Cross-Species BAC Mapping Highlights Conservation of Chromosome Synteny across Dragon Lizards (Squamata: Agamidae)
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32630412
PubMed Central
PMC7348930
DOI
10.3390/genes11060698
PII: genes11060698
Knihovny.cz E-zdroje
- Klíčová slova
- BACs, FISH, agamid lizards, evolution, sex chromosomes, synteny,
- MeSH
- analýza určování pohlaví metody MeSH
- cytogenetika metody MeSH
- hadi genetika růst a vývoj MeSH
- ještěři genetika růst a vývoj MeSH
- karyotypizace MeSH
- molekulární evoluce * MeSH
- pohlavní chromozomy genetika MeSH
- procesy určující pohlaví genetika MeSH
- syntenie genetika MeSH
- umělé bakteriální chromozomy genetika MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Dragon lizards (Squamata: Agamidae) comprise about 520 species in six subfamilies distributed across Asia, Australasia and Africa. Only five species are known to have sex chromosomes. All of them possess ZZ/ZW sex chromosomes, which are microchromosomes in four species from the subfamily Amphibolurinae, but much larger in Phrynocephalus vlangalii from the subfamily Agaminae. In most previous studies of these sex chromosomes, the focus has been on Australian species from the subfamily Amphibolurinae, but only the sex chromosomes of the Australian central bearded dragon (Pogona vitticeps) are well-characterized cytogenetically. To determine the level of synteny of the sex chromosomes of P. vitticeps across agamid subfamilies, we performed cross-species two-colour FISH using two bacterial artificial chromosome (BAC) clones from the pseudo-autosomal regions of P. vitticeps. We mapped these two BACs across representative species from all six subfamilies as well as two species of chameleons, the sister group to agamids. We found that one of these BAC sequences is conserved in macrochromosomes and the other in microchromosomes across the agamid lineages. However, within the Amphibolurinae, there is evidence of multiple chromosomal rearrangements with one of the BACs mapping to the second-largest chromosome pair and to the microchromosomes in multiple species including the sex chromosomes of P. vitticeps. Intriguingly, no hybridization signal was observed in chameleons for either of these BACs, suggesting a likely agamid origin of these sequences. Our study shows lineage-specific evolution of sequences/syntenic blocks and successive rearrangements and reveals a complex history of sequences leading to their association with important biological processes such as the evolution of sex chromosomes and sex determination.
Bell Museum of Natural History University of Minnesota 2088 Larpenteur Ave W St Paul MN 55113 USA
Department of Biological Sciences Marquette University Milwaukee WI 53233 USA
Department of Ecology Faculty of Science Charles University 12844 Prague Czech Republic
Institute for Applied Ecology University of Canberra Bruce ACT 2617 Australia
Milwaukee Public Museum 800 W Wells St Milwaukee WI 53233 USA
Zobrazit více v PubMed
Alam S.M.I., Sarre S.D., Gleeson D., Georges A., Ezaz T. Did lizards follow unique pathways in sex chromosome evolution? Genes. 2018;9:239. doi: 10.3390/genes9050239. PubMed DOI PMC
Ezaz T., Sarre S.D., O’Meally D., Graves J.A., Georges A. Sex chromosome evolution in lizards: Independent origins and rapid transitions. Cytogenet. Genome Res. 2009;127:249–260. doi: 10.1159/000300507. PubMed DOI
Valenzuela N., Lance V. Temperature-Dependent Sex Determination in Vertebrates. Smithsonian Books; Washington, DC, USA: 2004.
Olmo E., Signorino G. Chromorep: A Reptile Chromosomes Database. [(accessed on 30 March 2018)]; Available online: www.chromorep.univpm.it.
Ezaz T., Srikulnath K., Graves J.A.M. Origin of amniote sex chromosomes: An ancestral super-sex chromosome, or common requirements? J. Hered. 2017;108:94–105. doi: 10.1093/jhered/esw053. PubMed DOI
Uetz P., Freed P., Hošek J. The Reptile Database. [(accessed on 14 February 2020)]; Available online: http://reptile-database.org.
Ezaz T., Quinn A.E., Sarre S.D., O’Meally D., Georges A., Graves J.A.M. Molecular marker suggests rapid changes of sex-determining mechanisms in Australian dragon lizards. Chromosome Res. 2009;17:91–98. doi: 10.1007/s10577-008-9019-5. PubMed DOI
Deakin J.E., Ezaz T. Understanding the evolution of reptile chromosomes through applications of combined cytogenetics and genomics approaches. Cytogenet. Genome Res. 2019;157:7–20. doi: 10.1159/000495974. PubMed DOI
Deakin J.E., Potter S., O’Neill R., Ruiz-Herrera A., Cioffi M.B., Eldridge M.D., Fukui K., Marshall Graves J.A., Griffin D., Grutzner F. Chromosomics: Bridging the gap between genomes and chromosomes. Genes. 2019;10:627. doi: 10.3390/genes10080627. PubMed DOI PMC
Deakin J.E., Ezaz T. Tracing the evolution of amniote chromosomes. Chromosoma. 2014;123:201–216. doi: 10.1007/s00412-014-0456-y. PubMed DOI PMC
O’Meally D., Ezaz T., Georges A., Sarre S.D., Graves J.A.M. Are some chromosomes particularly good at sex? Insights from amniotes. Chromosome Res. 2012;20:7–19. doi: 10.1007/s10577-011-9266-8. PubMed DOI
Matsubara K., Tarui H., Toriba M., Yamada K., Nishida-Umehara C., Agata K., Matsuda Y. Evidence for different origin of sex chromosomes in snakes, birds, and mammals and step-wise differentiation of snake sex chromosomes. Proc. Natl. Acad. Sci. USA. 2006;103:18190–18195. doi: 10.1073/pnas.0605274103. PubMed DOI PMC
Ezaz T., Moritz B., Waters P., Marshall Graves J.A., Georges A., Sarre S.D. The ZW sex microchromosomes of an Australian dragon lizard share no homology with those of other reptiles or birds. Chromosome Res. 2009;17:965–973. doi: 10.1007/s10577-009-9102-6. PubMed DOI
Kawai A., Ishijima J., Nishida C., Kosaka A., Ota H., Kohno S.-I., Matsuda Y. The ZW sex chromosomes of Gekko hokouensis (Gekkonidae, Squamata) represent highly conserved homology with those of avian species. Chromosoma. 2009;118:43–51. doi: 10.1007/s00412-008-0176-2. PubMed DOI
Alföldi J., di Palma F., Grabherr M., Williams C., Kong L., Mauceli E., Russell P., Lowe C.B., Glor R.E., Jaffe J.D., et al. The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature. 2011;477:587–591. doi: 10.1038/nature10390. PubMed DOI PMC
Srikulnath K., Matsubara K., Uno Y., Nishida C., Olsson M., Matsuda Y. Identification of the linkage group of the Z sex chromosomes of the sand lizard (Lacerta agilis, Lacertidae) and elucidation of karyotype evolution in lacertid lizards. Chromosoma. 2014;123:563–575. doi: 10.1007/s00412-014-0467-8. PubMed DOI
Srikulnath K., Nishida C., Matsubara K., Uno Y., Thongpan A., Suputtitada S., Apisitwanich S., Matsuda Y. Karyotypic evolution in squamate reptiles: Comparative gene mapping revealed highly conserved linkage homology between the butterfly lizard (Leiolepis reevesii rubritaeniata, Agamidae, Lacertilia) and the Japanese four-striped rat snake (Elaphe quadrivirgata, Colubridae, Serpentes) Chromosome Res. 2009;17:975–986. PubMed
Srikulnath K., Uno Y., Nishida C., Matsuda Y. Karyotype evolution in monitor lizards: Cross-species chromosome mapping of cDNA reveals highly conserved synteny and gene order in the Toxicofera clade. Chromosome Res. 2013;21:805–819. doi: 10.1007/s10577-013-9398-0. PubMed DOI
Harlow P. Temperature-dependent sex determination in lizards. In: Valenzuela N., Lance V., editors. Temperature-Dependent Sex Determination in Vertebrates. Smithsonian Books; Washington, DC, USA: 2004. pp. 42–52.
Ezaz T., Quinn A.E., Miura I., Sarre S.D., Georges A., Graves J.A.M. The dragon lizard Pogona vitticeps has ZZ/ZW micro-sex chromosomes. Chromosome Res. 2005;13:763–776. doi: 10.1007/s10577-005-1010-9. PubMed DOI
Harlow P.S. Ph.D. Thesis. Macquarie University; Sydney, Australia: 2001. The Ecology of Sex-Determining Mechanisms in Australian Agamid Lizards.
Holleley C.E., O’Meally D., Sarre S.D., Graves J.A.M., Ezaz T., Matsubara K., Azad B., Zhang X., Georges A. Sex reversal triggers the rapid transition from genetic to temperature-dependent sex. Nature. 2015;523:79–82. doi: 10.1038/nature14574. PubMed DOI
Quinn A.E., Georges A., Sarre S.D., Guarino F., Ezaz T., Graves J.A.M. Temperature sex reversal implies sex gene dosage in a reptile. Science. 2007;316:411. doi: 10.1126/science.1135925. PubMed DOI
Pyron R.A., Burbrink F.T., Wiens J.J. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol. 2013;13:93. doi: 10.1186/1471-2148-13-93. PubMed DOI PMC
Zheng Y., Wiens J.J. Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Mol. Phylogenet. Evol. 2016;94:537–547. doi: 10.1016/j.ympev.2015.10.009. PubMed DOI
Rovatsos M., Altmanová M., Johnson Pokorná M., Velenský P., Sánchez Baca A., Kratochvíl L. Evolution of karyotypes in chameleons. Genes. 2017;8:382. doi: 10.3390/genes8120382. PubMed DOI PMC
Nielsen S.V., Banks J.L., Diaz R.E., Trainor P.A., Gamble T. Dynamic sex chromosomes in Old World chameleons (Squamata: Chamaeleonidae) J. Evol. Biol. 2018;31:484–490. doi: 10.1111/jeb.13242. PubMed DOI
Altmanová M., Rovatsos M., Johnson Pokorná M., Veselý M., Wagner F., Kratochvíl L. All iguana families with the exception of basilisks share sex chromosomes. Zoology. 2018;126:98–102. doi: 10.1016/j.zool.2017.11.007. PubMed DOI
Nielsen S.V., Guzmán-Méndez I.A., Gamble T., Blumer M., Pinto B.J., Kratochvíl L., Rovatsos M. Escaping the evolutionary trap? Sex chromosome turnover in basilisks and related lizards (Corytophanidae: Squamata) Biol. Lett. 2019;15:20190498. doi: 10.1098/rsbl.2019.0498. PubMed DOI PMC
Hugall A.F., Foster R., Hutchinson M., Lee M.S.Y. Phylogeny of Australasian agamid lizards based on nuclear and mitochondrial genes: Implications for morphological evolution and biogeography. Biol. J. Linn. Soc. 2008;93:343–358. doi: 10.1111/j.1095-8312.2007.00911.x. DOI
Grismer J.L., Bauer A.M., Grismer L.L., Thirakhupt K., Aowphol A., Oaks J.R., Wood P.L., Jr., Onn C.K., Thy N., Cota M., et al. Multiple origins of parthenogenesis, and a revised species phylogeny for the Southeast Asian butterfly lizards, Leiolepis. Biol. J. Linn. Soc. 2014;113:1080–1093. doi: 10.1111/bij.12367. DOI
Miller K.L., Rico S.C., Muletz-Wolz C.R., Campana M.G., McInerney N., Augustine L., Frere C., Peters A.M., Fleischer R.C. Parthenogenesis in a captive Asian water dragon (Physignathus cocincinus) identified with novel microsatellites. PLoS ONE. 2019;14:e0217489. doi: 10.1371/journal.pone.0217489. PubMed DOI PMC
Blackburn D.G. Evolutionary origins of viviparity in the Reptilia. I. Sauria. Amphibia-Reptilia. 1982;3:185–205. doi: 10.1163/156853882X00419. DOI
Nakhasi U. Karyotypic homology and evolution of the Agamid lizards. Cytologia. 1980;45:211–219. PubMed
Witten G.J. Some karyotypes of Australian agamids (Reptilia: Lacertilia) Aust. J. Zool. 1983;31:533–540. doi: 10.1071/ZO9830533. DOI
Adegoke J. Studies on the chromosomes of the rainbow lizard Agama agama agama (L.) with notes on polypoidy in the spermatocytes. Cytologia. 1988;53:233–239. doi: 10.1508/cytologia.53.233. DOI
Viets B.E., Ewert M.A., Talent L.G., Nelson C.E. Sex-determining mechanisms in squamate reptiles. J. Exp. Zool. 1994;270:45–56. doi: 10.1002/jez.1402700106. DOI
Henle K. A brief review of the origin and use of ‘stellio’ in herpetology and a comment on the nomenclature and taxonomy of agamids of the genus Agama (sensu lato) Herpetozoa. 1995;8:3–9.
Zeng X.M., Wang Y.Z., Liu Z.J., Fang Z.L., Wu G.F. Karyotypes on nine species in the genus Phrynocephalus, with discussion of karyotypic evolution of Chinese Phrynocephalus. Acta. Zool. Sin. 1997;43:399–410.
Kritpetcharat O., Kritpetcharat C., Luangpirom A., Watcharanon P. Karyotype of four Agamidae species from the Phu Phan national park in Thailand. Sci. Asia. 1999;25:185–188. doi: 10.2306/scienceasia1513-1874.1999.25.185. DOI
Pokorná M., Kratochvíl L. Phylogeny of sex-determining mechanisms in squamate reptiles: Are sex chromosomes an evolutionary trap? Zool. J. Linn. Soc. 2009;156:168–183. doi: 10.1111/j.1096-3642.2008.00481.x. DOI
Srikulnath K., Uno Y., Matsubara K., Thongpan A., Suputtitada S., Apisitwanich S., Nishida C., Matsuda Y. Chromosomal localization of the 18S-28S and 5S rRNA genes and (TTAGGG)n sequences of butterfly lizards (Leiolepis belliana belliana and Leiolepis boehmei, Agamidae, Squamata) Genet. Mol. Biol. 2011;34:583–586. doi: 10.1590/S1415-47572011005000042. PubMed DOI PMC
Baig K.J., Wagner P., Ananjeva N.B., Boehme W. A morphology-based taxonomic revision of Laudakia Gray, 1845 (Squamata: Agamidae) Vertebr. Zool. 2012;62:213–260.
Inamdar Doddamani L.S., Vani V., Seshagiri P.B. A tropical oviparous lizard, Calotes versicolor, exhibiting a potentially novel FMFM pattern of temperature-dependent sex determination. J. Exp. Zool. A Ecol. Genet. Physiol. 2012;317:32–46. doi: 10.1002/jez.718. PubMed DOI
Phimphan S., Tanomtong A., Patawang I., Kaewsri S., Jantarat S., Sanoamuang L.O. Cytogenetic Study of Northeastern Butterfly Lizard, Leiolepis reevesii rubritaeniata (Squamata, Agamidae) in Northeast Thailand. Cytologia. 2013;78:133–140. doi: 10.1508/cytologia.78.133. DOI
Utong J.A.M., Abukashawa S.M.A. Characterization of the agamid lizard genus Uromastyx from Eastern Sudan based on morphology, karyotypes and mitochondrial DNA. Asian. Herpetol. Res. 2013;4:268–281.
Gamble T., Coryell J., Ezaz T., Lynch J., Scantlebury D.P., Zarkower D. Restriction site-associated DNA sequencing (RAD-seq) reveals an extraordinary number of transitions among gecko sex-determining systems. Mol. Biol. Evol. 2015;32:1296–1309. doi: 10.1093/molbev/msv023. PubMed DOI
Grismer J.L., Grismer L.L. Who’s your mommy? Identifying maternal ancestors of asexual species of Leiolepis Cuvier, 1829 and the description of a new endemic species of asexual Leiolepis Cuvier, 1829 from Southern Vietnam. Zootaxa. 2010;2433:47–61. doi: 10.11646/zootaxa.2433.1.3. DOI
Midtgaard R. RepFocus—A Survey of the Reptiles of the World; 1st ed.; E-book Published by the Author, Middelfart, Denmark. [(accessed on 14 April 2020)];2019 Available online: www.repfocus.dk/Agamidae.html.
Pokorná M., Altmanová M., Kratochvíl L. Multiple sex chromosomes in the light of female meiotic drive in amniote vertebrates. Chromosome Res. 2014;22:35–44. doi: 10.1007/s10577-014-9403-2. PubMed DOI
Quinn A., Georges A., Sarre S., Guarino F., Ezaz T., Graves J. Sex chromosomes and incubation temperature interact to determine sex of a reptile. IAHS Proc. Rep. 2007;316:411. PubMed
Sarre S.D., Georges A., Quinn A. The ends of a continuum: Genetic and temperature-dependent sex determination in reptiles. BioEssays. 2004;26:639–645. doi: 10.1002/bies.20050. PubMed DOI
Georges A., Ezaz T., Quinn A.E., Sarre S.D. Are reptiles predisposed to temperature-dependent sex determination? Sex. Dev. 2010;4:7–15. doi: 10.1159/000279441. PubMed DOI
Janes D.E., Organ C.L., Fujita M.K., Shedlock A.M., Edwards S.V. Genome evolution in Reptilia, the sister group of mammals. Ann. Rev. Genomics. Hum. Genet. 2010;11:239–264. doi: 10.1146/annurev-genom-082509-141646. PubMed DOI
O’Meally D. Ph.D. Thesis. The Australian National University; Canberra, Australia: 2010. Evolution of Reptile Sex Chromosomes.
Ezaz T., Azad B., O’Meally D., Young M.J., Matsubara K., Edwards M.J., Zhang X., Holleley C.E., Deakin J.E., Graves J.A.M., et al. Sequence and gene content of a large fragment of a lizard sex chromosome and evaluation of candidate sex differentiating gene R-spondin 1. BMC Genomics. 2013;14:899. doi: 10.1186/1471-2164-14-899. PubMed DOI PMC
Domaschenz R., Livernois A.M., Rao S., Ezaz T., Deakin J.E. Immunofluorescent staining reveals hypermethylation of microchromosomes in the central bearded dragon, Pogona vitticeps. Mol. Cytogenet. 2015;8:104. doi: 10.1186/s13039-015-0208-6. PubMed DOI PMC
Young M.J., O’Meally D., Sarre S.D., Georges A., Ezaz T. Molecular cytogenetic map of the central bearded dragon, Pogona vitticeps (Squamata: Agamidae) Chromosome Res. 2013;21:361–374. doi: 10.1007/s10577-013-9362-z. PubMed DOI
Deakin J.E., Edwards M.J., Patel H., O’Meally D., Lian J., Stenhouse R., Ryan S., Livernois A.M., Azad B., Holleley C.E., et al. Anchoring genome sequence to chromosomes of the central bearded dragon (Pogona vitticeps) enables reconstruction of ancestral squamate macrochromosomes and identifies sequence content of the Z chromosome. BMC Genomics. 2016;17:447. doi: 10.1186/s12864-016-2774-3. PubMed DOI PMC
Georges A., Li Q., Lian J., O’Meally D., Deakin J., Wang Z., Zhang P., Fujita M., Patel H.R., Holleley C.E., et al. High-coverage sequencing and annotated assembly of the genome of the Australian dragon lizard Pogona vitticeps. GigaScience. 2015;4:45. doi: 10.1186/s13742-015-0085-2. PubMed DOI PMC
Matsubara K., O’Meally D., Sarre S.D., Georges A., Srikulnath K., Ezaz T. ZW sex chromosomes in Australian dragon lizards (Agamidae) originated from a combination of duplication and translocation in the nucleolar organising region. Genes. 2019;10:861. doi: 10.3390/genes10110861. PubMed DOI PMC
Srikulnath K., Azad B., Singchat W., Ezaz T. Distribution and amplification of interstitial telomeric sequences (ITSs) in Australian dragon lizards support frequent chromosome fusions in Iguania. PLoS ONE. 2019;14:e0212683. doi: 10.1371/journal.pone.0212683. PubMed DOI PMC
Ezaz T., O’Meally D., Quinn A.E., Sarre S.D., Georges A., Graves J.A.M. A simple non-invasive protocol to establish primary cell lines from tail and toe explants for cytogenetic studies in Australian dragon lizards (Squamata: Agamidae) Cytotechnology. 2008;58:135–139. doi: 10.1007/s10616-009-9182-3. PubMed DOI PMC
Chaiprasertsri N., Uno Y., Peyachoknagul S., Prakhongcheep O., Baicharoen S., Charernsuk S., Nishida C., Matsuda Y., Koga A., Srikulnath K. Highly species-specific centromeric repetitive DNA sequences in lizards: Molecular cytogenetic characterization of a novel family of satellite DNA sequences isolated from the water monitor lizard (Varanus salvator macromaculatus, Platynota) J. Hered. 2013;104:798–806. doi: 10.1093/jhered/est061. PubMed DOI
Mazzoleni S., Augstenová B., Clemente L., Auer M., Fritz U., Praschag P., Protiva T., Velenský P., Kratochvíl L., Rovatsos M. Turtles of the genera Geoemyda and Pangshura (Testudines: Geoemydidae) lack differentiated sex chromosomes: The end of a 40-year error cascade for Pangshura. PeerJ. 2019;7:e6241. doi: 10.7717/peerj.6241. PubMed DOI PMC
Townsend T.M., Mulcahy D.G., Noonan B.P., Sites J.W., Jr., Kuczynski C.A., Wiens J.J., Reeder T.W. Phylogeny of iguanian lizards inferred from 29 nuclear loci, and a comparison of concatenated and species-tree approaches for an ancient, rapid radiation. Mol. Phylogenet. Evol. 2011;61:363–380. doi: 10.1016/j.ympev.2011.07.008. PubMed DOI
Voss S.R., Kump D.K., Putta S., Pauly N., Reynolds A., Henry R.J., Basa S., Walker J.A., Smith J.J. Origin of amphibian and avian chromosomes by fission, fusion, and retention of ancestral chromosomes. Genome Res. 2011;21:1306–1312. doi: 10.1101/gr.116491.110. PubMed DOI PMC
Iannucci A., Altmanová M., Ciofi C., Ferguson-Smith M., Milan M., Pereira J.C., Pether J., Rehák I., Rovatsos M., Stanyon R., et al. Conserved sex chromosomes and karyotype evolution in monitor lizards (Varanidae) Heredity. 2019;123:215–227. doi: 10.1038/s41437-018-0179-6. PubMed DOI PMC
Barby F.F., Bertollo L.A.C., de Oliveira E.A., Yano C.F., Hatanaka T., Ráb P., Sember A., Ezaz T., Artoni R.F., Liehr T., et al. Emerging patterns of genome organization in Notopteridae species (Teleostei, Osteoglossiformes) as revealed by Zoo-FISH and Comparative Genomic Hybridization (CGH) Sci. Rep. 2019;9:1112. doi: 10.1038/s41598-019-38617-4. PubMed DOI PMC
Cioffi M.B., Ráb P., Ezaz T., Bertollo L.A.C., Lavoué S., Oliveira E.A., Sember A., Molina W.F., Souza F.H.S., Majtánová Z., et al. Deciphering the evolutionary history of arowana fishes (Teleostei, Osteoglossiformes, Osteoglossidae): Insight from comparative cytogenomics. Int. J. Mol. Sci. 2019;20:4296. doi: 10.3390/ijms20174296. PubMed DOI PMC
Kasai F., Garcia C., Arruga M., Ferguson-Smith M. Chromosome homology between chicken (Gallus gallus domesticus) and the red-legged partridge (Alectoris rufa); evidence of the occurrence of a neocentromere during evolution. Cytogenet. Genome Res. 2003;102:326–330. doi: 10.1159/000075770. PubMed DOI
Shibusawa M., Nishida-Umehara C., Masabanda J., Griffin D.K., Isobe T., Matsuda Y. Chromosome rearrangements between chicken and guinea fowl defined by comparative chromosome painting and FISH mapping of DNA clones. Cytogenet. Genome Res. 2002;98:225–230. doi: 10.1159/000069813. PubMed DOI
Shetty S., Griffin D.K., Graves J.A.M. Comparative painting reveals strong chromosome homology over 80 million years of bird evolution. Chromosome Res. 1999;7:289–295. doi: 10.1023/A:1009278914829. PubMed DOI
Montiel E.E., Badenhorst D., Lee L.S., Literman R., Trifonov V., Valenzuela N. Cytogenetic insights into the evolution of chromosomes and sex determination reveal striking homology of turtle sex chromosomes to amphibian autosomes. Cytogenet. Genome Res. 2016;148:292–304. doi: 10.1159/000447478. PubMed DOI