Deciphering the Evolutionary History of Arowana Fishes (Teleostei, Osteoglossiformes, Osteoglossidae): Insight from Comparative Cytogenomics
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu srovnávací studie, časopisecké články
Grantová podpora
401962/2016-4
Conselho Nacional de Desenvolvimento Científico e Tecnológico
302449/2018-3
Conselho Nacional de Desenvolvimento Científico e Tecnológico
2018/22033-1
Fundação de Amparo à Pesquisa do Estado de São Paulo
2017/10240-0
Fundação de Amparo à Pesquisa do Estado de São Paulo
88881.136128/2017-01
CAPES/Alexander von Humboldt Foundation
PubMed
31480792
PubMed Central
PMC6747201
DOI
10.3390/ijms20174296
PII: ijms20174296
Knihovny.cz E-zdroje
- Klíčová slova
- DArTseq, Gondwana, biogeography, evolution, genetic diversity,
- MeSH
- analýza hlavních komponent MeSH
- biologická evoluce * MeSH
- genetická variace MeSH
- genomika * MeSH
- genotypizační techniky MeSH
- karyotyp MeSH
- mapování chromozomů MeSH
- pruhování chromozomů MeSH
- ryby genetika MeSH
- zeměpis MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
Arowanas (Osteoglossinae) are charismatic freshwater fishes with six species and two genera (Osteoglossum and Scleropages) distributed in South America, Asia, and Australia. In an attempt to provide a better assessment of the processes shaping their evolution, we employed a set of cytogenetic and genomic approaches, including i) molecular cytogenetic analyses using C- and CMA3/DAPI staining, repetitive DNA mapping, comparative genomic hybridization (CGH), and Zoo-FISH, along with ii) the genotypic analyses of single nucleotide polymorphisms (SNPs) generated by diversity array technology sequencing (DArTseq). We observed diploid chromosome numbers of 2n = 56 and 54 in O. bicirrhosum and O. ferreirai, respectively, and 2n = 50 in S. formosus, while S. jardinii and S. leichardti presented 2n = 48 and 44, respectively. A time-calibrated phylogenetic tree revealed that Osteoglossum and Scleropages divergence occurred approximately 50 million years ago (MYA), at the time of the final separation of Australia and South America (with Antarctica). Asian S. formosus and Australian Scleropages diverged about 35.5 MYA, substantially after the latest terrestrial connection between Australia and Southeast Asia through the Indian plate movement. Our combined data provided a comprehensive perspective of the cytogenomic diversity and evolution of arowana species on a timescale.
Institute for Applied Ecology University of Canberra Canberra ACT 2617 Australia
Institute of Human Genetics University Hospital Jena 07747 Jena Germany
School of Biological Sciences Universiti Sains Malaysia Penang 11800 Malaysia
Secretaria de Estado de Educação de Mato Grosso SEDUC MT Cuiabá MT 78049 909 Brazil
Zobrazit více v PubMed
Patterson C., Rosen D.E. Review of ichthyodectiform and other Mesozoic teleost fishes, and the theory and practice of classifying fossils. Bull. AMNH. 1977;158:2.
Arratia G. Basal Teleosts and teleostean phylogeny. Palaeo Ichthyol. 1997;7:5–168.
Near T.J., Eytan R.I., Dornburg A., Kuhn K.L., Moore J.A., Davis M.P., Wainwright P.C., Friedman M., Smith W.L. Resolution of ray-finned fish phylogeny and timing of diversification. Proc. Natl. Acad. Sci. USA. 2012;109:13698–13703. doi: 10.1073/pnas.1206625109. PubMed DOI PMC
Betancur-R R., Wiley E.O., Arratia G., Acero A., Bailly N., Miya M., Lecointre G., Orti G. Phylogenetic classification of bony fishes. BMC Evol. Biol. 2017;17:162. doi: 10.1186/s12862-017-0958-3. PubMed DOI PMC
Nelson J.S., Grande T.C., Wilson M.V.H. Fishes of the World. 5th ed. John Wiley & Sons; Hoboken, NJ, USA: 2016.
Hilton E.J., Lavoué S. A review of the systematic biology of fossil and living bony-tongue fishes, Osteoglossomorpha (Actinopterygii: Teleostei) Neotrop. Ichthyol. 2018;16:1–35. doi: 10.1590/1982-0224-20180031. DOI
Fricke R., Eschmeyer W., van der Laan R. Eschmeyer’s Catalog of Fishes: Genera, Species, References, California Academy of Sciences. California Academy of Sciences; San Francisco, CA, USA: 2019.
Cavin L. (Lionel). In: Freshwater Fishes: 250 Million Years of Evolutionary History. Press-Elsevier I., editor. ISTE Press-Elsevier; London, UK: 2017.
Capobianco A., Friedman M. Vicariance and dispersal in southern hemisphere freshwater fish clades: a palaeontological perspective. Biol. Rev. 2019;94:662–699. doi: 10.1111/brv.12473. PubMed DOI
Kottelat M. The IUCN Red List of Threatened Species, Version 2014. [(accessed on 10 July 2019)]; Available online: https://www.iucnredlist.org/
Roberts T.R. Scleropages inscriptus, a new fish species from the Tananthayi or Tenasserim River basin, Malay Peninsula of Myanmar (Osteoglossidae: Osteoglossiformes) Aqua. Int. J. Ichthyol. 2012;18:113–118.
Ng P.K.L., Tan H.H. Freshwater fishes of Southeast Asia: potential for the aquarium fish trade and conservation issues. Aquarium Sci. Conserv. 1997;1:79–90. doi: 10.1023/A:1018335617835. DOI
Pouyaud L., Sudarto;Teugels G.G. The different colour varieties of the asian arowana Scleropages formosus (Osteoglossidae) are distinct species: Morphologic and genetic evidences. Cybium. 2003;27:287–305.
Kottelat M. The fishes of Danau Sentarum National Park and the Kapuas Lakes area, Kalimantan Barat, Indonesia. Raffles Bull Zool Suppl. 2005;13:139–173.
Inoue J.G., Kumazawa Y., Miya M., Nishida M. The historical biogeography of the freshwater knifefishes using mitogenomic approaches: A Mesozoic origin of the Asian notopterids (Actinopterygii: Osteoglossomorpha) Mol. Phylogenet. Evol. 2009;51:486–499. doi: 10.1016/j.ympev.2009.01.020. PubMed DOI
Lavoué S. Testing a time hypothesis in the biogeography of the arowana genus Scleropages (Osteoglossidae) J. Biogeogr. 2015;42:2427–2439. doi: 10.1111/jbi.12585. DOI
Lavoué S. Was Gondwanan breakup the cause of the intercontinental distribution of Osteoglossiformes? A time-calibrated phylogenetic test combining molecular, morphological, and paleontological evidence. Mol. Phylogenet. Evol. 2016;99:34–43. doi: 10.1016/j.ympev.2016.03.008. PubMed DOI
Hilton E.J. Comparative osteology and phylogenetic systematics of fossil and living bony-tongue fishes (Actinopterygii, Teleostei, Osteoglossomorpha) Zool. J. Linn. Soc. 2003;137:1–100. doi: 10.1046/j.1096-3642.2003.00032.x. DOI
Knowles L.L., Maddison W.P. Statistical phylogeography. Mol. Ecol. 2002;11:2623–2635. doi: 10.1046/j.1365-294X.2002.01637.x. PubMed DOI
Nielsen R., Beaumont M.A. Statistical inferences in phylogeography. Mol. Ecol. 2009;18:1034–1047. doi: 10.1111/j.1365-294X.2008.04059.x. PubMed DOI
Edwards S.V. Is a new and general theory of molecular systematics emerging? Evol. Int. J. Org. Evol. 2009;63:1–19. doi: 10.1111/j.1558-5646.2008.00549.x. PubMed DOI
Garrick R.C., Bonatelli I.A.S., Hyseni C., Morales A., Pelletier T.A., Perez M.F., Rice E., Satler J.D., Symula R.E., Thomé M.T.C., et al. The evolution of phylogeographic data sets. Mol. Ecol. 2015;24:1164–1171. doi: 10.1111/mec.13108. PubMed DOI
Lemmon E.M., Lemmon A.R. High-Throughput Genomic Data in Systematics and Phylogenetics. Annu. Rev. Ecol. Evol. Syst. 2013;44:99–121. doi: 10.1146/annurev-ecolsys-110512-135822. DOI
McCormack J.E., Hird S.M., Zellmer A.J., Carstens B.C., Brumfield R.T. Applications of next-generation sequencing to phylogeography and phylogenetics. Mol. Phylogenet. Evol. 2013;66:526–538. doi: 10.1016/j.ympev.2011.12.007. PubMed DOI
Melville J., Haines M.L., Hale J., Chapple S., Ritchie E.G. Concordance in phylogeography and ecological niche modelling identify dispersal corridors for reptiles in arid Australia. J. Biogeogr. 2016;43:1844–1855. doi: 10.1111/jbi.12739. DOI
Morse P., Kjeldsen S.R., Meekan M.G., Mccormick M.I., Finn J.K., Huffard C.L., Zenger K.R. Genome-wide comparisons reveal a clinal species pattern within a holobenthic octopod—the Australian Southern blue-ringed octopus, Hapalochlaena maculosa (Cephalopoda: Octopodidae) Ecol. Evol. 2018;8:2253–2267. doi: 10.1002/ece3.3845. PubMed DOI PMC
Georges A., Gruber B., Pauly G.B., White D., Adams M., Young M.J., Kilian A., Zhang X., Shaffer H.B., Unmack P.J. Genomewide SNP markers breathe new life into phylogeography and species delimitation for the problematic short-necked turtles (Chelidae: Emydura) of eastern Australia. Mol. Ecol. 2018;27:5195–5213. doi: 10.1111/mec.14925. PubMed DOI
Unmack P.J., Young M.J., Gruber B., White D., Kilian A., Zhang X., Georges A. Phylogeography and species delimitation of Cherax destructor (Decapoda: Parastacidae) using genome-wide SNPs. Mar. Freshw. Res. 2019;70:857–869. doi: 10.1071/MF18347. DOI
Unmack P.J., Adams M., Bylemans J., Hardy C.M., Hammer M.P., Georges A. Perspectives on the clonal persistence of presumed ‘ghost’genomes in unisexual or allopolyploid taxa arising via hybridization. Sci. Rep. 2019;9:4730. doi: 10.1038/s41598-019-40865-3. PubMed DOI PMC
Nelson G.J. Infraorbital bones and their bearing on the phylogeny and geography of osteoglossomorph fishes. Am. Mus. Nov. 1969:1–37.
Cracraft J. Continental drift and vertebrate distribution. Annu. Rev. Ecol. Syst. 1974;5:215–261. doi: 10.1146/annurev.es.05.110174.001243. DOI
Bonde N. Osteoglossomorphs of the marine Lower Eocene of Denmark–with remarks on other Eocene taxa and their importance for palaeobiogeography. Geol. Soc. Lond. Spec. Publ. 2008;295:253–310. doi: 10.1144/SP295.14. DOI
Taverne L. On the presence of the osteoglossid genus Scleropages in the Paleocene of Niger, Africa (Teleostei, Osteoglossomorpha) Bull. R. des Sci. Nat. Belgique. Sci. la terre. 2009;79:161–167.
Amemiya C.T., Alfoldi J., Lee A.P., Fan S., Philippe H., MacCallum I., Braasch I., Manousaki T., Schneider I., Rohner N., et al. The African coelacanth genome provides insights into tetrapod evolution. Nature. 2013;496:311–316. doi: 10.1038/nature12027. PubMed DOI PMC
Ráb P., Yano C.F., Lavoué S., Jegede O.I., Bertollo L.A.C., Ezaz T., Majtánová Z., de Oliveira E.A., Cioffi M.B. Karyotype and Mapping of Repetitive DNAs in the African Butterfly Fish Pantodon buchholzi, the Sole Species of the Family Pantodontidae. Cytogenet. Genome Res. 2016;149:312–320. doi: 10.1159/000450534. PubMed DOI
Symonová R., Majtánová Z., Arias-Rodriguez L., Mořkovský L., Kořínková T., Cavin L., Pokorná M.J., Doležálková M., Flajšhans M., Normandeau E., et al. Genome Compositional Organization in Gars Shows More Similarities to Mammals than to Other Ray-Finned Fish. J. Exp. Zool. Part B Mol. Dev. Evol. 2017;328:607–619. doi: 10.1002/jez.b.22719. PubMed DOI
Majtánová Z., Symonová R., Arias-Rodriguez L., Sallan L., Ráb P. “Holostei versus Halecostomi” Problem: Insight from Cytogenetics of Ancient Nonteleost Actinopterygian Fish, Bowfin Amia calva. J. Exp. Zool. Part B Mol. Dev. Evol. 2017;328:620–628. doi: 10.1002/jez.b.22720. PubMed DOI
Alda F., Tagliacollo V.A., Bernt M.J., Waltz B.T., Ludt W.B., Faircloth B.C., Alfaro M.E., Albert J.S., Chakrabarty P. Resolving Deep Nodes in an Ancient Radiation of Neotropical Fishes in the Presence of Conflicting Signals from Incomplete Lineage Sorting. Syst. Biol. 2018;68:573–593. doi: 10.1093/sysbio/syy085. PubMed DOI
Ozouf-Costaz C., Coutanceau J.-P., Bonillo C., Belkadi L., Fermon Y., Agnèse J.-F., Guidi-Rontani C., Paugy D., Agnese J.F., Guidi-Rontani C., et al. First insights into karyotype evolution within the family Mormyridae. Cybium. 2015;39:227–236.
Bian C., Hu Y., Ravi V., Kuznetsova I.S., Shen X., Mu X., Sun Y., You X., Li J., Li X., et al. The Asian arowana (Scleropages formosus) genome provides new insights into the evolution of an early lineage of teleosts. Sci. Rep. 2016;6:1–17. doi: 10.1038/srep24501. PubMed DOI PMC
Hatanaka T., de Oliveira E.A., Ráb P., Yano C.F., Bertollo L.A.C., Ezaz T., Jegede O.O.I., Liehr T., Olaleye V.F., de Bello Cioffi M. First chromosomal analysis in Gymnarchus niloticus (Gymnarchidae: Osteoglossiformes): insights into the karyotype evolution of this ancient fish order. Biol. J. Linn. Soc. 2018;125:83–92. doi: 10.1093/biolinnean/bly098. DOI
Barby F., Rab P., Lavoue S., Ezaz T., Bertollo L.A.C., Kilian A., Maruyama S.R., Oliveira E.A., Artoni R.F., Santos M.H., et al. From chromosomes to genome: insights into the evolutionary relationships and biogeography of Old World knifefishes (Notopteridae; Osteoglossiformes) Genes. 2018;9:306. doi: 10.3390/genes9060306. PubMed DOI PMC
Barby F.F., Bertollo L.A.C., de Oliveira E.A., Yano C.F., Hatanaka T., Ráb P., Sember A., Ezaz T., Artoni R.F., Liehr T., et al. Emerging patterns of genome organization in Notopteridae species (Teleostei, Osteoglossiformes) as revealed by Zoo-FISH and Comparative Genomic Hybridization (CGH) Sci. Rep. 2019;9:1112. doi: 10.1038/s41598-019-38617-4. PubMed DOI PMC
Urushido T. Karyotype of three species of fishes in the order Osteoglossiformes. Chromosom. Inform. Serv. 1975;18:20–22.
Magtoon W., Donsakul T. Morphology and cytogenetics of Arowana fishes in subfamily Osteoglossinae from Asia, Australia and South America; Proceedings of the 30th Congress on Science and Technology of Thailand; Bangkok, Thailand. 26–30 January 2004; pp. 9–21.
Shen X.Y., Kwan H.Y., Thevasagayam N.M., Prakki S.R.S., Kuznetsova I.S., Ngoh S.Y., Lim Z., Feng F., Chang A., Orbán L. The first transcriptome and genetic linkage map for Asian arowana. Mol. Ecol. Resour. 2014;14:622–635. doi: 10.1111/1755-0998.12212. PubMed DOI
Hirata J., Urushido T. Karyotypes and DNA content in the Osteoglossiformes. Sci Rep Res Inst Evol Biol. 2000;9:83–90.
Suzuki A., Taki Y., Urushido T. Karyotypes of two species of arowana, Osteoglossum bicirrhosum and O. ferreirai. Jpn. J. Ichthyol. 1982;29:220–222.
Lim K.Y., Kovarik A., Matyasek R., Chase M.W., Clarkson J.J., Grandbastien M.A., Leitch A.R. Sequence of events leading to near-complete genome turnover in allopolyploid Nicotiana within five million years. New Phytol. 2007;175:756–763. doi: 10.1111/j.1469-8137.2007.02121.x. PubMed DOI
Majka J., Majka M., Kwiatek M., Wiśniewska H. Similarities and differences in the nuclear genome organization within Pooideae species revealed by comparative genomic in situ hybridization (GISH) J. Appl. Genet. 2017;58:151–161. doi: 10.1007/s13353-016-0369-y. PubMed DOI PMC
Sember A., Bertollo L.A.C., Ráb P., Yano C.F., Hatanaka T., de Oliveira E.A., Cioffi M.d.B. Sex Chromosome Evolution and Genomic Divergence in the Fish Hoplias malabaricus (Characiformes, Erythrinidae) Front. Genet. 2018;9:1–12. doi: 10.3389/fgene.2018.00071. PubMed DOI PMC
Li J., Bian C., Hu Y., Mu X., Shen X., Ravi V., Kuznetsova I.S., Sun Y., You X., Qiu Y., et al. A chromosome-level genome assembly of the Asian arowana, Scleropages formosus. Sci. Data. 2016;3:160105. doi: 10.1038/sdata.2016.105. PubMed DOI PMC
Callan H.G., Lloyd L. Lampbrush chromosomes of crested newts Triturus cristatus (Laurenti) Philos. Trans. R. Soc. Lond. B. Biol. Sci. 1960;243:135–219.
Sims S.H., Macgregor H.C., Pellatt P.S., Horner H.A. Chromosome 1 in crested and marbled newts (Triturus) Chromosoma. 1984;89:169–185. doi: 10.1007/BF00294996. DOI
Galetti P.M., Foresti F., Bertollo L.A.C., Moreira Filho O. Heteromorphic sex chromosomes in three species of the genus Leporinus (Pisces, Anostomidae) Cytogenet Cell Genet. 1981;29:138–142. doi: 10.1159/000131562. PubMed DOI
Mestriner C.A., Bertollo L.A.C., Galetti P.M. Chromosome banding and synaptonemal complexes in Leporinus lacustris (Pisces, Anostomidae): analysis of a sex system. Chromosom. Res. 1995;3:440–443. doi: 10.1007/BF00713895. PubMed DOI
Reed K.M., Phillips R.B. Polymorphism of the nucleolus organizer region (NOR) on the putative sex chromosomes of Arctic char (Salvelinus alpinus) is not sex related. Chromosom. Res. 1997;5:221–227. doi: 10.1023/A:1018411417816. PubMed DOI
Molina W.F., Schmid M., Galetti P.M. Heterochromatin and sex chromosomes in the Neotropical fish genus Leporinus (Characiformes, Anostomidae) Cytobios. 1998;94:141–149.
Charlesworth D., Charlesworth B., Marais G. Steps in the evolution of heteromorphic sex chromosomes. Heredity. 2005;95:118–128. doi: 10.1038/sj.hdy.6800697. PubMed DOI
Cioffi M.B., Moreira-Filho O., Almeida-Toledo L.F., Bertollo L.A.C. The contrasting role of heterochromatin in the differentiation of sex chromosomes: an overview from Neotropical fishes. J. Fish Biol. 2012;80:2125–2139. doi: 10.1111/j.1095-8649.2012.03272.x. PubMed DOI
Gornung E. Twenty years of physical mapping of major ribosomal RNA genes across the teleosts: a review of research. Cytogenet. Genome Res. 2013;141:90–102. doi: 10.1159/000354832. PubMed DOI
Sember A., Bohlen J., Šlechtová V., Altmanová M., Symonová R., Ráb P. Karyotype differentiation in 19 species of river loach fishes (Nemacheilidae, Teleostei): Extensive variability associated with rDNA and heterochromatin distribution and its phylogenetic and ecological interpretation. BMC Evol. Biol. 2015;15:251–272. doi: 10.1186/s12862-015-0532-9. PubMed DOI PMC
Symonová R., Howell W. Vertebrate Genome Evolution in the Light of Fish Cytogenomics and rDNAomics. Genes. 2018;9:96. doi: 10.3390/genes9020096. PubMed DOI PMC
Molina W.F., Galetti P.M. Robertsonian rearrangements in the reef fish Chromis (Perciformes, Pomacentridae) involving chromosomes bearing 5S rRNA genes. Genet. Mol. Biol. 2002;25:373–377. doi: 10.1590/S1415-47572002000400004. DOI
Getlekha N., Molina W.F., de Bello Cioffi M., Yano C.F., Maneechot N., Bertollo L.A.C., Supiwong W., Tanomtong A. Repetitive DNAs highlight the role of chromosomal fusions in the karyotype evolution of Dascyllus species (Pomacentridae, Perciformes) Genetica. 2016;144:203–211. doi: 10.1007/s10709-016-9890-5. PubMed DOI
Van Den Ende C., White L.T., van Welzen P.C. The existence and break-up of the Antarctic land bridge as indicated by both amphi-Pacific distributions and tectonics. Gondwana Res. 2017;44:219–227. doi: 10.1016/j.gr.2016.12.006. DOI
Ali J.R., Krause D.W. Late Cretaceous bioconnections between Indo-Madagascar and Antarctica: refutation of the Gunnerus Ridge causeway hypothesis. J. Biogeogr. 2011;38:1855–1872. doi: 10.1111/j.1365-2699.2011.02546.x. DOI
Wilson M.V.H., Murray A.M. Osteoglossomorpha: phylogeny, biogeography, and fossil record and the significance of key African and Chinese fossil taxa. Geol. Soc. Lond. Spec. Publ. 2008;295:185–219. doi: 10.1144/SP295.12. DOI
Kumazawa Y., Nishida M. Molecular phylogeny of osteoglossoids: A new model for Gondwanian origin and plate tectonic transportation of the Asian arowana. Mol. Biol. Evol. 2000;17:1869–1878. doi: 10.1093/oxfordjournals.molbev.a026288. PubMed DOI
Winn C., Karlstrom K.E., Shuster D.L., Kelley S., Fox M. 6 Ma age of carving Westernmost Grand Canyon: Reconciling geologic data with combined AFT,(U–Th)/He, and 4He/3He thermochronologic data. Earth Planet. Sci. Lett. 2017;474:257–271. doi: 10.1016/j.epsl.2017.06.051. DOI
Albert J.S., Val P., Hoorn C. The changing course of the Amazon River in the Neogene: center stage for Neotropical diversification. Neotrop. Ichthyol. 2018;16:e180033. doi: 10.1590/1982-0224-20180033. DOI
Sambrook J., Russell D.W. Molecular Cloning: A Laboratory Manual. 3rd ed. Cold Spring Harbor Laboratory Press; New York, NY, USA: 2001.
Kilian A., Wenzl P., Huttner E., Carling J., Xia L., Blois H., Caig V., Heller-Uszynska K., Jaccoud D., Hopper C. Data Production and Analysis in Population Genomics. Springer; New York, NY, USA: 2012. Diversity arrays technology: a generic genome profiling technology on open platforms; pp. 67–89. PubMed
Gruber B., Unmack P.J., Berry O.F., Georges A. dartr: An r package to facilitate analysis of SNP data generated from reduced representation genome sequencing. Mol. Ecol. Resour. 2018;18:691–699. doi: 10.1111/1755-0998.12745. PubMed DOI
Gosselin T. RADseq Data Exploration, Manipulation and Visualization Using R. [(accessed on 10 July 2019)];2016 doi: 10.5281/zenodo.1475182. Available online: https://thierrygosselin.github.io/radiator/ DOI
Chifman J., Kubatko L. Quartet Inference from SNP Data Under the Coalescent Model. Bioinformatics. 2014;30:3317–3324. doi: 10.1093/bioinformatics/btu530. PubMed DOI PMC
Swofford D.L. PAUP*. Phylogenetic Analysis Using Parsimony and Other Methods. Sinauer Associates, Inc.; Sunderland, MA, USA: 2003.
Bouckaert R., Heled J., Kühnert D., Vaughan T., Wu C.-H., Xie D., Suchard M.A., Rambaut A., Drummond A.J. BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLOS Comput. Biol. 2014;10:e1003537. doi: 10.1371/journal.pcbi.1003537. PubMed DOI PMC
Stange M., Sánchez-Villagra M.R., Salzburger W., Matschiner M. Bayesian Divergence-Time Estimation with Genome-Wide Single-Nucleotide Polymorphism Data of Sea Catfishes (Ariidae) Supports Miocene Closure of the Panamanian Isthmus. Syst. Biol. 2018;67:681–699. doi: 10.1093/sysbio/syy006. PubMed DOI PMC
Zhang J.-Y., Wilson M.V.H. First complete fossil Scleropages (Osteoglossomorpha) Vertebr. Palasiat. 2017;55:1–23.
Rambaut A., Drummond A.J., Xie D., Baele G., Suchard M.A. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst. Biol. 2018;67:901–904. doi: 10.1093/sysbio/syy032. PubMed DOI PMC
Bertollo L.A.C., Cioffi M.B., Moreira-Filho O. Direct chromosome preparation from Freshwater Teleost Fishes. In: Ozouf-Costaz C., Pisano E., Foresti F., Almeida Toledo L.F., editors. Fish Cytogenetic Techniques (Chondrichthyans and Teleosts) CRC Press; Enfield, CT, USA: 2015. pp. 21–26.
Schmid M. Chromosome banding in Amphibia. IV. Differentiation of GC-and AT-rich chromosome regions in Anura. Chromosoma. 1980;77:83–103. doi: 10.1007/BF00292043. PubMed DOI
Sumner A.T. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 1972;75:304–306. doi: 10.1016/0014-4827(72)90558-7. PubMed DOI
Pendás A.M., Móran P., Freije J.P., Garcia-Vásquez E. Chromosomal location and nucleotide sequence of two tandem repeats of the Atlantic salmon 5S rDNA. Cytogenet Cell Genet. 1994;67:31–36. doi: 10.1159/000133792. PubMed DOI
Cioffi M.B., Martins C., Centofante L., Jacobina U., Bertollo L.A.C. Chromosomal Variability among Allopatric Populations of Erythrinidae Fish Hoplias malabaricus: Mapping of Three Classes of Repetitive DNAs. Cytogenet. Genome Res. 2009;125:132–141. doi: 10.1159/000227838. PubMed DOI
Yano C.F., Bertollo L.A.C., Cioffi M.B. Fish-FISH: molecular cytogenetics in fish species. In: Liehr T., editor. Fluorescence In Situ Hybridization (FISH)- Application Guide. Springer; Berlin, Germany: 2017. pp. 429–444.
Zwick M.S., Hanson R.E., Mcknight T.D., Islam-Faridi M.H., Stelly D.M., Wing R.A., Price H.J. A rapid procedure for the isolation of C 0 t-1 DNA from plants. Genome. 1997;40:138–142. doi: 10.1139/g97-020. PubMed DOI
Symonová R., Majtánová Z., Sember A., Staaks G.B.O., Bohlen J., Freyhof J. Genome differentiation in a species pair of coregonine fishes: an extremely rapid speciation driven by stress - activated retrotransposons mediating extensive ribosomal DNA multiplications. BMC Evol. Biol. 2013;13:42–52. doi: 10.1186/1471-2148-13-42. PubMed DOI PMC
Symonová R., Flajšhans M., Sember A., Havelka M., Gela D., Kořínková T., Rodina M., Rábová M., Ráb P. Molecular cytogenetics in artificial hybrid and highly polyploid sturgeons: an evolutionary story narrated by repetitive sequences. Cytogenet. Genome Res. 2013;141:153–162. doi: 10.1159/000354882. PubMed DOI
Carvalho P.C., de Oliveira E.A., Bertollo L.A.C., Yano C.F., Oliveira C., Decru E., Jegede O.I., Hatanaka T., Liehr T., Al-Rikabi A.B.H., et al. First Chromosomal Analysis in Hepsetidae (Actinopterygii, Characiformes): Insights into Relationship between African and Neotropical Fish Groups. Front. Genet. 2017;8:203. doi: 10.3389/fgene.2017.00203. PubMed DOI PMC
De Freitas N.L., Al-Rikabi A.B.H., Bertollo L.A.C., Ezaz T., Yano C.F., de Oliveira E.A., Hatanaka T., de Bello Cioffi M. Early Stages of XY Sex Chromosomes Differentiation in the Fish Hoplias malabaricus (Characiformes, Erythrinidae) Revealed by DNA Repeats Accumulation. Curr. Genom. 2018;19:216–226. doi: 10.2174/1389202918666170711160528. PubMed DOI PMC
De Moraes R.L.R., Bertollo L.A.C., Marinho M.M.F., Yano C.F., Hatanaka T., Barby F.F., Troy W.P., Cioffi M.d.B. Evolutionary Relationships and Cytotaxonomy Considerations in the Genus Pyrrhulina (Characiformes, Lebiasinidae) Zebrafish. 2017;14:536–546. doi: 10.1089/zeb.2017.1465. PubMed DOI
De Oliveira E.A., Sember A., Bertollo L.A.C., Yano C.F., Ezaz T., Moreira-Filho O., Hatanaka T., Trifonov V., Liehr T., Al-Rikabi A.B.H., et al. Tracking the evolutionary pathway of sex chromosomes among fishes: characterizing the unique XX/XY1Y2 system in Hoplias malabaricus (Teleostei, Characiformes) Chromosoma. 2018;127:115–128. doi: 10.1007/s00412-017-0648-3. PubMed DOI
Symonová R., Sember A., Majtánová Z., Ráb P. Fish Cytogenetic Techniques. Ray-Fin Fishes and Chondrichthyans. CCR Press; Boca Raton, FL, USA: 2015. Characterization of fish genomes by GISH and CGH; pp. 118–131.
Yang F., Trifonov V., Ng B.L., Kosyakova N., Carter N.P. Generation of paint probes by flow-sorted and microdissected chromosomes. In: Liehr T., editor. Fluorescence In Situ Hybridization (FISH)—Application Guide. Springer; Berlin/Heidelberg, Germany: 2009. pp. 35–52.
Levan A., Fredga K., Sandberg A.A. Nomenclature for centromeric position on chromosomes. Hereditas. 1964;52:201–220. doi: 10.1111/j.1601-5223.1964.tb01953.x. DOI
GC and Repeats Profiling along Chromosomes-The Future of Fish Compositional Cytogenomics