidoptera. Philos. Trans. R. Soc. B Biol. Sci.375, 20190539 (2020). PubMed PMC
Clark FE, Kocher TD. Changing sex for selfish gain: B chromosomes of Lake Malawi cichlid fish. Sci. Rep. 2019;9:20213. doi: 10.1038/s41598-019-55774-8. PubMed DOI PMC
Majtánová Z, Indermaur A, Bitja Nyom AR, Ráb P, Musilova Z. Adaptive radiation from a chromosomal perspective: Evidence of chromosome set stability in cichlid fishes (Cichlidae: Teleostei) from the Barombi Mbo Lake. Cameroon. Int. J. Mol. Sci. 2019;20:4994. doi: 10.3390/ijms20204994. PubMed DOI PMC