Deciphering the Evolutionary History of Arowana Fishes (Teleostei, Osteoglossiformes, Osteoglossidae): Insight from Comparative Cytogenomics

. 2019 Sep 02 ; 20 (17) : . [epub] 20190902

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu srovnávací studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31480792

Grantová podpora
401962/2016-4 Conselho Nacional de Desenvolvimento Científico e Tecnológico
302449/2018-3 Conselho Nacional de Desenvolvimento Científico e Tecnológico
2018/22033-1 Fundação de Amparo à Pesquisa do Estado de São Paulo
2017/10240-0 Fundação de Amparo à Pesquisa do Estado de São Paulo
88881.136128/2017-01 CAPES/Alexander von Humboldt Foundation

Arowanas (Osteoglossinae) are charismatic freshwater fishes with six species and two genera (Osteoglossum and Scleropages) distributed in South America, Asia, and Australia. In an attempt to provide a better assessment of the processes shaping their evolution, we employed a set of cytogenetic and genomic approaches, including i) molecular cytogenetic analyses using C- and CMA3/DAPI staining, repetitive DNA mapping, comparative genomic hybridization (CGH), and Zoo-FISH, along with ii) the genotypic analyses of single nucleotide polymorphisms (SNPs) generated by diversity array technology sequencing (DArTseq). We observed diploid chromosome numbers of 2n = 56 and 54 in O. bicirrhosum and O. ferreirai, respectively, and 2n = 50 in S. formosus, while S. jardinii and S. leichardti presented 2n = 48 and 44, respectively. A time-calibrated phylogenetic tree revealed that Osteoglossum and Scleropages divergence occurred approximately 50 million years ago (MYA), at the time of the final separation of Australia and South America (with Antarctica). Asian S. formosus and Australian Scleropages diverged about 35.5 MYA, substantially after the latest terrestrial connection between Australia and Southeast Asia through the Indian plate movement. Our combined data provided a comprehensive perspective of the cytogenomic diversity and evolution of arowana species on a timescale.

Zobrazit více v PubMed

Patterson C., Rosen D.E. Review of ichthyodectiform and other Mesozoic teleost fishes, and the theory and practice of classifying fossils. Bull. AMNH. 1977;158:2.

Arratia G. Basal Teleosts and teleostean phylogeny. Palaeo Ichthyol. 1997;7:5–168.

Near T.J., Eytan R.I., Dornburg A., Kuhn K.L., Moore J.A., Davis M.P., Wainwright P.C., Friedman M., Smith W.L. Resolution of ray-finned fish phylogeny and timing of diversification. Proc. Natl. Acad. Sci. USA. 2012;109:13698–13703. doi: 10.1073/pnas.1206625109. PubMed DOI PMC

Betancur-R R., Wiley E.O., Arratia G., Acero A., Bailly N., Miya M., Lecointre G., Orti G. Phylogenetic classification of bony fishes. BMC Evol. Biol. 2017;17:162. doi: 10.1186/s12862-017-0958-3. PubMed DOI PMC

Nelson J.S., Grande T.C., Wilson M.V.H. Fishes of the World. 5th ed. John Wiley & Sons; Hoboken, NJ, USA: 2016.

Hilton E.J., Lavoué S. A review of the systematic biology of fossil and living bony-tongue fishes, Osteoglossomorpha (Actinopterygii: Teleostei) Neotrop. Ichthyol. 2018;16:1–35. doi: 10.1590/1982-0224-20180031. DOI

Fricke R., Eschmeyer W., van der Laan R. Eschmeyer’s Catalog of Fishes: Genera, Species, References, California Academy of Sciences. California Academy of Sciences; San Francisco, CA, USA: 2019.

Cavin L. (Lionel). In: Freshwater Fishes: 250 Million Years of Evolutionary History. Press-Elsevier I., editor. ISTE Press-Elsevier; London, UK: 2017.

Capobianco A., Friedman M. Vicariance and dispersal in southern hemisphere freshwater fish clades: a palaeontological perspective. Biol. Rev. 2019;94:662–699. doi: 10.1111/brv.12473. PubMed DOI

Kottelat M. The IUCN Red List of Threatened Species, Version 2014. [(accessed on 10 July 2019)]; Available online: https://www.iucnredlist.org/

Roberts T.R. Scleropages inscriptus, a new fish species from the Tananthayi or Tenasserim River basin, Malay Peninsula of Myanmar (Osteoglossidae: Osteoglossiformes) Aqua. Int. J. Ichthyol. 2012;18:113–118.

Ng P.K.L., Tan H.H. Freshwater fishes of Southeast Asia: potential for the aquarium fish trade and conservation issues. Aquarium Sci. Conserv. 1997;1:79–90. doi: 10.1023/A:1018335617835. DOI

Pouyaud L., Sudarto;Teugels G.G. The different colour varieties of the asian arowana Scleropages formosus (Osteoglossidae) are distinct species: Morphologic and genetic evidences. Cybium. 2003;27:287–305.

Kottelat M. The fishes of Danau Sentarum National Park and the Kapuas Lakes area, Kalimantan Barat, Indonesia. Raffles Bull Zool Suppl. 2005;13:139–173.

Inoue J.G., Kumazawa Y., Miya M., Nishida M. The historical biogeography of the freshwater knifefishes using mitogenomic approaches: A Mesozoic origin of the Asian notopterids (Actinopterygii: Osteoglossomorpha) Mol. Phylogenet. Evol. 2009;51:486–499. doi: 10.1016/j.ympev.2009.01.020. PubMed DOI

Lavoué S. Testing a time hypothesis in the biogeography of the arowana genus Scleropages (Osteoglossidae) J. Biogeogr. 2015;42:2427–2439. doi: 10.1111/jbi.12585. DOI

Lavoué S. Was Gondwanan breakup the cause of the intercontinental distribution of Osteoglossiformes? A time-calibrated phylogenetic test combining molecular, morphological, and paleontological evidence. Mol. Phylogenet. Evol. 2016;99:34–43. doi: 10.1016/j.ympev.2016.03.008. PubMed DOI

Hilton E.J. Comparative osteology and phylogenetic systematics of fossil and living bony-tongue fishes (Actinopterygii, Teleostei, Osteoglossomorpha) Zool. J. Linn. Soc. 2003;137:1–100. doi: 10.1046/j.1096-3642.2003.00032.x. DOI

Knowles L.L., Maddison W.P. Statistical phylogeography. Mol. Ecol. 2002;11:2623–2635. doi: 10.1046/j.1365-294X.2002.01637.x. PubMed DOI

Nielsen R., Beaumont M.A. Statistical inferences in phylogeography. Mol. Ecol. 2009;18:1034–1047. doi: 10.1111/j.1365-294X.2008.04059.x. PubMed DOI

Edwards S.V. Is a new and general theory of molecular systematics emerging? Evol. Int. J. Org. Evol. 2009;63:1–19. doi: 10.1111/j.1558-5646.2008.00549.x. PubMed DOI

Garrick R.C., Bonatelli I.A.S., Hyseni C., Morales A., Pelletier T.A., Perez M.F., Rice E., Satler J.D., Symula R.E., Thomé M.T.C., et al. The evolution of phylogeographic data sets. Mol. Ecol. 2015;24:1164–1171. doi: 10.1111/mec.13108. PubMed DOI

Lemmon E.M., Lemmon A.R. High-Throughput Genomic Data in Systematics and Phylogenetics. Annu. Rev. Ecol. Evol. Syst. 2013;44:99–121. doi: 10.1146/annurev-ecolsys-110512-135822. DOI

McCormack J.E., Hird S.M., Zellmer A.J., Carstens B.C., Brumfield R.T. Applications of next-generation sequencing to phylogeography and phylogenetics. Mol. Phylogenet. Evol. 2013;66:526–538. doi: 10.1016/j.ympev.2011.12.007. PubMed DOI

Melville J., Haines M.L., Hale J., Chapple S., Ritchie E.G. Concordance in phylogeography and ecological niche modelling identify dispersal corridors for reptiles in arid Australia. J. Biogeogr. 2016;43:1844–1855. doi: 10.1111/jbi.12739. DOI

Morse P., Kjeldsen S.R., Meekan M.G., Mccormick M.I., Finn J.K., Huffard C.L., Zenger K.R. Genome-wide comparisons reveal a clinal species pattern within a holobenthic octopod—the Australian Southern blue-ringed octopus, Hapalochlaena maculosa (Cephalopoda: Octopodidae) Ecol. Evol. 2018;8:2253–2267. doi: 10.1002/ece3.3845. PubMed DOI PMC

Georges A., Gruber B., Pauly G.B., White D., Adams M., Young M.J., Kilian A., Zhang X., Shaffer H.B., Unmack P.J. Genomewide SNP markers breathe new life into phylogeography and species delimitation for the problematic short-necked turtles (Chelidae: Emydura) of eastern Australia. Mol. Ecol. 2018;27:5195–5213. doi: 10.1111/mec.14925. PubMed DOI

Unmack P.J., Young M.J., Gruber B., White D., Kilian A., Zhang X., Georges A. Phylogeography and species delimitation of Cherax destructor (Decapoda: Parastacidae) using genome-wide SNPs. Mar. Freshw. Res. 2019;70:857–869. doi: 10.1071/MF18347. DOI

Unmack P.J., Adams M., Bylemans J., Hardy C.M., Hammer M.P., Georges A. Perspectives on the clonal persistence of presumed ‘ghost’genomes in unisexual or allopolyploid taxa arising via hybridization. Sci. Rep. 2019;9:4730. doi: 10.1038/s41598-019-40865-3. PubMed DOI PMC

Nelson G.J. Infraorbital bones and their bearing on the phylogeny and geography of osteoglossomorph fishes. Am. Mus. Nov. 1969:1–37.

Cracraft J. Continental drift and vertebrate distribution. Annu. Rev. Ecol. Syst. 1974;5:215–261. doi: 10.1146/annurev.es.05.110174.001243. DOI

Bonde N. Osteoglossomorphs of the marine Lower Eocene of Denmark–with remarks on other Eocene taxa and their importance for palaeobiogeography. Geol. Soc. Lond. Spec. Publ. 2008;295:253–310. doi: 10.1144/SP295.14. DOI

Taverne L. On the presence of the osteoglossid genus Scleropages in the Paleocene of Niger, Africa (Teleostei, Osteoglossomorpha) Bull. R. des Sci. Nat. Belgique. Sci. la terre. 2009;79:161–167.

Amemiya C.T., Alfoldi J., Lee A.P., Fan S., Philippe H., MacCallum I., Braasch I., Manousaki T., Schneider I., Rohner N., et al. The African coelacanth genome provides insights into tetrapod evolution. Nature. 2013;496:311–316. doi: 10.1038/nature12027. PubMed DOI PMC

Ráb P., Yano C.F., Lavoué S., Jegede O.I., Bertollo L.A.C., Ezaz T., Majtánová Z., de Oliveira E.A., Cioffi M.B. Karyotype and Mapping of Repetitive DNAs in the African Butterfly Fish Pantodon buchholzi, the Sole Species of the Family Pantodontidae. Cytogenet. Genome Res. 2016;149:312–320. doi: 10.1159/000450534. PubMed DOI

Symonová R., Majtánová Z., Arias-Rodriguez L., Mořkovský L., Kořínková T., Cavin L., Pokorná M.J., Doležálková M., Flajšhans M., Normandeau E., et al. Genome Compositional Organization in Gars Shows More Similarities to Mammals than to Other Ray-Finned Fish. J. Exp. Zool. Part B Mol. Dev. Evol. 2017;328:607–619. doi: 10.1002/jez.b.22719. PubMed DOI

Majtánová Z., Symonová R., Arias-Rodriguez L., Sallan L., Ráb P. “Holostei versus Halecostomi” Problem: Insight from Cytogenetics of Ancient Nonteleost Actinopterygian Fish, Bowfin Amia calva. J. Exp. Zool. Part B Mol. Dev. Evol. 2017;328:620–628. doi: 10.1002/jez.b.22720. PubMed DOI

Alda F., Tagliacollo V.A., Bernt M.J., Waltz B.T., Ludt W.B., Faircloth B.C., Alfaro M.E., Albert J.S., Chakrabarty P. Resolving Deep Nodes in an Ancient Radiation of Neotropical Fishes in the Presence of Conflicting Signals from Incomplete Lineage Sorting. Syst. Biol. 2018;68:573–593. doi: 10.1093/sysbio/syy085. PubMed DOI

Ozouf-Costaz C., Coutanceau J.-P., Bonillo C., Belkadi L., Fermon Y., Agnèse J.-F., Guidi-Rontani C., Paugy D., Agnese J.F., Guidi-Rontani C., et al. First insights into karyotype evolution within the family Mormyridae. Cybium. 2015;39:227–236.

Bian C., Hu Y., Ravi V., Kuznetsova I.S., Shen X., Mu X., Sun Y., You X., Li J., Li X., et al. The Asian arowana (Scleropages formosus) genome provides new insights into the evolution of an early lineage of teleosts. Sci. Rep. 2016;6:1–17. doi: 10.1038/srep24501. PubMed DOI PMC

Hatanaka T., de Oliveira E.A., Ráb P., Yano C.F., Bertollo L.A.C., Ezaz T., Jegede O.O.I., Liehr T., Olaleye V.F., de Bello Cioffi M. First chromosomal analysis in Gymnarchus niloticus (Gymnarchidae: Osteoglossiformes): insights into the karyotype evolution of this ancient fish order. Biol. J. Linn. Soc. 2018;125:83–92. doi: 10.1093/biolinnean/bly098. DOI

Barby F., Rab P., Lavoue S., Ezaz T., Bertollo L.A.C., Kilian A., Maruyama S.R., Oliveira E.A., Artoni R.F., Santos M.H., et al. From chromosomes to genome: insights into the evolutionary relationships and biogeography of Old World knifefishes (Notopteridae; Osteoglossiformes) Genes. 2018;9:306. doi: 10.3390/genes9060306. PubMed DOI PMC

Barby F.F., Bertollo L.A.C., de Oliveira E.A., Yano C.F., Hatanaka T., Ráb P., Sember A., Ezaz T., Artoni R.F., Liehr T., et al. Emerging patterns of genome organization in Notopteridae species (Teleostei, Osteoglossiformes) as revealed by Zoo-FISH and Comparative Genomic Hybridization (CGH) Sci. Rep. 2019;9:1112. doi: 10.1038/s41598-019-38617-4. PubMed DOI PMC

Urushido T. Karyotype of three species of fishes in the order Osteoglossiformes. Chromosom. Inform. Serv. 1975;18:20–22.

Magtoon W., Donsakul T. Morphology and cytogenetics of Arowana fishes in subfamily Osteoglossinae from Asia, Australia and South America; Proceedings of the 30th Congress on Science and Technology of Thailand; Bangkok, Thailand. 26–30 January 2004; pp. 9–21.

Shen X.Y., Kwan H.Y., Thevasagayam N.M., Prakki S.R.S., Kuznetsova I.S., Ngoh S.Y., Lim Z., Feng F., Chang A., Orbán L. The first transcriptome and genetic linkage map for Asian arowana. Mol. Ecol. Resour. 2014;14:622–635. doi: 10.1111/1755-0998.12212. PubMed DOI

Hirata J., Urushido T. Karyotypes and DNA content in the Osteoglossiformes. Sci Rep Res Inst Evol Biol. 2000;9:83–90.

Suzuki A., Taki Y., Urushido T. Karyotypes of two species of arowana, Osteoglossum bicirrhosum and O. ferreirai. Jpn. J. Ichthyol. 1982;29:220–222.

Lim K.Y., Kovarik A., Matyasek R., Chase M.W., Clarkson J.J., Grandbastien M.A., Leitch A.R. Sequence of events leading to near-complete genome turnover in allopolyploid Nicotiana within five million years. New Phytol. 2007;175:756–763. doi: 10.1111/j.1469-8137.2007.02121.x. PubMed DOI

Majka J., Majka M., Kwiatek M., Wiśniewska H. Similarities and differences in the nuclear genome organization within Pooideae species revealed by comparative genomic in situ hybridization (GISH) J. Appl. Genet. 2017;58:151–161. doi: 10.1007/s13353-016-0369-y. PubMed DOI PMC

Sember A., Bertollo L.A.C., Ráb P., Yano C.F., Hatanaka T., de Oliveira E.A., Cioffi M.d.B. Sex Chromosome Evolution and Genomic Divergence in the Fish Hoplias malabaricus (Characiformes, Erythrinidae) Front. Genet. 2018;9:1–12. doi: 10.3389/fgene.2018.00071. PubMed DOI PMC

Li J., Bian C., Hu Y., Mu X., Shen X., Ravi V., Kuznetsova I.S., Sun Y., You X., Qiu Y., et al. A chromosome-level genome assembly of the Asian arowana, Scleropages formosus. Sci. Data. 2016;3:160105. doi: 10.1038/sdata.2016.105. PubMed DOI PMC

Callan H.G., Lloyd L. Lampbrush chromosomes of crested newts Triturus cristatus (Laurenti) Philos. Trans. R. Soc. Lond. B. Biol. Sci. 1960;243:135–219.

Sims S.H., Macgregor H.C., Pellatt P.S., Horner H.A. Chromosome 1 in crested and marbled newts (Triturus) Chromosoma. 1984;89:169–185. doi: 10.1007/BF00294996. DOI

Galetti P.M., Foresti F., Bertollo L.A.C., Moreira Filho O. Heteromorphic sex chromosomes in three species of the genus Leporinus (Pisces, Anostomidae) Cytogenet Cell Genet. 1981;29:138–142. doi: 10.1159/000131562. PubMed DOI

Mestriner C.A., Bertollo L.A.C., Galetti P.M. Chromosome banding and synaptonemal complexes in Leporinus lacustris (Pisces, Anostomidae): analysis of a sex system. Chromosom. Res. 1995;3:440–443. doi: 10.1007/BF00713895. PubMed DOI

Reed K.M., Phillips R.B. Polymorphism of the nucleolus organizer region (NOR) on the putative sex chromosomes of Arctic char (Salvelinus alpinus) is not sex related. Chromosom. Res. 1997;5:221–227. doi: 10.1023/A:1018411417816. PubMed DOI

Molina W.F., Schmid M., Galetti P.M. Heterochromatin and sex chromosomes in the Neotropical fish genus Leporinus (Characiformes, Anostomidae) Cytobios. 1998;94:141–149.

Charlesworth D., Charlesworth B., Marais G. Steps in the evolution of heteromorphic sex chromosomes. Heredity. 2005;95:118–128. doi: 10.1038/sj.hdy.6800697. PubMed DOI

Cioffi M.B., Moreira-Filho O., Almeida-Toledo L.F., Bertollo L.A.C. The contrasting role of heterochromatin in the differentiation of sex chromosomes: an overview from Neotropical fishes. J. Fish Biol. 2012;80:2125–2139. doi: 10.1111/j.1095-8649.2012.03272.x. PubMed DOI

Gornung E. Twenty years of physical mapping of major ribosomal RNA genes across the teleosts: a review of research. Cytogenet. Genome Res. 2013;141:90–102. doi: 10.1159/000354832. PubMed DOI

Sember A., Bohlen J., Šlechtová V., Altmanová M., Symonová R., Ráb P. Karyotype differentiation in 19 species of river loach fishes (Nemacheilidae, Teleostei): Extensive variability associated with rDNA and heterochromatin distribution and its phylogenetic and ecological interpretation. BMC Evol. Biol. 2015;15:251–272. doi: 10.1186/s12862-015-0532-9. PubMed DOI PMC

Symonová R., Howell W. Vertebrate Genome Evolution in the Light of Fish Cytogenomics and rDNAomics. Genes. 2018;9:96. doi: 10.3390/genes9020096. PubMed DOI PMC

Molina W.F., Galetti P.M. Robertsonian rearrangements in the reef fish Chromis (Perciformes, Pomacentridae) involving chromosomes bearing 5S rRNA genes. Genet. Mol. Biol. 2002;25:373–377. doi: 10.1590/S1415-47572002000400004. DOI

Getlekha N., Molina W.F., de Bello Cioffi M., Yano C.F., Maneechot N., Bertollo L.A.C., Supiwong W., Tanomtong A. Repetitive DNAs highlight the role of chromosomal fusions in the karyotype evolution of Dascyllus species (Pomacentridae, Perciformes) Genetica. 2016;144:203–211. doi: 10.1007/s10709-016-9890-5. PubMed DOI

Van Den Ende C., White L.T., van Welzen P.C. The existence and break-up of the Antarctic land bridge as indicated by both amphi-Pacific distributions and tectonics. Gondwana Res. 2017;44:219–227. doi: 10.1016/j.gr.2016.12.006. DOI

Ali J.R., Krause D.W. Late Cretaceous bioconnections between Indo-Madagascar and Antarctica: refutation of the Gunnerus Ridge causeway hypothesis. J. Biogeogr. 2011;38:1855–1872. doi: 10.1111/j.1365-2699.2011.02546.x. DOI

Wilson M.V.H., Murray A.M. Osteoglossomorpha: phylogeny, biogeography, and fossil record and the significance of key African and Chinese fossil taxa. Geol. Soc. Lond. Spec. Publ. 2008;295:185–219. doi: 10.1144/SP295.12. DOI

Kumazawa Y., Nishida M. Molecular phylogeny of osteoglossoids: A new model for Gondwanian origin and plate tectonic transportation of the Asian arowana. Mol. Biol. Evol. 2000;17:1869–1878. doi: 10.1093/oxfordjournals.molbev.a026288. PubMed DOI

Winn C., Karlstrom K.E., Shuster D.L., Kelley S., Fox M. 6 Ma age of carving Westernmost Grand Canyon: Reconciling geologic data with combined AFT,(U–Th)/He, and 4He/3He thermochronologic data. Earth Planet. Sci. Lett. 2017;474:257–271. doi: 10.1016/j.epsl.2017.06.051. DOI

Albert J.S., Val P., Hoorn C. The changing course of the Amazon River in the Neogene: center stage for Neotropical diversification. Neotrop. Ichthyol. 2018;16:e180033. doi: 10.1590/1982-0224-20180033. DOI

Sambrook J., Russell D.W. Molecular Cloning: A Laboratory Manual. 3rd ed. Cold Spring Harbor Laboratory Press; New York, NY, USA: 2001.

Kilian A., Wenzl P., Huttner E., Carling J., Xia L., Blois H., Caig V., Heller-Uszynska K., Jaccoud D., Hopper C. Data Production and Analysis in Population Genomics. Springer; New York, NY, USA: 2012. Diversity arrays technology: a generic genome profiling technology on open platforms; pp. 67–89. PubMed

Gruber B., Unmack P.J., Berry O.F., Georges A. dartr: An r package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol. Ecol. Resour. 2018;18:691–699. doi: 10.1111/1755-0998.12745. PubMed DOI

Gosselin T. RADseq Data Exploration, Manipulation and Visualization Using R. [(accessed on 10 July 2019)];2016 doi: 10.5281/zenodo.1475182. Available online: https://thierrygosselin.github.io/radiator/ DOI

Chifman J., Kubatko L. Quartet Inference from SNP Data Under the Coalescent Model. Bioinformatics. 2014;30:3317–3324. doi: 10.1093/bioinformatics/btu530. PubMed DOI PMC

Swofford D.L. PAUP*. Phylogenetic Analysis Using Parsimony and Other Methods. Sinauer Associates, Inc.; Sunderland, MA, USA: 2003.

Bouckaert R., Heled J., Kühnert D., Vaughan T., Wu C.-H., Xie D., Suchard M.A., Rambaut A., Drummond A.J. BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLOS Comput. Biol. 2014;10:e1003537. doi: 10.1371/journal.pcbi.1003537. PubMed DOI PMC

Stange M., Sánchez-Villagra M.R., Salzburger W., Matschiner M. Bayesian Divergence-Time Estimation with Genome-Wide Single-Nucleotide Polymorphism Data of Sea Catfishes (Ariidae) Supports Miocene Closure of the Panamanian Isthmus. Syst. Biol. 2018;67:681–699. doi: 10.1093/sysbio/syy006. PubMed DOI PMC

Zhang J.-Y., Wilson M.V.H. First complete fossil Scleropages (Osteoglossomorpha) Vertebr. Palasiat. 2017;55:1–23.

Rambaut A., Drummond A.J., Xie D., Baele G., Suchard M.A. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst. Biol. 2018;67:901–904. doi: 10.1093/sysbio/syy032. PubMed DOI PMC

Bertollo L.A.C., Cioffi M.B., Moreira-Filho O. Direct chromosome preparation from Freshwater Teleost Fishes. In: Ozouf-Costaz C., Pisano E., Foresti F., Almeida Toledo L.F., editors. Fish Cytogenetic Techniques (Chondrichthyans and Teleosts) CRC Press; Enfield, CT, USA: 2015. pp. 21–26.

Schmid M. Chromosome banding in Amphibia. IV. Differentiation of GC-and AT-rich chromosome regions in Anura. Chromosoma. 1980;77:83–103. doi: 10.1007/BF00292043. PubMed DOI

Sumner A.T. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 1972;75:304–306. doi: 10.1016/0014-4827(72)90558-7. PubMed DOI

Pendás A.M., Móran P., Freije J.P., Garcia-Vásquez E. Chromosomal location and nucleotide sequence of two tandem repeats of the Atlantic salmon 5S rDNA. Cytogenet Cell Genet. 1994;67:31–36. doi: 10.1159/000133792. PubMed DOI

Cioffi M.B., Martins C., Centofante L., Jacobina U., Bertollo L.A.C. Chromosomal Variability among Allopatric Populations of Erythrinidae Fish Hoplias malabaricus: Mapping of Three Classes of Repetitive DNAs. Cytogenet. Genome Res. 2009;125:132–141. doi: 10.1159/000227838. PubMed DOI

Yano C.F., Bertollo L.A.C., Cioffi M.B. Fish-FISH: molecular cytogenetics in fish species. In: Liehr T., editor. Fluorescence In Situ Hybridization (FISH)- Application Guide. Springer; Berlin, Germany: 2017. pp. 429–444.

Zwick M.S., Hanson R.E., Mcknight T.D., Islam-Faridi M.H., Stelly D.M., Wing R.A., Price H.J. A rapid procedure for the isolation of C 0 t-1 DNA from plants. Genome. 1997;40:138–142. doi: 10.1139/g97-020. PubMed DOI

Symonová R., Majtánová Z., Sember A., Staaks G.B.O., Bohlen J., Freyhof J. Genome differentiation in a species pair of coregonine fishes: an extremely rapid speciation driven by stress - activated retrotransposons mediating extensive ribosomal DNA multiplications. BMC Evol. Biol. 2013;13:42–52. doi: 10.1186/1471-2148-13-42. PubMed DOI PMC

Symonová R., Flajšhans M., Sember A., Havelka M., Gela D., Kořínková T., Rodina M., Rábová M., Ráb P. Molecular cytogenetics in artificial hybrid and highly polyploid sturgeons: an evolutionary story narrated by repetitive sequences. Cytogenet. Genome Res. 2013;141:153–162. doi: 10.1159/000354882. PubMed DOI

Carvalho P.C., de Oliveira E.A., Bertollo L.A.C., Yano C.F., Oliveira C., Decru E., Jegede O.I., Hatanaka T., Liehr T., Al-Rikabi A.B.H., et al. First Chromosomal Analysis in Hepsetidae (Actinopterygii, Characiformes): Insights into Relationship between African and Neotropical Fish Groups. Front. Genet. 2017;8:203. doi: 10.3389/fgene.2017.00203. PubMed DOI PMC

De Freitas N.L., Al-Rikabi A.B.H., Bertollo L.A.C., Ezaz T., Yano C.F., de Oliveira E.A., Hatanaka T., de Bello Cioffi M. Early Stages of XY Sex Chromosomes Differentiation in the Fish Hoplias malabaricus (Characiformes, Erythrinidae) Revealed by DNA Repeats Accumulation. Curr. Genom. 2018;19:216–226. doi: 10.2174/1389202918666170711160528. PubMed DOI PMC

De Moraes R.L.R., Bertollo L.A.C., Marinho M.M.F., Yano C.F., Hatanaka T., Barby F.F., Troy W.P., Cioffi M.d.B. Evolutionary Relationships and Cytotaxonomy Considerations in the Genus Pyrrhulina (Characiformes, Lebiasinidae) Zebrafish. 2017;14:536–546. doi: 10.1089/zeb.2017.1465. PubMed DOI

De Oliveira E.A., Sember A., Bertollo L.A.C., Yano C.F., Ezaz T., Moreira-Filho O., Hatanaka T., Trifonov V., Liehr T., Al-Rikabi A.B.H., et al. Tracking the evolutionary pathway of sex chromosomes among fishes: characterizing the unique XX/XY1Y2 system in Hoplias malabaricus (Teleostei, Characiformes) Chromosoma. 2018;127:115–128. doi: 10.1007/s00412-017-0648-3. PubMed DOI

Symonová R., Sember A., Majtánová Z., Ráb P. Fish Cytogenetic Techniques. Ray-Fin Fishes and Chondrichthyans. CCR Press; Boca Raton, FL, USA: 2015. Characterization of fish genomes by GISH and CGH; pp. 118–131.

Yang F., Trifonov V., Ng B.L., Kosyakova N., Carter N.P. Generation of paint probes by flow-sorted and microdissected chromosomes. In: Liehr T., editor. Fluorescence In Situ Hybridization (FISH)—Application Guide. Springer; Berlin/Heidelberg, Germany: 2009. pp. 35–52.

Levan A., Fredga K., Sandberg A.A. Nomenclature for centromeric position on chromosomes. Hereditas. 1964;52:201–220. doi: 10.1111/j.1601-5223.1964.tb01953.x. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace