From Chromosomes to Genome: Insights into the Evolutionary Relationships and Biogeography of Old World Knifefishes (Notopteridae; Osteoglossiformes)
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
29921830
PubMed Central
PMC6027293
DOI
10.3390/genes9060306
PII: genes9060306
Knihovny.cz E-zdroje
- Klíčová slova
- DArTseq NGS, Lemurian stepping-stones, Notopteridae, Osteoglossiformes, Out-of-India, chromosomal evolution, fluorescent in situ hybridization (FISH),
- Publikační typ
- časopisecké články MeSH
In addition to its wide geographical distribution, osteoglossiform fishes represent one of the most ancient freshwater teleost lineages; making it an important group for systematic and evolutionary studies. These fishes had a Gondwanan origin and their past distribution may have contributed to the diversity present in this group. However, cytogenetic and genomic data are still scarce, making it difficult to track evolutionary trajectories within this order. In addition, their wide distribution, with groups endemic to different continents, hinders an integrative study that allows a globalized view of its evolutionary process. Here, we performed a detailed chromosomal analysis in Notopteridae fishes, using conventional and advanced molecular cytogenetic methods. Moreover, the genetic distances of examined species were assessed by genotyping using diversity arrays technology sequencing (DArTseq). These data provided a clear picture of the genetic diversity between African and Asian Notopteridae species, and were highly consistent with the chromosomal, geographical, and historical data, enlightening their evolutionary diversification. Here, we discuss the impact of continental drift and split of Pangea on their recent diversity, as well as the contribution to biogeographical models that explain their distribution, highlighting the role of the Indian subcontinent in the evolutionary process within the family.
Department of Fisheries and Aquaculture Adamawa State University P M B 25 Mubi Adamawa State Nigeria
Institute for Applied Ecology University of Canberra Canberra ACT 2617 Australia
Institute of Human Genetics University Hospital Jena 07747 Jena Germany
Institute of Oceanography National Taiwan University Roosevelt Road Taipei 10617 Taiwan
Zobrazit více v PubMed
Bănărescu P. Zoogeography of Fresh Waters. General Distribution and Dispersal of Freshwater Animals. 1st ed. Aula-Verlag; Wiesbaden, Germany: 1990.
Greenwood P.H., Wilson M.V., Paxton J.R., Eschmeyer W.N. Encyclopedia of Fishes. Academic Press; San Diego, CA, USA: 1998.
Hilton E.J. Comparative osteology and phylogenetic systematics of fossil and living bony-tongue fishes (Actinopterygii, Teleostei, Osteoglossomorpha) Zool. J. Linn. Soc. 2002;137:1–100. doi: 10.1046/j.1096-3642.2003.00032.x. DOI
Lavoué S. Was Gondwanan breakup the cause of the intercontinental distribution of Osteoglossiformes? A time-calibrated phylogenetic test combining molecular, morphological, and paleontological evidence. Mol. Phylogenet. Evol. 2016;99:34–43. PubMed
Vidthayanon C. Thailand Red Data: Fishes. Office of Natural Resources and Environmental Policy and Planning; Bangkok, Thailand: 2005.
Wilson M.V.H., Murray A.M. Osteoglossomorpha: Phylogeny, biogeography, and fossil record and the significance of key African and Chinese fossil taxa. Geol. Soc. Lond. Spec. Publ. 2008;295:185–219. doi: 10.1144/SP295.12. DOI
Roberts T.R. Systematic revision of the old world freshwater fish family Notopteridae. Ichthyol. Explor. Freshw. 1992;2:361–383.
Nelson J.S., Grande T.C., Wilson M.V.H. Fishes of the World. John Wiley & Sons; Hoboken, NJ, USA: 2016.
Lavoué S., Sullivan J.P. Simultaneous analysis of five molecular markers provides a well-supported phylogenetic hypothesis for the living bony-tongue fishes (Osteoglossomorpha: Teleostei) Mol. Phylogenet. Evol. 2004;33:171–185. doi: 10.1016/j.ympev.2004.04.021. PubMed DOI
Inoue J.G., Kumazawa Y., Miya M., Nishida M. The historical biogeography of the freshwater knifefishes using mitogenomic approaches: A Mesozoic origin of the Asian notopterids (Actinopterygii: Osteoglossomorpha) Mol. Phylogenet. Evol. 2009;51:486–499. doi: 10.1016/j.ympev.2009.01.020. PubMed DOI
Taverne L., Maisey J.G. A Notopterid Skull (Teleostei, Osteoglossomorpha) from the Continental Early Cretaceous of Southern Morocco. American Museum of Natural History; New York, NY, USA: 1999. American Museum Novitates No. 3260.
Cavin L., Forey P.L. Osteology and systematic affinities of Palaeonotopterus greenwoodi Forey 1997 (Teleostei: Osteoglossomorpha) Zool. J. Linn. Soc. 2001;133:25–52. doi: 10.1111/j.1096-3642.2001.tb00621.x. DOI
DeConto R.M., Wold C.N., Wilson K.M., Voigt S., Schulz M., Wold A.R., Dullo W.-C., Ronov A.B., Balukhovsky A.N., Soding E. Alternative global Cretaceous paleogeography. Evol. Cretac. Ocean.-Clim. Syst. 1999;332:1–435. doi: 10.1130/SPE332. DOI
Bănărescu P. Zoogeography of Fresh Waters. Aula-Verlag; Wiesbaden, Germany: 1991. Volume 2: Distribution and dispersal of freshwater animals in North America and Eurasia.
Rögl F. Palaeogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene) Ann. Naturhistorischen Mus. 1997;99A:279–310.
Myers G.S. Salt-tolerance of fresh-water fish groups in relation to zoogeographical problems. Bijdr. Dierkd. 1949;28:315–322.
Sanders M. Die Fossilen Fische der Alttertiären Süsswasserablagerungen aus Mittel-Sumatra. Mouton; Berlin, Germany: 1934.
Kumazawa Y., Nishida M. Molecular phylogeny of osteoglossoids: A new model for Gondwanian origin and plate tectonic transportation of the Asian arowana. Mol. Biol. Evol. 2000;17:1869–1878. doi: 10.1093/oxfordjournals.molbev.a026288. PubMed DOI
Ráb P., Yano C.F., Lavoué S., Jegede O.I., Bertollo L.A.C., Ezaz T., Majtánová Z., de Oliveira E.A., Cioffi M.B. Karyotype and mapping of repetitive DNAs in the African butterfly fish Pantodon buchholzi, the sole species of the family Pantodontidae. Cytogenet. Genome Res. 2016;149:312–320. doi: 10.1159/000450534. PubMed DOI
Canitz J., Kirschbaum F., Tiedemann R. Karyotype description of the African weakly electric fish Campylomormyrus compressirostris in the context of chromosome evolution in Osteoglossiformes. J. Physiol. 2016;110:273–280. doi: 10.1016/j.jphysparis.2017.01.002. PubMed DOI
Nayyar R.P. Karyotype studies in the genus Notopterus (Lacepede). the occurrence and fate of univalent chromosomes in spermatocytes of N. Chitala. Genetica. 1965;36:398–406. PubMed
Uyeno T. A comparative study of chromosomes in the teleostean fish order Osteoglossiformes. Jpn. J. Ichthyol. 1973;20:211–217.
Takai A., Ojima Y. C-banded karyotype and nucleolus organizer regions of a notopterid fish, Notopterus chitala (Notopteridae, Osteoglossiformes) Chromosome Sci. 1998;2:35–38.
Rishi K.K., Singh J. Chromosomes of Notopterus notopterus (Pallas) (Notopteridae: Clupeiformes) Chromosome Inf. Serv. 1983;34:9–10.
Srivastava M.D., Kaur P. The structure and behaviour of chromosomes in six freshwater Teleosts. Cellule. 1964;65:93–107. PubMed
Urushido T. Karyotype of three species of fishes in the order Osteoglossiformes. Chromosome Inf. Serv. 1975;18:20–22.
Donsakul T., Magtoon W. A chromosome study on three species of featherbacks, Notopterus chitala (Hamilton), N. bland D’Aubenton and N. notopterus (Pallas), from Thailand; Proceedings of the 28th Kasetsart University Conference; Bangkok, Thailand. 29–31 January 1990; pp. 29–31.
Silawong K., Aoki S., Supiwong W., Tanomtong A., Khakhong S., Sanoamuang L. The first chromosomal characteristics of nucleolar organizer regions (NORs) in grey featherback fish, Notopterus notopterus (Osteoglossiformes, Notopteridae) by conventional and Ag-NOR staining techniques. Cytologia. 2012;77:279–285. doi: 10.1508/cytologia.77.279. DOI
Supiwong W., Tanomtong A., Khakhong S., Silawong K., Aoki S., Sanoamuang L. The first chromosomal characteristics of nucleolar organizer regions and karyological analysis of clown knife fish, Chitala ornata (Osteoglossiformes, Notopteridae) by T-lymphocyte cell culture. Cytologia. 2012;77:393–399. doi: 10.1508/cytologia.77.393. DOI
Bertollo L.A.C., Cioffi M.B., Moreira-Filho O. Direct chromosome preparation from Freshwater Teleost Fishes. In: Ozouf-Costaz C., Pisano E., Foresti F., Almeida Toledo L.F., editors. Fish Cytogenetic Techniques (Chondrichthyans and Teleosts) Enfield/CRC Press; Boca Raton, FL, USA: 2015.
Sumner A.T. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 1972;75:204–206. doi: 10.1016/0014-4827(72)90558-7. PubMed DOI
Howell W.M., Black D.A. Controlled silver staining of nucleolus organizer regions with a protective colloidal developer: A 1-step method. Experientia. 1980;36:1014–1015. doi: 10.1007/BF01953855. PubMed DOI
Schmid M. Chromosome banding in Amphibia. IV. Differentiation of GC-and AT-rich chromosome regions in Anura. Chromosoma. 1980;77:83–103. doi: 10.1007/BF00292043. PubMed DOI
Martins C., Ferreira I.A., Oliveira C., Foresti F., Galetti P.M. A tandemly repetitive centromeric DNA sequence of the fish Hoplias malabaricus (Characiformes: Erythrinidae) is derived from 5S rDNA. Genetica. 2006;127:133–141. doi: 10.1007/s10709-005-2674-y. PubMed DOI
Cioffi M.B., Martins C., Bertollo L.A.C. Comparative chromosome mapping of repetitive sequences. Implications for genomic evolution in the fish, Hoplias malabaricus. BMC Genet. 2009;10:34. doi: 10.1186/1471-2156-10-34. PubMed DOI PMC
Kubat Z., Hobza R., Vyskot B., Kejnovsky E. Microsatellite accumulation in the Y chromosome of Silene latifolia. Genome. 2008;51:350–356. doi: 10.1139/G08-024. PubMed DOI
Ijdo J.W., Wells R.A., Baldini A., Reeders S.T. Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res. 1991;19:4780. doi: 10.1093/nar/19.17.4780. PubMed DOI PMC
Pinkel D., Straume T., Gray J. Cytogenetic analysis using quantitative, high sensitivity, fluorescence hybridization. Proc. Natl. Acad. Sci. USA. 1986;83:2934–2938. doi: 10.1073/pnas.83.9.2934. PubMed DOI PMC
Levan A., Fredga K., Sandberg A.A. Nomenclature for centromeric position on chromosomes. Hereditas. 1964;52:201–220. doi: 10.1111/j.1601-5223.1964.tb01953.x. DOI
Sambrook J., Russell D.W. Molecular Cloning, A Laboratory Manual. Cold Spring Harbor Laboratory Press; New York, NY, USA: 2001.
Grewe P.M., Feutry P., Hill P.L., Gunasekera R.M., Schaefer K.M., Itano D.G., Fuller D.W., Foster S.D., Davies C.R. Evidence of discrete yellowfin tuna (Thunnus albacares) populations demands rethink of management for this globally important resource. Sci. Rep. 2015;5:16916. doi: 10.1038/srep16916. PubMed DOI PMC
Kilian A., Wenzl P., Huttner E., Carling J., Xia L., Blois H., Caig V., Heller-Uszynska K., Jaccoud D., Hopper C. Data Production and Analysis in Population Genomics. Springer; Berlin/Heidelberg, Germany: 2012. Diversity arrays technology: A generic genome profiling technology on open platforms; pp. 67–89. PubMed
Lambert M.R., Skelly D.K., Ezaz T. Sex-linked markers in the North American green frog (Rana clamitans) developed using DArTseq provide early insight into sex chromosome evolution. BMC Genom. 2016;17:844. doi: 10.1186/s12864-016-3209-x. PubMed DOI PMC
Dice L.R. Measures of the amount of ecologic association between species. Ecology. 1945;26:297–302. doi: 10.2307/1932409. DOI
Lê S., Josse J., Husson F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 2008;25:1–18. doi: 10.18637/jss.v025.i01. DOI
Suzuki R., Shimodaira H. Pvclust: An R package for assessing the uncertainty in hierarchical clustering. Bioinformatics. 2006;22:1540–1542. doi: 10.1093/bioinformatics/btl117. PubMed DOI
Ronquist F., Teslenko M., Van Der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard M.A., Huelsenbeck J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012;61:539–542. PubMed PMC
Rambaut A. FigTree Version 1.3.1. Computer Program. [(accessed on 15 August 2009)]; Available online: http//tree.bio.ed.ac.uk/software/figtree/
Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI
Ribeiro J.M.C., Alarcon-Chaidez F., Francischetti I.M.B., Mans B.J., Mather T.N., Valenzuela J.G., Wikel S.K. An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks. Insect Biochem. Mol. Biol. 2006;36:111–129. doi: 10.1016/j.ibmb.2005.11.005. PubMed DOI
O’Leary N.A., Wright M.W., Brister J.R., Ciufo S., Haddad D., McVeigh R., Rajput B., Robbertse B., Smith-White B., Ako-Adjei D. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2015;44:D733–D745. doi: 10.1093/nar/gkv1189. PubMed DOI PMC
Obermiller L.E., Pfeiler E. Phylogenetic relationships of elopomorph fishes inferred from mitochondrial ribosomal DNA sequences. Mol. Phylogenet. Evol. 2003;26:202–214. doi: 10.1016/S1055-7903(02)00327-5. PubMed DOI
Chen W., Lavoué S., Mayden R.L. Evolutionary origin and early biogeography of otophysan fishes (Ostariophysi: Teleostei) Evolution. 2013;67:2218–2239. doi: 10.1111/evo.12104. PubMed DOI
Sallan L.C. Major issues in the origins of ray-finned fish (Actinopterygii) biodiversity. Biol. Rev. 2014;89:950–971. doi: 10.1111/brv.12086. PubMed DOI
Ohno S., Atkin N.B. Comparative DNA values and chromosome complements of eight species of fishes. Chromosoma. 1966;18:455–466. doi: 10.1007/BF00332549. PubMed DOI
López-Flores I., Garrido-Ramos M.A. In: Repetitive DNA. Garrido-Ramos M.A., editor. Karger; Basel, Switzerland: 2012.
Gornung E. Twenty years of physical mapping of major ribosomal RNA genes across the teleosts: A review of research. Cytogenet. Genome Res. 2013;141:90–102. doi: 10.1159/000354832. PubMed DOI
Marques D.K., Venere P.C., Galetti Junior P.M. Chromosomal characterization of the bonytongue Arapaima gigas (Osteoglossiformes: Arapaimidae) Neotrop. Ichthyol. 2006;4:215–218. doi: 10.1590/S1679-62252006000200007. DOI
Da Rosa R., Rubert M., Caetano-Filho M., Giuliano-Caetano L. Conserved cytogenetic features in the Amazonian arapaima, Arapaima gigas (Schinz 1822) from Jamari river, Rondonia-Brazil. Open Biol. J. 2009;2:91–94. doi: 10.2174/1874196700902010091. DOI
Ozouf-Costaz C., Coutanceau J.-P., BOnillO C., Belkadi L., Fermon Y., Agnèse J.-F., Guidi-Rontani C., Paugy D. First insights into karyotype evolution within the family Mormyridae. Cybium. 2015;39:227–236.
Majtánová Z., Symonová R., Arias-Rodriguez L., Sallan L., Ráb P. “Holostei versus Halecostomi” problem: Insight from cytogenetics of ancient nonteleost actinopterygian fish, bowfin Amia calva. J. Exp. Zool. Part B Mol. Dev. Evol. 2017;328:620–628. doi: 10.1002/jez.b.22720. PubMed DOI
Symonová R., Majtánová Z., Arias-Rodriguez L., Mořkovský L., Kořínková T., Cavin L., Pokorná M.J., Doležálková M., Flajšhans M., Normandeau E., et al. Genome compositional organization in gars shows more similarities to mammals than to other ray-finned fish. J. Exp. Zool. Part B Mol. Dev. Evol. 2017;328:607–619. PubMed
Mayr B., Kalat M., Ràb P. Localization of NORs and counterstain enhanced fluorescence studies in Perca fluviatilis (Pisces, Percidae) Genetica. 1985;67:51–56. doi: 10.1007/BF02424460. PubMed DOI
Amemiya C.T., Gold J.R. Chromomycin A 3 stains nucleolus organizer regions of fish chromosomes. Copeia. 1986;1986:226–231. doi: 10.2307/1444915. DOI
Schmid M., Guttenbach M. Evolutionary diversity of reverse (R) fluorescent chromosome bands in vertebrates. Chromosoma. 1988;97:101–114. doi: 10.1007/BF00327367. PubMed DOI
Fontana F., Lanfredi M., Congiu L., Tagliavini J., Rossi R. Fluorescent in situ hybridization with rDNA probes on chromosomes of Acipenser ruthenus and Acipenser naccarii (Osteichthyes Acipenseriformes) Genome. 1999;42:1008–1012.
Inafuku J., Nabeyama M., Kikuma Y., Saitoh J., Kubota S., Kohno S. Chromosomal location and nucleotide sequences of 5S ribosomal DNA of two cyprinid species (Osteichthyes, Pisces) Chromosome Res. 2000;8:193–199. doi: 10.1023/A:1009292610618. PubMed DOI
Fontana F., Lanfredi M., Congiu L., Leis M., Chicca M., Rossi R. Chromosomal mapping of 18S–28S and 5S rRNA genes by two-colour fluorescent in situ hybridization in six sturgeon species. Genome. 2003;46:473–477. doi: 10.1139/g03-007. PubMed DOI
Tigano C., Rocco L., Ferrito V., Costagliola D., Pappalardo A.M., Stingo V. Chromosomal mapping and molecular characterization of ribosomal RNA genes in Lebias fasciata (Teleostei, Cyprinodontidae) Genetica. 2004;121:95–100. doi: 10.1023/B:GENE.0000019931.89458.dc. PubMed DOI
Cioffi M.B., Martins C., Vicari M.R., Rebordinos L., Bertollo L.A.C. Differentiation of the XY sex chromosomes in the fish Hoplias malabaricus (Characiformes, Erythrinidae): Unusual accumulation of repetitive sequences on the X chromosome. Sex. Dev. 2010;4:176–185. doi: 10.1159/000309726. PubMed DOI
Martins N.F., Bertollo L.A.C., Troy W.P., Feldberg E., de Souza Valentin F.C., de Bello Cioffi M. Differentiation and evolutionary relationships in Erythrinus erythrinus (Characiformes, Erythrinidae): Comparative chromosome mapping of repetitive sequences. Rev. Fish Biol. Fish. 2013;23:261–269. doi: 10.1007/s11160-012-9292-4. DOI
Marquioni V., Bertollo L.A.C., Diniz D., de Bello Cioffi M. Comparative chromosomal mapping in Triportheus fish species. Analysis of synteny between ribosomal genes. Micron. 2013;45:129–135. doi: 10.1016/J.MICRON.2012.11.008. PubMed DOI
Yano C.F., Bertollo L.A.C., Ezaz T., Trifonov V., Sember A., Liehr T., Cioffi M.B. Highly conserved Z and molecularly diverged W chromosomes in the fish genus Triportheus (Characiformes, Triportheidae) Heredity. 2017;118:276–283. doi: 10.1038/hdy.2016.83. PubMed DOI PMC
Kidwell M.G. Transposable elements and the evolution of genome size in eukaryotes. Genetica. 2002;115:49–63. doi: 10.1023/A:1016072014259. PubMed DOI
Cioffi M.B., Bertollo L.A.C. Chromosomal distribution and evolution of repetitive DNAs in fish. In: Garrido R., editor. Repetitive DNAs. Karger; Basel, Switzerland: 2012. PubMed
Scotese C.R. Atlas of Early Cretaceous Paleogeographic Maps, PALEOMAP Atlas for ArcGIS. The Cretaceous, Maps 23–31. Volume 2 Mollweide Projection; Evanston, IL, USA: 2014.
Scotese C.R. Atlas of Late Cretaceous Paleogeographic Maps, PALEOMAP Atlas for ArcGIS. The Cretaceous, Maps 16–22. Volume 2 Mollweide Projection; Evanston, IL, USA: 2014.
Molina W.F. Fish Cytogenetics. Taylor Francis Group; Boca Raton, FL, USA: 2007. Chromosomal changes and stasis in marine fish groups; pp. 69–110.
Steane D.A., Nicolle D., Sansaloni C.P., Petroli C.D., Carling J., Kilian A., Myburg A.A., Grattapaglia D., Vaillancourt R.E. Population genetic analysis and phylogeny reconstruction in Eucalyptus (Myrtaceae) using high-throughput, genome-wide genotyping. Mol. Phylogenet. Evol. 2011;59:206–224. doi: 10.1016/j.ympev.2011.02.003. PubMed DOI
Resende M.D.V., Resende M.F.R., Sansaloni C.P., Petroli C.D., Missiaggia A.A., Aguiar A.M., Abad J.M., Takahashi E.K., Rosado A.M., Faria D.A. Genomic selection for growth and wood quality in Eucalyptus: Capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytol. 2012;194:116–128. doi: 10.1111/j.1469-8137.2011.04038.x. PubMed DOI
Sánchez-Sevilla J.F., Horvath A., Botella M.A., Gaston A., Folta K., Kilian A., Denoyes B., Amaya I. Diversity Arrays Technology (DArT) marker platforms for diversity analysis and linkage mapping in a complex crop, the octoploid cultivated strawberry (Fragaria × ananassa) PLoS ONE. 2015;10:e0144960. doi: 10.1371/journal.pone.0144960. PubMed DOI PMC
Brandolini A., Volante A., Heun M. Geographic differentiation of domesticated einkorn wheat and possible Neolithic migration routes. Heredity. 2016;117:135–141. doi: 10.1038/hdy.2016.32. PubMed DOI PMC
Ali J.R., Aitchison J.C. Gondwana to Asia: Plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166–35 Ma) Earth-Sci. Rev. 2008;88:145–166.
Agnarsson I., Kuntner M. Current Topics in Phylogenetics and Phylogeography of Terrestrial and Aquatic Systems. InTech; Rijeka, Croatia: 2012. The generation of a biodiversity hotspot: Biogeography and phylogeography of the western Indian Ocean islands.
Vences M., Freyhof J., Sonnenberg R., Kosuch J., Veith M. Reconciling fossils and molecules: Cenozoic divergence of cichlid fishes and the biogeography of Madagascar. J. Biogeogr. 2001;28:1091–1099. doi: 10.1046/j.1365-2699.2001.00624.x. DOI
Yoder A.D., Nowak M.D. Has vicariance or dispersal been the predominant biogeographic force in Madagascar? Only time will tell. Annu. Rev. Ecol. Evol. Syst. 2006;37:405–431. doi: 10.1146/annurev.ecolsys.37.091305.110239. DOI
Kuntner M., Agnarsson I. Phylogeography of a successful aerial disperser: The golden orb spider Nephila on Indian Ocean islands. BMC Evol. Biol. 2011;11:119. doi: 10.1186/1471-2148-11-119. PubMed DOI PMC
Kuntner M., Agnarsson I. Biogeography and diversification of hermit spiders on Indian Ocean islands (Nephilidae: Nephilengys) Mol. Phylogenet. Evol. 2011;59:477–488. doi: 10.1016/j.ympev.2011.02.002. PubMed DOI
Masters J.C., De Wit M.J., Asher R.J. Reconciling the origins of Africa, India and Madagascar with vertebrate dispersal scenarios. Folia Primatol. 2006;77:399–418. doi: 10.1159/000095388. PubMed DOI
Schatz G.E. Malagasy/Indo-Australo-Malesian Phytogeographic Connections. ORSTOM; Paris, France: 1996.
Van Steenis C.G.G.J. The land-bridge theory in botany with particular reference to tropical plants. Blumea Biodivers. Evol. Biogeogr. Plants. 1962;11:235–372.
Rage J.-C. Relationships of the Malagasy fauna during the Late Cretaceous: Northern or Southern routes? Acta Palaeontol. Pol. 2003;48:661–662.
Aitchison J.C., Ali J.R., Davis A.M. When and where did India and Asia collide? J. Geophys. Res. Solid Earth. 2007:112. doi: 10.1029/2006JB004706. DOI
Daniels S.R. Reconstructing the colonisation and diversification history of the endemic freshwater crab (Seychellum alluaudi) in the granitic and volcanic Seychelles Archipelago. Mol. Phylogenet. Evol. 2011;61:534–542. doi: 10.1016/j.ympev.2011.07.015. PubMed DOI
Arai R. Fish Karyotypes: A Check List. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2011.