From Chromosomes to Genome: Insights into the Evolutionary Relationships and Biogeography of Old World Knifefishes (Notopteridae; Osteoglossiformes)

. 2018 Jun 19 ; 9 (6) : . [epub] 20180619

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid29921830

In addition to its wide geographical distribution, osteoglossiform fishes represent one of the most ancient freshwater teleost lineages; making it an important group for systematic and evolutionary studies. These fishes had a Gondwanan origin and their past distribution may have contributed to the diversity present in this group. However, cytogenetic and genomic data are still scarce, making it difficult to track evolutionary trajectories within this order. In addition, their wide distribution, with groups endemic to different continents, hinders an integrative study that allows a globalized view of its evolutionary process. Here, we performed a detailed chromosomal analysis in Notopteridae fishes, using conventional and advanced molecular cytogenetic methods. Moreover, the genetic distances of examined species were assessed by genotyping using diversity arrays technology sequencing (DArTseq). These data provided a clear picture of the genetic diversity between African and Asian Notopteridae species, and were highly consistent with the chromosomal, geographical, and historical data, enlightening their evolutionary diversification. Here, we discuss the impact of continental drift and split of Pangea on their recent diversity, as well as the contribution to biogeographical models that explain their distribution, highlighting the role of the Indian subcontinent in the evolutionary process within the family.

Zobrazit více v PubMed

Bănărescu P. Zoogeography of Fresh Waters. General Distribution and Dispersal of Freshwater Animals. 1st ed. Aula-Verlag; Wiesbaden, Germany: 1990.

Greenwood P.H., Wilson M.V., Paxton J.R., Eschmeyer W.N. Encyclopedia of Fishes. Academic Press; San Diego, CA, USA: 1998.

Hilton E.J. Comparative osteology and phylogenetic systematics of fossil and living bony-tongue fishes (Actinopterygii, Teleostei, Osteoglossomorpha) Zool. J. Linn. Soc. 2002;137:1–100. doi: 10.1046/j.1096-3642.2003.00032.x. DOI

Lavoué S. Was Gondwanan breakup the cause of the intercontinental distribution of Osteoglossiformes? A time-calibrated phylogenetic test combining molecular, morphological, and paleontological evidence. Mol. Phylogenet. Evol. 2016;99:34–43. PubMed

Vidthayanon C. Thailand Red Data: Fishes. Office of Natural Resources and Environmental Policy and Planning; Bangkok, Thailand: 2005.

Wilson M.V.H., Murray A.M. Osteoglossomorpha: Phylogeny, biogeography, and fossil record and the significance of key African and Chinese fossil taxa. Geol. Soc. Lond. Spec. Publ. 2008;295:185–219. doi: 10.1144/SP295.12. DOI

Roberts T.R. Systematic revision of the old world freshwater fish family Notopteridae. Ichthyol. Explor. Freshw. 1992;2:361–383.

Nelson J.S., Grande T.C., Wilson M.V.H. Fishes of the World. John Wiley & Sons; Hoboken, NJ, USA: 2016.

Lavoué S., Sullivan J.P. Simultaneous analysis of five molecular markers provides a well-supported phylogenetic hypothesis for the living bony-tongue fishes (Osteoglossomorpha: Teleostei) Mol. Phylogenet. Evol. 2004;33:171–185. doi: 10.1016/j.ympev.2004.04.021. PubMed DOI

Inoue J.G., Kumazawa Y., Miya M., Nishida M. The historical biogeography of the freshwater knifefishes using mitogenomic approaches: A Mesozoic origin of the Asian notopterids (Actinopterygii: Osteoglossomorpha) Mol. Phylogenet. Evol. 2009;51:486–499. doi: 10.1016/j.ympev.2009.01.020. PubMed DOI

Taverne L., Maisey J.G. A Notopterid Skull (Teleostei, Osteoglossomorpha) from the Continental Early Cretaceous of Southern Morocco. American Museum of Natural History; New York, NY, USA: 1999. American Museum Novitates No. 3260.

Cavin L., Forey P.L. Osteology and systematic affinities of Palaeonotopterus greenwoodi Forey 1997 (Teleostei: Osteoglossomorpha) Zool. J. Linn. Soc. 2001;133:25–52. doi: 10.1111/j.1096-3642.2001.tb00621.x. DOI

DeConto R.M., Wold C.N., Wilson K.M., Voigt S., Schulz M., Wold A.R., Dullo W.-C., Ronov A.B., Balukhovsky A.N., Soding E. Alternative global Cretaceous paleogeography. Evol. Cretac. Ocean.-Clim. Syst. 1999;332:1–435. doi: 10.1130/SPE332. DOI

Bănărescu P. Zoogeography of Fresh Waters. Aula-Verlag; Wiesbaden, Germany: 1991. Volume 2: Distribution and dispersal of freshwater animals in North America and Eurasia.

Rögl F. Palaeogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene) Ann. Naturhistorischen Mus. 1997;99A:279–310.

Myers G.S. Salt-tolerance of fresh-water fish groups in relation to zoogeographical problems. Bijdr. Dierkd. 1949;28:315–322.

Sanders M. Die Fossilen Fische der Alttertiären Süsswasserablagerungen aus Mittel-Sumatra. Mouton; Berlin, Germany: 1934.

Kumazawa Y., Nishida M. Molecular phylogeny of osteoglossoids: A new model for Gondwanian origin and plate tectonic transportation of the Asian arowana. Mol. Biol. Evol. 2000;17:1869–1878. doi: 10.1093/oxfordjournals.molbev.a026288. PubMed DOI

Ráb P., Yano C.F., Lavoué S., Jegede O.I., Bertollo L.A.C., Ezaz T., Majtánová Z., de Oliveira E.A., Cioffi M.B. Karyotype and mapping of repetitive DNAs in the African butterfly fish Pantodon buchholzi, the sole species of the family Pantodontidae. Cytogenet. Genome Res. 2016;149:312–320. doi: 10.1159/000450534. PubMed DOI

Canitz J., Kirschbaum F., Tiedemann R. Karyotype description of the African weakly electric fish Campylomormyrus compressirostris in the context of chromosome evolution in Osteoglossiformes. J. Physiol. 2016;110:273–280. doi: 10.1016/j.jphysparis.2017.01.002. PubMed DOI

Nayyar R.P. Karyotype studies in the genus Notopterus (Lacepede). the occurrence and fate of univalent chromosomes in spermatocytes of N. Chitala. Genetica. 1965;36:398–406. PubMed

Uyeno T. A comparative study of chromosomes in the teleostean fish order Osteoglossiformes. Jpn. J. Ichthyol. 1973;20:211–217.

Takai A., Ojima Y. C-banded karyotype and nucleolus organizer regions of a notopterid fish, Notopterus chitala (Notopteridae, Osteoglossiformes) Chromosome Sci. 1998;2:35–38.

Rishi K.K., Singh J. Chromosomes of Notopterus notopterus (Pallas) (Notopteridae: Clupeiformes) Chromosome Inf. Serv. 1983;34:9–10.

Srivastava M.D., Kaur P. The structure and behaviour of chromosomes in six freshwater Teleosts. Cellule. 1964;65:93–107. PubMed

Urushido T. Karyotype of three species of fishes in the order Osteoglossiformes. Chromosome Inf. Serv. 1975;18:20–22.

Donsakul T., Magtoon W. A chromosome study on three species of featherbacks, Notopterus chitala (Hamilton), N. bland D’Aubenton and N. notopterus (Pallas), from Thailand; Proceedings of the 28th Kasetsart University Conference; Bangkok, Thailand. 29–31 January 1990; pp. 29–31.

Silawong K., Aoki S., Supiwong W., Tanomtong A., Khakhong S., Sanoamuang L. The first chromosomal characteristics of nucleolar organizer regions (NORs) in grey featherback fish, Notopterus notopterus (Osteoglossiformes, Notopteridae) by conventional and Ag-NOR staining techniques. Cytologia. 2012;77:279–285. doi: 10.1508/cytologia.77.279. DOI

Supiwong W., Tanomtong A., Khakhong S., Silawong K., Aoki S., Sanoamuang L. The first chromosomal characteristics of nucleolar organizer regions and karyological analysis of clown knife fish, Chitala ornata (Osteoglossiformes, Notopteridae) by T-lymphocyte cell culture. Cytologia. 2012;77:393–399. doi: 10.1508/cytologia.77.393. DOI

Bertollo L.A.C., Cioffi M.B., Moreira-Filho O. Direct chromosome preparation from Freshwater Teleost Fishes. In: Ozouf-Costaz C., Pisano E., Foresti F., Almeida Toledo L.F., editors. Fish Cytogenetic Techniques (Chondrichthyans and Teleosts) Enfield/CRC Press; Boca Raton, FL, USA: 2015.

Sumner A.T. A simple technique for demonstrating centromeric heterochromatin. Exp. Cell Res. 1972;75:204–206. doi: 10.1016/0014-4827(72)90558-7. PubMed DOI

Howell W.M., Black D.A. Controlled silver staining of nucleolus organizer regions with a protective colloidal developer: A 1-step method. Experientia. 1980;36:1014–1015. doi: 10.1007/BF01953855. PubMed DOI

Schmid M. Chromosome banding in Amphibia. IV. Differentiation of GC-and AT-rich chromosome regions in Anura. Chromosoma. 1980;77:83–103. doi: 10.1007/BF00292043. PubMed DOI

Martins C., Ferreira I.A., Oliveira C., Foresti F., Galetti P.M. A tandemly repetitive centromeric DNA sequence of the fish Hoplias malabaricus (Characiformes: Erythrinidae) is derived from 5S rDNA. Genetica. 2006;127:133–141. doi: 10.1007/s10709-005-2674-y. PubMed DOI

Cioffi M.B., Martins C., Bertollo L.A.C. Comparative chromosome mapping of repetitive sequences. Implications for genomic evolution in the fish, Hoplias malabaricus. BMC Genet. 2009;10:34. doi: 10.1186/1471-2156-10-34. PubMed DOI PMC

Kubat Z., Hobza R., Vyskot B., Kejnovsky E. Microsatellite accumulation in the Y chromosome of Silene latifolia. Genome. 2008;51:350–356. doi: 10.1139/G08-024. PubMed DOI

Ijdo J.W., Wells R.A., Baldini A., Reeders S.T. Improved telomere detection using a telomere repeat probe (TTAGGG)n generated by PCR. Nucleic Acids Res. 1991;19:4780. doi: 10.1093/nar/19.17.4780. PubMed DOI PMC

Pinkel D., Straume T., Gray J. Cytogenetic analysis using quantitative, high sensitivity, fluorescence hybridization. Proc. Natl. Acad. Sci. USA. 1986;83:2934–2938. doi: 10.1073/pnas.83.9.2934. PubMed DOI PMC

Levan A., Fredga K., Sandberg A.A. Nomenclature for centromeric position on chromosomes. Hereditas. 1964;52:201–220. doi: 10.1111/j.1601-5223.1964.tb01953.x. DOI

Sambrook J., Russell D.W. Molecular Cloning, A Laboratory Manual. Cold Spring Harbor Laboratory Press; New York, NY, USA: 2001.

Grewe P.M., Feutry P., Hill P.L., Gunasekera R.M., Schaefer K.M., Itano D.G., Fuller D.W., Foster S.D., Davies C.R. Evidence of discrete yellowfin tuna (Thunnus albacares) populations demands rethink of management for this globally important resource. Sci. Rep. 2015;5:16916. doi: 10.1038/srep16916. PubMed DOI PMC

Kilian A., Wenzl P., Huttner E., Carling J., Xia L., Blois H., Caig V., Heller-Uszynska K., Jaccoud D., Hopper C. Data Production and Analysis in Population Genomics. Springer; Berlin/Heidelberg, Germany: 2012. Diversity arrays technology: A generic genome profiling technology on open platforms; pp. 67–89. PubMed

Lambert M.R., Skelly D.K., Ezaz T. Sex-linked markers in the North American green frog (Rana clamitans) developed using DArTseq provide early insight into sex chromosome evolution. BMC Genom. 2016;17:844. doi: 10.1186/s12864-016-3209-x. PubMed DOI PMC

Dice L.R. Measures of the amount of ecologic association between species. Ecology. 1945;26:297–302. doi: 10.2307/1932409. DOI

Lê S., Josse J., Husson F. FactoMineR: An R package for multivariate analysis. J. Stat. Softw. 2008;25:1–18. doi: 10.18637/jss.v025.i01. DOI

Suzuki R., Shimodaira H. Pvclust: An R package for assessing the uncertainty in hierarchical clustering. Bioinformatics. 2006;22:1540–1542. doi: 10.1093/bioinformatics/btl117. PubMed DOI

Ronquist F., Teslenko M., Van Der Mark P., Ayres D.L., Darling A., Höhna S., Larget B., Liu L., Suchard M.A., Huelsenbeck J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012;61:539–542. PubMed PMC

Rambaut A. FigTree Version 1.3.1. Computer Program. [(accessed on 15 August 2009)]; Available online: http//tree.bio.ed.ac.uk/software/figtree/

Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. doi: 10.1016/S0022-2836(05)80360-2. PubMed DOI

Ribeiro J.M.C., Alarcon-Chaidez F., Francischetti I.M.B., Mans B.J., Mather T.N., Valenzuela J.G., Wikel S.K. An annotated catalog of salivary gland transcripts from Ixodes scapularis ticks. Insect Biochem. Mol. Biol. 2006;36:111–129. doi: 10.1016/j.ibmb.2005.11.005. PubMed DOI

O’Leary N.A., Wright M.W., Brister J.R., Ciufo S., Haddad D., McVeigh R., Rajput B., Robbertse B., Smith-White B., Ako-Adjei D. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2015;44:D733–D745. doi: 10.1093/nar/gkv1189. PubMed DOI PMC

Obermiller L.E., Pfeiler E. Phylogenetic relationships of elopomorph fishes inferred from mitochondrial ribosomal DNA sequences. Mol. Phylogenet. Evol. 2003;26:202–214. doi: 10.1016/S1055-7903(02)00327-5. PubMed DOI

Chen W., Lavoué S., Mayden R.L. Evolutionary origin and early biogeography of otophysan fishes (Ostariophysi: Teleostei) Evolution. 2013;67:2218–2239. doi: 10.1111/evo.12104. PubMed DOI

Sallan L.C. Major issues in the origins of ray-finned fish (Actinopterygii) biodiversity. Biol. Rev. 2014;89:950–971. doi: 10.1111/brv.12086. PubMed DOI

Ohno S., Atkin N.B. Comparative DNA values and chromosome complements of eight species of fishes. Chromosoma. 1966;18:455–466. doi: 10.1007/BF00332549. PubMed DOI

López-Flores I., Garrido-Ramos M.A. In: Repetitive DNA. Garrido-Ramos M.A., editor. Karger; Basel, Switzerland: 2012.

Gornung E. Twenty years of physical mapping of major ribosomal RNA genes across the teleosts: A review of research. Cytogenet. Genome Res. 2013;141:90–102. doi: 10.1159/000354832. PubMed DOI

Marques D.K., Venere P.C., Galetti Junior P.M. Chromosomal characterization of the bonytongue Arapaima gigas (Osteoglossiformes: Arapaimidae) Neotrop. Ichthyol. 2006;4:215–218. doi: 10.1590/S1679-62252006000200007. DOI

Da Rosa R., Rubert M., Caetano-Filho M., Giuliano-Caetano L. Conserved cytogenetic features in the Amazonian arapaima, Arapaima gigas (Schinz 1822) from Jamari river, Rondonia-Brazil. Open Biol. J. 2009;2:91–94. doi: 10.2174/1874196700902010091. DOI

Ozouf-Costaz C., Coutanceau J.-P., BOnillO C., Belkadi L., Fermon Y., Agnèse J.-F., Guidi-Rontani C., Paugy D. First insights into karyotype evolution within the family Mormyridae. Cybium. 2015;39:227–236.

Majtánová Z., Symonová R., Arias-Rodriguez L., Sallan L., Ráb P. “Holostei versus Halecostomi” problem: Insight from cytogenetics of ancient nonteleost actinopterygian fish, bowfin Amia calva. J. Exp. Zool. Part B Mol. Dev. Evol. 2017;328:620–628. doi: 10.1002/jez.b.22720. PubMed DOI

Symonová R., Majtánová Z., Arias-Rodriguez L., Mořkovský L., Kořínková T., Cavin L., Pokorná M.J., Doležálková M., Flajšhans M., Normandeau E., et al. Genome compositional organization in gars shows more similarities to mammals than to other ray-finned fish. J. Exp. Zool. Part B Mol. Dev. Evol. 2017;328:607–619. PubMed

Mayr B., Kalat M., Ràb P. Localization of NORs and counterstain enhanced fluorescence studies in Perca fluviatilis (Pisces, Percidae) Genetica. 1985;67:51–56. doi: 10.1007/BF02424460. PubMed DOI

Amemiya C.T., Gold J.R. Chromomycin A 3 stains nucleolus organizer regions of fish chromosomes. Copeia. 1986;1986:226–231. doi: 10.2307/1444915. DOI

Schmid M., Guttenbach M. Evolutionary diversity of reverse (R) fluorescent chromosome bands in vertebrates. Chromosoma. 1988;97:101–114. doi: 10.1007/BF00327367. PubMed DOI

Fontana F., Lanfredi M., Congiu L., Tagliavini J., Rossi R. Fluorescent in situ hybridization with rDNA probes on chromosomes of Acipenser ruthenus and Acipenser naccarii (Osteichthyes Acipenseriformes) Genome. 1999;42:1008–1012.

Inafuku J., Nabeyama M., Kikuma Y., Saitoh J., Kubota S., Kohno S. Chromosomal location and nucleotide sequences of 5S ribosomal DNA of two cyprinid species (Osteichthyes, Pisces) Chromosome Res. 2000;8:193–199. doi: 10.1023/A:1009292610618. PubMed DOI

Fontana F., Lanfredi M., Congiu L., Leis M., Chicca M., Rossi R. Chromosomal mapping of 18S–28S and 5S rRNA genes by two-colour fluorescent in situ hybridization in six sturgeon species. Genome. 2003;46:473–477. doi: 10.1139/g03-007. PubMed DOI

Tigano C., Rocco L., Ferrito V., Costagliola D., Pappalardo A.M., Stingo V. Chromosomal mapping and molecular characterization of ribosomal RNA genes in Lebias fasciata (Teleostei, Cyprinodontidae) Genetica. 2004;121:95–100. doi: 10.1023/B:GENE.0000019931.89458.dc. PubMed DOI

Cioffi M.B., Martins C., Vicari M.R., Rebordinos L., Bertollo L.A.C. Differentiation of the XY sex chromosomes in the fish Hoplias malabaricus (Characiformes, Erythrinidae): Unusual accumulation of repetitive sequences on the X chromosome. Sex. Dev. 2010;4:176–185. doi: 10.1159/000309726. PubMed DOI

Martins N.F., Bertollo L.A.C., Troy W.P., Feldberg E., de Souza Valentin F.C., de Bello Cioffi M. Differentiation and evolutionary relationships in Erythrinus erythrinus (Characiformes, Erythrinidae): Comparative chromosome mapping of repetitive sequences. Rev. Fish Biol. Fish. 2013;23:261–269. doi: 10.1007/s11160-012-9292-4. DOI

Marquioni V., Bertollo L.A.C., Diniz D., de Bello Cioffi M. Comparative chromosomal mapping in Triportheus fish species. Analysis of synteny between ribosomal genes. Micron. 2013;45:129–135. doi: 10.1016/J.MICRON.2012.11.008. PubMed DOI

Yano C.F., Bertollo L.A.C., Ezaz T., Trifonov V., Sember A., Liehr T., Cioffi M.B. Highly conserved Z and molecularly diverged W chromosomes in the fish genus Triportheus (Characiformes, Triportheidae) Heredity. 2017;118:276–283. doi: 10.1038/hdy.2016.83. PubMed DOI PMC

Kidwell M.G. Transposable elements and the evolution of genome size in eukaryotes. Genetica. 2002;115:49–63. doi: 10.1023/A:1016072014259. PubMed DOI

Cioffi M.B., Bertollo L.A.C. Chromosomal distribution and evolution of repetitive DNAs in fish. In: Garrido R., editor. Repetitive DNAs. Karger; Basel, Switzerland: 2012. PubMed

Scotese C.R. Atlas of Early Cretaceous Paleogeographic Maps, PALEOMAP Atlas for ArcGIS. The Cretaceous, Maps 23–31. Volume 2 Mollweide Projection; Evanston, IL, USA: 2014.

Scotese C.R. Atlas of Late Cretaceous Paleogeographic Maps, PALEOMAP Atlas for ArcGIS. The Cretaceous, Maps 16–22. Volume 2 Mollweide Projection; Evanston, IL, USA: 2014.

Molina W.F. Fish Cytogenetics. Taylor Francis Group; Boca Raton, FL, USA: 2007. Chromosomal changes and stasis in marine fish groups; pp. 69–110.

Steane D.A., Nicolle D., Sansaloni C.P., Petroli C.D., Carling J., Kilian A., Myburg A.A., Grattapaglia D., Vaillancourt R.E. Population genetic analysis and phylogeny reconstruction in Eucalyptus (Myrtaceae) using high-throughput, genome-wide genotyping. Mol. Phylogenet. Evol. 2011;59:206–224. doi: 10.1016/j.ympev.2011.02.003. PubMed DOI

Resende M.D.V., Resende M.F.R., Sansaloni C.P., Petroli C.D., Missiaggia A.A., Aguiar A.M., Abad J.M., Takahashi E.K., Rosado A.M., Faria D.A. Genomic selection for growth and wood quality in Eucalyptus: Capturing the missing heritability and accelerating breeding for complex traits in forest trees. New Phytol. 2012;194:116–128. doi: 10.1111/j.1469-8137.2011.04038.x. PubMed DOI

Sánchez-Sevilla J.F., Horvath A., Botella M.A., Gaston A., Folta K., Kilian A., Denoyes B., Amaya I. Diversity Arrays Technology (DArT) marker platforms for diversity analysis and linkage mapping in a complex crop, the octoploid cultivated strawberry (Fragaria × ananassa) PLoS ONE. 2015;10:e0144960. doi: 10.1371/journal.pone.0144960. PubMed DOI PMC

Brandolini A., Volante A., Heun M. Geographic differentiation of domesticated einkorn wheat and possible Neolithic migration routes. Heredity. 2016;117:135–141. doi: 10.1038/hdy.2016.32. PubMed DOI PMC

Ali J.R., Aitchison J.C. Gondwana to Asia: Plate tectonics, paleogeography and the biological connectivity of the Indian sub-continent from the Middle Jurassic through latest Eocene (166–35 Ma) Earth-Sci. Rev. 2008;88:145–166.

Agnarsson I., Kuntner M. Current Topics in Phylogenetics and Phylogeography of Terrestrial and Aquatic Systems. InTech; Rijeka, Croatia: 2012. The generation of a biodiversity hotspot: Biogeography and phylogeography of the western Indian Ocean islands.

Vences M., Freyhof J., Sonnenberg R., Kosuch J., Veith M. Reconciling fossils and molecules: Cenozoic divergence of cichlid fishes and the biogeography of Madagascar. J. Biogeogr. 2001;28:1091–1099. doi: 10.1046/j.1365-2699.2001.00624.x. DOI

Yoder A.D., Nowak M.D. Has vicariance or dispersal been the predominant biogeographic force in Madagascar? Only time will tell. Annu. Rev. Ecol. Evol. Syst. 2006;37:405–431. doi: 10.1146/annurev.ecolsys.37.091305.110239. DOI

Kuntner M., Agnarsson I. Phylogeography of a successful aerial disperser: The golden orb spider Nephila on Indian Ocean islands. BMC Evol. Biol. 2011;11:119. doi: 10.1186/1471-2148-11-119. PubMed DOI PMC

Kuntner M., Agnarsson I. Biogeography and diversification of hermit spiders on Indian Ocean islands (Nephilidae: Nephilengys) Mol. Phylogenet. Evol. 2011;59:477–488. doi: 10.1016/j.ympev.2011.02.002. PubMed DOI

Masters J.C., De Wit M.J., Asher R.J. Reconciling the origins of Africa, India and Madagascar with vertebrate dispersal scenarios. Folia Primatol. 2006;77:399–418. doi: 10.1159/000095388. PubMed DOI

Schatz G.E. Malagasy/Indo-Australo-Malesian Phytogeographic Connections. ORSTOM; Paris, France: 1996.

Van Steenis C.G.G.J. The land-bridge theory in botany with particular reference to tropical plants. Blumea Biodivers. Evol. Biogeogr. Plants. 1962;11:235–372.

Rage J.-C. Relationships of the Malagasy fauna during the Late Cretaceous: Northern or Southern routes? Acta Palaeontol. Pol. 2003;48:661–662.

Aitchison J.C., Ali J.R., Davis A.M. When and where did India and Asia collide? J. Geophys. Res. Solid Earth. 2007:112. doi: 10.1029/2006JB004706. DOI

Daniels S.R. Reconstructing the colonisation and diversification history of the endemic freshwater crab (Seychellum alluaudi) in the granitic and volcanic Seychelles Archipelago. Mol. Phylogenet. Evol. 2011;61:534–542. doi: 10.1016/j.ympev.2011.07.015. PubMed DOI

Arai R. Fish Karyotypes: A Check List. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2011.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Cytogenetics Meets Genomics: Cytotaxonomy and Genomic Relationships among Color Variants of the Asian Arowana Scleropages formosus

. 2023 May 19 ; 24 (10) : . [epub] 20230519

Revisiting the Karyotypes of Alligators and Caimans (Crocodylia, Alligatoridae) after a Half-Century Delay: Bridging the Gap in the Chromosomal Evolution of Reptiles

. 2021 Jun 05 ; 10 (6) : . [epub] 20210605

Cytogenetics of the small-sized fish, Copeina guttata (Characiformes, Lebiasinidae): Novel insights into the karyotype differentiation of the family

. 2019 ; 14 (12) : e0226746. [epub] 20191219

Interspecific Genetic Differences and Historical Demography in South American Arowanas (Osteoglossiformes, Osteoglossidae, Osteoglossum)

. 2019 Sep 09 ; 10 (9) : . [epub] 20190909

Deciphering the Evolutionary History of Arowana Fishes (Teleostei, Osteoglossiformes, Osteoglossidae): Insight from Comparative Cytogenomics

. 2019 Sep 02 ; 20 (17) : . [epub] 20190902

Cytogenetics, genomics and biodiversity of the South American and African Arapaimidae fish family (Teleostei, Osteoglossiformes)

. 2019 ; 14 (3) : e0214225. [epub] 20190325

Emerging patterns of genome organization in Notopteridae species (Teleostei, Osteoglossiformes) as revealed by Zoo-FISH and Comparative Genomic Hybridization (CGH)

. 2019 Feb 04 ; 9 (1) : 1112. [epub] 20190204

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace