Conserved sex chromosomes and karyotype evolution in monitor lizards (Varanidae)
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
17-22141Y
Grantová Agentura České Republiky (Grant Agency of the Czech Republic) - International
PubMed
30670841
PubMed Central
PMC6781170
DOI
10.1038/s41437-018-0179-6
PII: 10.1038/s41437-018-0179-6
Knihovny.cz E-zdroje
- MeSH
- heterochromatin genetika MeSH
- ještěři genetika MeSH
- karyotyp MeSH
- karyotypizace metody MeSH
- molekulární evoluce MeSH
- pohlavní chromozomy genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- heterochromatin MeSH
Despite their long history with the basal split dating back to the Eocene, all species of monitor lizards (family Varanidae) studied so far share the same chromosome number of 2n = 40. However, there are differences in the morphology of the macrochromosome pairs 5-8. Further, sex determination, which revealed ZZ/ZW sex microchromosomes, was studied only in a few varanid species and only with techniques that did not test their homology. The aim of this study was to (i) test if cryptic interchromosomal rearrangements of larger chromosomal blocks occurred during the karyotype evolution of this group, (ii) contribute to the reconstruction of the varanid ancestral karyotype, and (iii) test homology of sex chromosomes among varanids. We investigated these issues by hybridizing flow sorted chromosome paints from Varanus komodoensis to metaphases of nine species of monitor lizards. The results show that differences in the morphology of the chromosome pairs 5-8 can be attributed to intrachromosomal rearrangements, which led to transitions between acrocentric and metacentric chromosomes in both directions. We also documented the first case of spontaneous triploidy among varanids in Varanus albigularis. The triploid individual was fully grown, which demonstrates that polyploidization is compatible with life in this lineage. We found that the W chromosome differs between species in size and heterochromatin content. The varanid Z chromosome is clearly conserved in all the analyzed species. Varanids, in addition to iguanas, caenophidian snakes, and lacertid lizards, are another squamate group with highly conserved sex chromosomes over a long evolutionary time.
Department of Biology University of Florence Via Madonna del Piano 6 50019 Sesto Fiorentino FI Italy
Department of Ecology Charles University Viničná 7 128 00 Prague Czech Republic
Prague Zoological Garden U Trojského zámku 120 3 171 00 Prague Czech Republic
Zobrazit více v PubMed
Acosta MJ, Marchal JA, Mitsainas GP, Rovatsos MT, Fernández-Espartero CH, Giagia-Athanasopoulou EB, et al. A new pericentromeric repeated DNA sequence in Microtus thomasi. Cytogenet Genome Res. 2009;124:27–36. PubMed
Alföldi J, Di Palma F, Grabherr M, Williams C, Kong L, Mauceli E, et al. The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature. 2011;477:587–591. PubMed PMC
Altmanová M, Rovatsos M, Johnson Pokorná M, Veselý M, Wagner F, Kratochvíl L. All iguana families with the exception of basilisks share sex chromosomes. Zoology. 2018;126:98–102. PubMed
Altmanová M, Rovatsos M, Kratochvíl L, Johnson Pokorná M. Minute Y chromosomes and karyotype evolution in Madagascan iguanas (Squamata: Iguania: Opluridae) Biol J Linn Soc. 2016;118:618–633.
Augstenová B, Mazzoleni S, Kratochvíl L, Rovatsos M. Evolutionary dynamics of the W chromosome in caenophidian snakes. Genes. 2018;9:5. PubMed PMC
Baumer A, Balmer D, Binkert F, Schinzel A. Parental origin and mechanisms of formation of triploidy: a study of 25 cases. Eur J Hum Genet. 2000;8:911–917. PubMed
Bonaminio G, Fechheimer N. The gonadal histology of triploid chicken (Gallus domesticus) embryos. Genet Sel Evol. 1993;25:205–210.
Chaiprasertsri N, Uno Y, Peyachoknagul S, Prakhongcheep O, Baicharoen S, Charernsuk S, et al. Highly species-specific centromeric repetitive DNA sequences in lizards: Molecular cytogenetic characterization of a novel family of satellite DNA sequences isolated from the water monitor lizard (Varanus salvator macromaculatus, Platynota) J Hered. 2013;104:798–806. PubMed
Dobigny G, Ducroz JF, Robinson TJ, Volobouev V. Cytogenetics and cladistics. Syst Biol. 2004;53:470–484. PubMed
Dutt K. A karyotype study of Varanus monitor Linn. Caryologia. 1968;21:1–10.
De Smet WHO. Description of the orsein stained karyotypes of 136 lizard species (Lacertilia, Reptilia) belonging to the families Teiidae, Scincidae, Lacertidae, Cordylidae and Varanidae (Autarchoglossa) Acta Zool Pathol Antverp. 1981;76:407–420.
Ferguson-Smith MA, Trifonov V. Mammalian karyotype evolution. Nat Rev Genet. 2007;8:950–962. PubMed
Fitch WM. Toward defining the course of evolution: minimum change for a specified tree topology. Syst Zool. 1971;20:406–416.
Gao J, Li Q, Wang Z, Zhou Y, Martelli P, Li F, et al. Sequencing, de novo assembling, and annotating the genome of the endangered Chinese crocodile lizard Shinisaurus crocodilurus. Gigascience. 2017;6:1–6. PubMed PMC
Giovannotti M, Caputo V, O’Brien PCM, Lovell FL, Trifonov V, Cerioni PN, et al. Skinks (Reptilia: Scincidae) have highly conserved karyotypes as revealed by chromosome painting. Cytogenet Genome Res. 2010;127:224–231. PubMed
Gorman GC, Gress F. Chromosome cytology of four boid snakes and a varanid lizard, with comments on the cytosystematics of primitive snakes. Herpetologica. 1970;26:308–317.
Grabbe J, Koch A. First and repeated cases of parthenogenesis in the varanid subgenus Euprepiosaurus (Varanus indicus species group) and the first successful breeding of V. rainerguentheri in captivity. Biawak. 2014;8:79–87.
Graves JAM. Sex chromosome specialization and degeneration in mammals. Cell. 2006;124:901–914. PubMed
Hairston CS, Burchfield PM. The reproduction and husbandry of the water monitor Varanus salvator at the Gladys Porter Zoo, Brownsville. Int Zoo Yearb. 1992;31:124–130.
Hennessy J. Parthenogenesis in an ornate Nile monitor, Varanus ornatus. Biawak. 2010;4:26–30.
Hörenberg T. Parthenogenese bei Varanus glauerti. Draco. 2013;53:29–30.
Iannucci Alessio, Altmanová Marie, Ciofi Claudio, Ferguson-Smith Malcolm, Pereira Jorge C., Rehák Ivan, Stanyon Roscoe, Velenský Petr, Rovatsos Michail, Kratochvíl Lukáš, Johnson Pokorná Martina. Isolating Chromosomes of the Komodo Dragon: New Tools for Comparative Mapping and Sequence Assembly. Cytogenetic and Genome Research. 2019;157(1-2):123–131. PubMed
Janzen FJ, Krenz JG. Phylogenetics: which was first, TSD or GSD? In: Valenzuela N, Lance VA, editors. Temperature dependent sex determination in vertebrates. Washington: Smithsonian Books; 2004. pp. 121–130.
Johnson Pokorná M, Altmanová M, Rovatsos M, Velenský P, Vodička R, Rehák I, et al. First description of the karyotype and sex chromosomes in the Komodo dragon (Varanus komodoensis) Cytogenet Genome Res. 2016;148:284–291. PubMed
Johnson Pokorná M, Kratochvíl L. What was the ancestral sex-determining mechanism in amniote vertebrates? Biol Rev. 2016;91:1–12. PubMed
Johnson Pokorná M, Rovatsos M, Kratochvíl L. Sex chromosomes and karyotype of the (nearly) mythical creature, the Gila monster, Heloderma suspectum (Squamata: Helodermatidae) PLoS ONE. 2014;9:e104716. PubMed PMC
Johnson Pokorná M, Trifonov VA, Rens W, Ferguson-Smith MA, Kratochvíl L. Low rate of interchromosomal rearrangements during old radiation of gekkotan lizards (Squamata: Gekkota) Chromosome Res. 2015;23:299–309. PubMed
King M, King D. Chromosomal evolution in the lizard genus Varanus (Reptilia) Aust J Biol Sci. 1975;28:89–108. PubMed
King M, Mengden GA, King D. A pericentric-inversion polymorphism and a ZZ/ZW sex-chromosome system in Varanus acanthurus Boulenger analysed by G- and C-banding and Ag staining. Genetica. 1982;58:39–45.
Lamborot M, Vásquez M. A triploid lizard (Liolaemus gravenhorsti) from Chile. J Herpetol. 1998;32:617–620.
Lin LH, Wiens JJ. Comparing macroecological patterns across continents: evolution of climatic niche breadth in varanid lizards. Ecography. 2017;40:960–970.
Lithgow PE, O’Connor R, Smith D, Fonseka G, Al Mutery A, Rathje C, et al. Novel tools for characterising inter and intra chromosomal rearrangements in avian microchromosomes. Chromosome Res. 2014;22:85–97. PubMed
Maddison WP, Maddison DR (2018). Mesquite: a modular system for evolutionary analysis. Version 3.51 http://mesquiteproject.org
Matsubara K, O’Meally D, Azad B, Georges A, Sarre SD, Graves JA, et al. Amplification of microsatellite repeat motifs is associated with the evolutionary differentiation and heterochromatinization of sex chromosomes in Sauropsida. Chromosoma. 2016;125:111–123. PubMed
Matsubara K, Sarre SD, Georges A, Matsuda Y, Graves JAM, Ezaz T. Highly differentiated ZW sex microchromosomes in the Australian Varanus species evolved through rapid amplification of repetitive sequences. PLoS ONE. 2014;9:e95226. PubMed PMC
Matsubara K, Tarui H, Toriba M, Yamada K, Nishida-Umehara C, Agata K, et al. Evidence for different origin of sex chromosomes in snakes, birds, and mammals and step-wise differentiation of snake sex chromosomes. Proc Natl Acad Sci. 2006;103:18190–18195. PubMed PMC
Matthey R. Chromosomes de sauriens: Helodermatidae, Varanidae, Xantusiidae, Anniellidae, Anguidae. Bull Soc Vaud Sci Nat. 1931;57:269–270.
Moritz C, Donnellan S, Adams M, Baverstock PR. The origin and evolution of parthenogenesis in Heteronotia binoei (Gekkonidae): extensive genotypic diversity among parthenogens. Evolution. 1989;43:994–1003. PubMed
Neaves WB, Baumann P. Unisexual reproduction among vertebrates. Trends Genet. 2011;27:81–88. PubMed
Olmo E, Signorino GG (2016). Chromorep: a reptiles chromosomes database. http://chromorep.univpm.it/ Accessed 16 October 2017
Patawang I, Tanomtong A. Constitutive heterochromatin observed on metaphase chromosome of Varanus bengalensis by C-banding and DAPI methods. Cytol (Tokyo) 2017;82:1.
Patawang I, Tanomtong A, Getlekha N, Phimphan S, Pinthong K, Neeratanaphan L. Standardized karyotype and idiogram of bengal monitor lizard, Varanus bengalensis (Squamata, Varanidae) Cytol (Tokyo) 2017;82:75–82.
Pianka ER, King DR. Varanoid lizards of the world. Bloomington: Indiana University Press; 2004.
Pokorná M, Giovannotti M, Kratochvíl L, et al. Strong conservation of the bird Z chromosome in reptilian genomes is revealed by comparative painting despite 275 million years divergence. Chromosoma. 2011;120:455–468. PubMed
Pokorná M, Giovannotti M, Kratochvíl L, Caputo V, Olmo E, Ferguson-Smith MA, et al. Conservation of chromosomes syntenic with avian autosomes in squamate reptiles revealed by comparative chromosome painting. Chromosoma. 2012;121:409–418. PubMed
Pokorná M, Kratochvíl L. Phylogeny of sex-determining mechanisms in squamate reptiles: are sex chromosomes an evolutionary trap? Zool J Linn Soc. 2009;156:168–183.
Pokorná M, Kratochvíl L, Kejnovský E. Microsatellite distribution on sex chromosomes at different stages of heteromorphism and heterochromatinization in two lizard species (Squamata: Eublepharidae: Coleonyx elegans and Lacertidae: Eremias velox) BMC Genet. 2011;12:90. PubMed PMC
Pokorná M, Rábová M, Ráb P, Ferguson-Smith MA, Rens W, Kratochvíl L. Differentiation of sex chromosomes and karyotypic evolution in the eye-lid geckos (Squamata: Gekkota: Eublepharidae), a group with different modes of sex determination. Chromosome Res. 2010;18:809–820. PubMed
Pokorná M, Rens W, Rovatsos M, Kratochvíl L. A ZZ/ZW sex chromosome system in the thick-tailed gecko (Underwoodisaurus milii; Squamata: Gekkota: Carphodactylidae), a member of the ancient gecko lineage. Cytogenet Genome Res. 2014;142:190–196. PubMed
Porter C, Haiduk M, De Queiroz K. Evolution and phylogenetic significance of ribosomal gene location in chromosomes of squamate reptiles. Copeia. 1994;1994:302–313.
Pyron RA, Burbrink FT, Wiens JJ. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol Biol. 2013;13:93. PubMed PMC
Rovatsos M, Altmanová M, Johnson Pokorná M, Velenský P, Sánchez Baca A, Kratochvíl L. Evolution of karyotypes in chameleons. Genes. 2017;8:382. PubMed PMC
Rovatsos M, Altmanová M, Johnson Pokorná M, Kratochvíl L. Novel X-linked genes revealed by quantitative polymerase chain reaction in the green anole, Anolis carolinensis. G3. 2014;4:2107–2113. PubMed PMC
Rovatsos M, Altmanová M, Pokorná M, Kratochvíl L. Conserved sex chromosomes across adaptively radiated Anolis lizards. Evolution. 2014;68:2079–2085. PubMed
Rovatsos M, Augstenová B, Altmanová M, Sloboda M, Kodym P, Kratochvíl L. Triploid colubrid snake provides insight into the mechanism of sex determination in advanced snakes. Sex Dev. 2018;12:251–255. PubMed
Rovatsos M, Pokorná M, Altmanová M, Kratochvíl L. Cretaceous park of sex determination: sex chromosomes are conserved across iguanas. Biol Lett. 2014;10:20131093. PubMed PMC
Rovatsos M, Vukić J, Altmanová M, Johnson Pokorná M, Moravec J, Kratochvíl L. Conservation of sex chromosomes in lacertid lizards. Mol Ecol. 2016;25:3120–3126. PubMed
Rovatsos M, Vukić J, Lymberakis P, Kratochvíl L. Evolutionary stability of sex chromosomes in snakes. Proc R Soc B Biol Sci. 2015;282:20151992. PubMed PMC
Rutkowska J, Lagisz M, Nakagawa S. The long and the short of avian W chromosomes: No evidence for gradual W shortening. Biol Lett. 2012;8:636–638. PubMed PMC
Ryskov AP, Osipov FA, Omelchenko AV, Semyenova SK, Girnyk AE, Korchagin VI, et al. The origin of multiple clones in the parthenogenetic lizard species Darevskia rostombekowi. PLoS ONE. 2017;12:e0185161. PubMed PMC
Sarre SD, Georges A, Quinn A. The ends of a continuum: genetic and temperature-dependent sex determination in reptiles. Bioessays. 2004;26:639–645. PubMed
Shetty S, Griffin DK, Graves JAM. Comparative painting reveals strong chromosome homology over 80 million years of bird evolution. Chromosome Res. 1999;7:289–295. PubMed
Shibaike Y, Takahashi Y, Arikura I, Iiizumi R, Kitakawa S, Sakai M, et al. Chromosome evolution in the lizard genus Gekko (Gekkonidae, Squamata, Reptilia) in the East Asian islands. Cytogenet Genome Res. 2009;127:182–190. PubMed
Singh L. Evolution of karyotypes in snakes. Chromosoma. 1972;38:185–236. PubMed
Singh L. Study of mitotic and meiotic chromosomes in seven species of lizards. Proc Zool Soc. 1974;27:57–79.
Singh L, Sharma T, Ray-Chaudhu SP. Chromosome numbers and sex chromosomes in few Indian species of amphibia and reptiles. Mamm Chrom News. 1970;11:91–94.
Skinner BM, Griffin DK. Intrachromosomal rearrangements in avian genome evolution: evidence for regions prone to breakpoints. Heredity. 2012;108:37–41. PubMed PMC
Srikulnath K, Uno Y, Nishida C, Matsuda Y. Karyotype evolution in monitor lizards: cross-species chromosome mapping of cDNA reveals highly conserved synteny and gene order in the Toxicofera clade. Chromosome Res. 2013;21:805–819. PubMed
Stenberg P, Saura A. Meiosis and its deviations in polyploid animals. Cytogenet Genome Res. 2013;140:185–203. PubMed
Sumner AT. A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res. 1972;75:304–306. PubMed
Tiersch TR, Figiel CR. A triploid snake. Copeia. 1991;1991:838–841.
Trifonov VA, Giovannotti M, O’Brien PCM, Wallduck M, Lovell F, Rens W, et al. Chromosomal evolution in Gekkonidae. I. Chromosome painting between Gekko and Hemidactylus species reveals phylogenetic relationships within the group. Chromosome Res. 2011;19:843–855. PubMed
Trifonov VA, Paoletti A, Caputo Barucchi V, Kalinina T, O’Brien PC, Ferguson-Smith MA, Giovannotti M. Comparative chromosome painting and NOR distribution suggest a complex hybrid origin of triploid Lepidodactylus lugubris (Gekkonidae) PLoS ONE. 2015;10:1–13. PubMed PMC
Trukhina AV, Smirnov AF. Problems of birds sex determination. Nat Sci. 2014;6:1232–1240.
Uetz P, Hošek J (2017). The reptile database. http://www.reptile-database.org/. Accessed 16 October 2017
Valenzuela N, Adams DC, Janzen FJ. Pattern does not equal process: exactly when is sex environmentally determined? Am Nat. 2003;161:676–683. PubMed
Valenzuela N, Lance VA. Temperature dependent sex determination in vertebrates. Washington: Smithsonian Books; 2004.
Vicoso B, Emerson JJ, Zektser Y, Mahajan S, Bachtrog D. Comparative sex chromosome genomics in snakes: differentiation, evolutionary strata, and lack of global dosage compensation. PLoS Biol. 2013;11:e1001643. PubMed PMC
Vidal N, Hedges SB. The phylogeny of squamate reptiles (lizards, snakes, and amphisbaenians) inferred from nine nuclear protein-coding genes. Comptes Rendus – Biol. 2005;328:1000–1008. PubMed
Vidal N, Marin J, Sassi J, Battistuzzi FU, Donnellan S, Fitch AJ, et al. Molecular evidence for an Asian origin of monitor lizards followed by Tertiary dispersals to Africa and Australasia. Biol Lett. 2012;8:853–855. PubMed PMC
Waters PD, Wallis MC, Marshall Graves JA. Mammalian sex—origin and evolution of the Y chromosome and SRY. Semin Cell Dev Biol. 2007;18:389–400. PubMed
Watts PC, Buley KR, Sanderson S, Boardman W, Ciofi C, Gibson R. Parthenogenesis in Komodo dragons. Nature. 2006;444:1021–1022. PubMed
Wiechmann R. Eigene Beobachtungen zur Parthenogenese bei Waranen. Elaphe. 2011;19:55–61.
Wiechmann R. Observations on parthenogenesis in monitor lizards. Biawak. 2012;6:11–21.
Zheng Y, Wiens JJ. Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Mol Phylogenet Evol. 2016;94:537–547. PubMed
Zhou Q, Zhang J, Bachtrog D, An N, Huang Q, Jarvis ED, et al. Complex evolutionary trajectories of sex chromosomes across bird taxa. Science. 2014;346:1246338. PubMed PMC
Turnover of sex chromosomes in the Lake Tanganyika cichlid tribe Tropheini (Teleostei: Cichlidae)
Sex chromosome evolution among amniotes: is the origin of sex chromosomes non-random?
Cytogenetic Evidence for Sex Chromosomes and Karyotype Evolution in Anguimorphan Lizards
Poorly differentiated XX/XY sex chromosomes are widely shared across skink radiation
Evolutionary Variability of W-Linked Repetitive Content in Lacertid Lizards