Conserved sex chromosomes and karyotype evolution in monitor lizards (Varanidae)

. 2019 Aug ; 123 (2) : 215-227. [epub] 20190122

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30670841

Grantová podpora
17-22141Y Grantová Agentura České Republiky (Grant Agency of the Czech Republic) - International

Odkazy

PubMed 30670841
PubMed Central PMC6781170
DOI 10.1038/s41437-018-0179-6
PII: 10.1038/s41437-018-0179-6
Knihovny.cz E-zdroje

Despite their long history with the basal split dating back to the Eocene, all species of monitor lizards (family Varanidae) studied so far share the same chromosome number of 2n = 40. However, there are differences in the morphology of the macrochromosome pairs 5-8. Further, sex determination, which revealed ZZ/ZW sex microchromosomes, was studied only in a few varanid species and only with techniques that did not test their homology. The aim of this study was to (i) test if cryptic interchromosomal rearrangements of larger chromosomal blocks occurred during the karyotype evolution of this group, (ii) contribute to the reconstruction of the varanid ancestral karyotype, and (iii) test homology of sex chromosomes among varanids. We investigated these issues by hybridizing flow sorted chromosome paints from Varanus komodoensis to metaphases of nine species of monitor lizards. The results show that differences in the morphology of the chromosome pairs 5-8 can be attributed to intrachromosomal rearrangements, which led to transitions between acrocentric and metacentric chromosomes in both directions. We also documented the first case of spontaneous triploidy among varanids in Varanus albigularis. The triploid individual was fully grown, which demonstrates that polyploidization is compatible with life in this lineage. We found that the W chromosome differs between species in size and heterochromatin content. The varanid Z chromosome is clearly conserved in all the analyzed species. Varanids, in addition to iguanas, caenophidian snakes, and lacertid lizards, are another squamate group with highly conserved sex chromosomes over a long evolutionary time.

Zobrazit více v PubMed

Acosta MJ, Marchal JA, Mitsainas GP, Rovatsos MT, Fernández-Espartero CH, Giagia-Athanasopoulou EB, et al. A new pericentromeric repeated DNA sequence in Microtus thomasi. Cytogenet Genome Res. 2009;124:27–36. PubMed

Alföldi J, Di Palma F, Grabherr M, Williams C, Kong L, Mauceli E, et al. The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature. 2011;477:587–591. PubMed PMC

Altmanová M, Rovatsos M, Johnson Pokorná M, Veselý M, Wagner F, Kratochvíl L. All iguana families with the exception of basilisks share sex chromosomes. Zoology. 2018;126:98–102. PubMed

Altmanová M, Rovatsos M, Kratochvíl L, Johnson Pokorná M. Minute Y chromosomes and karyotype evolution in Madagascan iguanas (Squamata: Iguania: Opluridae) Biol J Linn Soc. 2016;118:618–633.

Augstenová B, Mazzoleni S, Kratochvíl L, Rovatsos M. Evolutionary dynamics of the W chromosome in caenophidian snakes. Genes. 2018;9:5. PubMed PMC

Baumer A, Balmer D, Binkert F, Schinzel A. Parental origin and mechanisms of formation of triploidy: a study of 25 cases. Eur J Hum Genet. 2000;8:911–917. PubMed

Bonaminio G, Fechheimer N. The gonadal histology of triploid chicken (Gallus domesticus) embryos. Genet Sel Evol. 1993;25:205–210.

Chaiprasertsri N, Uno Y, Peyachoknagul S, Prakhongcheep O, Baicharoen S, Charernsuk S, et al. Highly species-specific centromeric repetitive DNA sequences in lizards: Molecular cytogenetic characterization of a novel family of satellite DNA sequences isolated from the water monitor lizard (Varanus salvator macromaculatus, Platynota) J Hered. 2013;104:798–806. PubMed

Dobigny G, Ducroz JF, Robinson TJ, Volobouev V. Cytogenetics and cladistics. Syst Biol. 2004;53:470–484. PubMed

Dutt K. A karyotype study of Varanus monitor Linn. Caryologia. 1968;21:1–10.

De Smet WHO. Description of the orsein stained karyotypes of 136 lizard species (Lacertilia, Reptilia) belonging to the families Teiidae, Scincidae, Lacertidae, Cordylidae and Varanidae (Autarchoglossa) Acta Zool Pathol Antverp. 1981;76:407–420.

Ferguson-Smith MA, Trifonov V. Mammalian karyotype evolution. Nat Rev Genet. 2007;8:950–962. PubMed

Fitch WM. Toward defining the course of evolution: minimum change for a specified tree topology. Syst Zool. 1971;20:406–416.

Gao J, Li Q, Wang Z, Zhou Y, Martelli P, Li F, et al. Sequencing, de novo assembling, and annotating the genome of the endangered Chinese crocodile lizard Shinisaurus crocodilurus. Gigascience. 2017;6:1–6. PubMed PMC

Giovannotti M, Caputo V, O’Brien PCM, Lovell FL, Trifonov V, Cerioni PN, et al. Skinks (Reptilia: Scincidae) have highly conserved karyotypes as revealed by chromosome painting. Cytogenet Genome Res. 2010;127:224–231. PubMed

Gorman GC, Gress F. Chromosome cytology of four boid snakes and a varanid lizard, with comments on the cytosystematics of primitive snakes. Herpetologica. 1970;26:308–317.

Grabbe J, Koch A. First and repeated cases of parthenogenesis in the varanid subgenus Euprepiosaurus (Varanus indicus species group) and the first successful breeding of V. rainerguentheri in captivity. Biawak. 2014;8:79–87.

Graves JAM. Sex chromosome specialization and degeneration in mammals. Cell. 2006;124:901–914. PubMed

Hairston CS, Burchfield PM. The reproduction and husbandry of the water monitor Varanus salvator at the Gladys Porter Zoo, Brownsville. Int Zoo Yearb. 1992;31:124–130.

Hennessy J. Parthenogenesis in an ornate Nile monitor, Varanus ornatus. Biawak. 2010;4:26–30.

Hörenberg T. Parthenogenese bei Varanus glauerti. Draco. 2013;53:29–30.

Iannucci Alessio, Altmanová Marie, Ciofi Claudio, Ferguson-Smith Malcolm, Pereira Jorge C., Rehák Ivan, Stanyon Roscoe, Velenský Petr, Rovatsos Michail, Kratochvíl Lukáš, Johnson Pokorná Martina. Isolating Chromosomes of the Komodo Dragon: New Tools for Comparative Mapping and Sequence Assembly. Cytogenetic and Genome Research. 2019;157(1-2):123–131. PubMed

Janzen FJ, Krenz JG. Phylogenetics: which was first, TSD or GSD? In: Valenzuela N, Lance VA, editors. Temperature dependent sex determination in vertebrates. Washington: Smithsonian Books; 2004. pp. 121–130.

Johnson Pokorná M, Altmanová M, Rovatsos M, Velenský P, Vodička R, Rehák I, et al. First description of the karyotype and sex chromosomes in the Komodo dragon (Varanus komodoensis) Cytogenet Genome Res. 2016;148:284–291. PubMed

Johnson Pokorná M, Kratochvíl L. What was the ancestral sex-determining mechanism in amniote vertebrates? Biol Rev. 2016;91:1–12. PubMed

Johnson Pokorná M, Rovatsos M, Kratochvíl L. Sex chromosomes and karyotype of the (nearly) mythical creature, the Gila monster, Heloderma suspectum (Squamata: Helodermatidae) PLoS ONE. 2014;9:e104716. PubMed PMC

Johnson Pokorná M, Trifonov VA, Rens W, Ferguson-Smith MA, Kratochvíl L. Low rate of interchromosomal rearrangements during old radiation of gekkotan lizards (Squamata: Gekkota) Chromosome Res. 2015;23:299–309. PubMed

King M, King D. Chromosomal evolution in the lizard genus Varanus (Reptilia) Aust J Biol Sci. 1975;28:89–108. PubMed

King M, Mengden GA, King D. A pericentric-inversion polymorphism and a ZZ/ZW sex-chromosome system in Varanus acanthurus Boulenger analysed by G- and C-banding and Ag staining. Genetica. 1982;58:39–45.

Lamborot M, Vásquez M. A triploid lizard (Liolaemus gravenhorsti) from Chile. J Herpetol. 1998;32:617–620.

Lin LH, Wiens JJ. Comparing macroecological patterns across continents: evolution of climatic niche breadth in varanid lizards. Ecography. 2017;40:960–970.

Lithgow PE, O’Connor R, Smith D, Fonseka G, Al Mutery A, Rathje C, et al. Novel tools for characterising inter and intra chromosomal rearrangements in avian microchromosomes. Chromosome Res. 2014;22:85–97. PubMed

Maddison WP, Maddison DR (2018). Mesquite: a modular system for evolutionary analysis. Version 3.51 http://mesquiteproject.org

Matsubara K, O’Meally D, Azad B, Georges A, Sarre SD, Graves JA, et al. Amplification of microsatellite repeat motifs is associated with the evolutionary differentiation and heterochromatinization of sex chromosomes in Sauropsida. Chromosoma. 2016;125:111–123. PubMed

Matsubara K, Sarre SD, Georges A, Matsuda Y, Graves JAM, Ezaz T. Highly differentiated ZW sex microchromosomes in the Australian Varanus species evolved through rapid amplification of repetitive sequences. PLoS ONE. 2014;9:e95226. PubMed PMC

Matsubara K, Tarui H, Toriba M, Yamada K, Nishida-Umehara C, Agata K, et al. Evidence for different origin of sex chromosomes in snakes, birds, and mammals and step-wise differentiation of snake sex chromosomes. Proc Natl Acad Sci. 2006;103:18190–18195. PubMed PMC

Matthey R. Chromosomes de sauriens: Helodermatidae, Varanidae, Xantusiidae, Anniellidae, Anguidae. Bull Soc Vaud Sci Nat. 1931;57:269–270.

Moritz C, Donnellan S, Adams M, Baverstock PR. The origin and evolution of parthenogenesis in Heteronotia binoei (Gekkonidae): extensive genotypic diversity among parthenogens. Evolution. 1989;43:994–1003. PubMed

Neaves WB, Baumann P. Unisexual reproduction among vertebrates. Trends Genet. 2011;27:81–88. PubMed

Olmo E, Signorino GG (2016). Chromorep: a reptiles chromosomes database. http://chromorep.univpm.it/ Accessed 16 October 2017

Patawang I, Tanomtong A. Constitutive heterochromatin observed on metaphase chromosome of Varanus bengalensis by C-banding and DAPI methods. Cytol (Tokyo) 2017;82:1.

Patawang I, Tanomtong A, Getlekha N, Phimphan S, Pinthong K, Neeratanaphan L. Standardized karyotype and idiogram of bengal monitor lizard, Varanus bengalensis (Squamata, Varanidae) Cytol (Tokyo) 2017;82:75–82.

Pianka ER, King DR. Varanoid lizards of the world. Bloomington: Indiana University Press; 2004.

Pokorná M, Giovannotti M, Kratochvíl L, et al. Strong conservation of the bird Z chromosome in reptilian genomes is revealed by comparative painting despite 275 million years divergence. Chromosoma. 2011;120:455–468. PubMed

Pokorná M, Giovannotti M, Kratochvíl L, Caputo V, Olmo E, Ferguson-Smith MA, et al. Conservation of chromosomes syntenic with avian autosomes in squamate reptiles revealed by comparative chromosome painting. Chromosoma. 2012;121:409–418. PubMed

Pokorná M, Kratochvíl L. Phylogeny of sex-determining mechanisms in squamate reptiles: are sex chromosomes an evolutionary trap? Zool J Linn Soc. 2009;156:168–183.

Pokorná M, Kratochvíl L, Kejnovský E. Microsatellite distribution on sex chromosomes at different stages of heteromorphism and heterochromatinization in two lizard species (Squamata: Eublepharidae: Coleonyx elegans and Lacertidae: Eremias velox) BMC Genet. 2011;12:90. PubMed PMC

Pokorná M, Rábová M, Ráb P, Ferguson-Smith MA, Rens W, Kratochvíl L. Differentiation of sex chromosomes and karyotypic evolution in the eye-lid geckos (Squamata: Gekkota: Eublepharidae), a group with different modes of sex determination. Chromosome Res. 2010;18:809–820. PubMed

Pokorná M, Rens W, Rovatsos M, Kratochvíl L. A ZZ/ZW sex chromosome system in the thick-tailed gecko (Underwoodisaurus milii; Squamata: Gekkota: Carphodactylidae), a member of the ancient gecko lineage. Cytogenet Genome Res. 2014;142:190–196. PubMed

Porter C, Haiduk M, De Queiroz K. Evolution and phylogenetic significance of ribosomal gene location in chromosomes of squamate reptiles. Copeia. 1994;1994:302–313.

Pyron RA, Burbrink FT, Wiens JJ. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol Biol. 2013;13:93. PubMed PMC

Rovatsos M, Altmanová M, Johnson Pokorná M, Velenský P, Sánchez Baca A, Kratochvíl L. Evolution of karyotypes in chameleons. Genes. 2017;8:382. PubMed PMC

Rovatsos M, Altmanová M, Johnson Pokorná M, Kratochvíl L. Novel X-linked genes revealed by quantitative polymerase chain reaction in the green anole, Anolis carolinensis. G3. 2014;4:2107–2113. PubMed PMC

Rovatsos M, Altmanová M, Pokorná M, Kratochvíl L. Conserved sex chromosomes across adaptively radiated Anolis lizards. Evolution. 2014;68:2079–2085. PubMed

Rovatsos M, Augstenová B, Altmanová M, Sloboda M, Kodym P, Kratochvíl L. Triploid colubrid snake provides insight into the mechanism of sex determination in advanced snakes. Sex Dev. 2018;12:251–255. PubMed

Rovatsos M, Pokorná M, Altmanová M, Kratochvíl L. Cretaceous park of sex determination: sex chromosomes are conserved across iguanas. Biol Lett. 2014;10:20131093. PubMed PMC

Rovatsos M, Vukić J, Altmanová M, Johnson Pokorná M, Moravec J, Kratochvíl L. Conservation of sex chromosomes in lacertid lizards. Mol Ecol. 2016;25:3120–3126. PubMed

Rovatsos M, Vukić J, Lymberakis P, Kratochvíl L. Evolutionary stability of sex chromosomes in snakes. Proc R Soc B Biol Sci. 2015;282:20151992. PubMed PMC

Rutkowska J, Lagisz M, Nakagawa S. The long and the short of avian W chromosomes: No evidence for gradual W shortening. Biol Lett. 2012;8:636–638. PubMed PMC

Ryskov AP, Osipov FA, Omelchenko AV, Semyenova SK, Girnyk AE, Korchagin VI, et al. The origin of multiple clones in the parthenogenetic lizard species Darevskia rostombekowi. PLoS ONE. 2017;12:e0185161. PubMed PMC

Sarre SD, Georges A, Quinn A. The ends of a continuum: genetic and temperature-dependent sex determination in reptiles. Bioessays. 2004;26:639–645. PubMed

Shetty S, Griffin DK, Graves JAM. Comparative painting reveals strong chromosome homology over 80 million years of bird evolution. Chromosome Res. 1999;7:289–295. PubMed

Shibaike Y, Takahashi Y, Arikura I, Iiizumi R, Kitakawa S, Sakai M, et al. Chromosome evolution in the lizard genus Gekko (Gekkonidae, Squamata, Reptilia) in the East Asian islands. Cytogenet Genome Res. 2009;127:182–190. PubMed

Singh L. Evolution of karyotypes in snakes. Chromosoma. 1972;38:185–236. PubMed

Singh L. Study of mitotic and meiotic chromosomes in seven species of lizards. Proc Zool Soc. 1974;27:57–79.

Singh L, Sharma T, Ray-Chaudhu SP. Chromosome numbers and sex chromosomes in few Indian species of amphibia and reptiles. Mamm Chrom News. 1970;11:91–94.

Skinner BM, Griffin DK. Intrachromosomal rearrangements in avian genome evolution: evidence for regions prone to breakpoints. Heredity. 2012;108:37–41. PubMed PMC

Srikulnath K, Uno Y, Nishida C, Matsuda Y. Karyotype evolution in monitor lizards: cross-species chromosome mapping of cDNA reveals highly conserved synteny and gene order in the Toxicofera clade. Chromosome Res. 2013;21:805–819. PubMed

Stenberg P, Saura A. Meiosis and its deviations in polyploid animals. Cytogenet Genome Res. 2013;140:185–203. PubMed

Sumner AT. A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res. 1972;75:304–306. PubMed

Tiersch TR, Figiel CR. A triploid snake. Copeia. 1991;1991:838–841.

Trifonov VA, Giovannotti M, O’Brien PCM, Wallduck M, Lovell F, Rens W, et al. Chromosomal evolution in Gekkonidae. I. Chromosome painting between Gekko and Hemidactylus species reveals phylogenetic relationships within the group. Chromosome Res. 2011;19:843–855. PubMed

Trifonov VA, Paoletti A, Caputo Barucchi V, Kalinina T, O’Brien PC, Ferguson-Smith MA, Giovannotti M. Comparative chromosome painting and NOR distribution suggest a complex hybrid origin of triploid Lepidodactylus lugubris (Gekkonidae) PLoS ONE. 2015;10:1–13. PubMed PMC

Trukhina AV, Smirnov AF. Problems of birds sex determination. Nat Sci. 2014;6:1232–1240.

Uetz P, Hošek J (2017). The reptile database. http://www.reptile-database.org/. Accessed 16 October 2017

Valenzuela N, Adams DC, Janzen FJ. Pattern does not equal process: exactly when is sex environmentally determined? Am Nat. 2003;161:676–683. PubMed

Valenzuela N, Lance VA. Temperature dependent sex determination in vertebrates. Washington: Smithsonian Books; 2004.

Vicoso B, Emerson JJ, Zektser Y, Mahajan S, Bachtrog D. Comparative sex chromosome genomics in snakes: differentiation, evolutionary strata, and lack of global dosage compensation. PLoS Biol. 2013;11:e1001643. PubMed PMC

Vidal N, Hedges SB. The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes. Comptes Rendus – Biol. 2005;328:1000–1008. PubMed

Vidal N, Marin J, Sassi J, Battistuzzi FU, Donnellan S, Fitch AJ, et al. Molecular evidence for an Asian origin of monitor lizards followed by Tertiary dispersals to Africa and Australasia. Biol Lett. 2012;8:853–855. PubMed PMC

Waters PD, Wallis MC, Marshall Graves JA. Mammalian sex—origin and evolution of the Y chromosome and SRY. Semin Cell Dev Biol. 2007;18:389–400. PubMed

Watts PC, Buley KR, Sanderson S, Boardman W, Ciofi C, Gibson R. Parthenogenesis in Komodo dragons. Nature. 2006;444:1021–1022. PubMed

Wiechmann R. Eigene Beobachtungen zur Parthenogenese bei Waranen. Elaphe. 2011;19:55–61.

Wiechmann R. Observations on parthenogenesis in monitor lizards. Biawak. 2012;6:11–21.

Zheng Y, Wiens JJ. Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Mol Phylogenet Evol. 2016;94:537–547. PubMed

Zhou Q, Zhang J, Bachtrog D, An N, Huang Q, Jarvis ED, et al. Complex evolutionary trajectories of sex chromosomes across bird taxa. Science. 2014;346:1246338. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Natural repeated backcrosses lead to triploidy and tetraploidy in parthenogenetic butterfly lizards (Leiolepis: Agamidae)

. 2025 Jan 24 ; 15 (1) : 3094. [epub] 20250124

Turnover of sex chromosomes in the Lake Tanganyika cichlid tribe Tropheini (Teleostei: Cichlidae)

. 2024 Jan 30 ; 14 (1) : 2471. [epub] 20240130

Madagascar Leaf-Tail Geckos (Uroplatus spp.) Share Independently Evolved Differentiated ZZ/ZW Sex Chromosomes

. 2023 Jan 09 ; 12 (2) : . [epub] 20230109

Sex chromosome evolution among amniotes: is the origin of sex chromosomes non-random?

. 2021 Sep 13 ; 376 (1833) : 20200108. [epub] 20210726

A brief review of vertebrate sex evolution with a pledge for integrative research: towards 'sexomics'

. 2021 Aug 30 ; 376 (1832) : 20200426. [epub] 20210712

Are Geckos Special in Sex Determination? Independently Evolved Differentiated ZZ/ZW Sex Chromosomes in Carphodactylid Geckos

. 2021 Jul 06 ; 13 (7) : .

Cytogenetic Evidence for Sex Chromosomes and Karyotype Evolution in Anguimorphan Lizards

. 2021 Jun 28 ; 10 (7) : . [epub] 20210628

With or Without W? Molecular and Cytogenetic Markers are Not Sufficient for Identification of Environmentally-Induced Sex Reversal in the Bearded Dragon

. 2021 ; 15 (4) : 272-281. [epub] 20210323

Poorly differentiated XX/XY sex chromosomes are widely shared across skink radiation

. 2021 Jan 27 ; 288 (1943) : 20202139. [epub] 20210120

Cross-Species BAC Mapping Highlights Conservation of Chromosome Synteny across Dragon Lizards (Squamata: Agamidae)

. 2020 Jun 25 ; 11 (6) : . [epub] 20200625

Evolutionary Variability of W-Linked Repetitive Content in Lacertid Lizards

. 2020 May 11 ; 11 (5) : . [epub] 20200511

Sex is determined by XX/XY sex chromosomes in Australasian side-necked turtles (Testudines: Chelidae)

. 2020 Mar 09 ; 10 (1) : 4276. [epub] 20200309

ZZ/ZW Sex Determination with Multiple Neo-Sex Chromosomes is Common in Madagascan Chameleons of the Genus Furcifer (Reptilia: Chamaeleonidae)

. 2019 Dec 06 ; 10 (12) : . [epub] 20191206

Little evidence for switches to environmental sex determination and turnover of sex chromosomes in lacertid lizards

. 2019 May 24 ; 9 (1) : 7832. [epub] 20190524

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...