Cytogenetics of the small-sized fish, Copeina guttata (Characiformes, Lebiasinidae): Novel insights into the karyotype differentiation of the family

. 2019 ; 14 (12) : e0226746. [epub] 20191219

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31856256

Lebiasinidae is a small fish family composed by miniature to small-sized fishes with few cytogenetic data (most of them limited to descriptions of diploid chromosome numbers), thus preventing any evolutionary comparative studies at the chromosomal level. In the present study, we are providing, the first cytogenetic data for the red spotted tetra, Copeina guttata, including the standard karyotype, C-banding, repetitive DNA mapping by fluorescence in situ hybridization (FISH) and comparative genomic hybridization (CGH), providing chromosomal patterns and novel insights into the karyotype differentiation of the family. Males and females share diploid chromosome number 2n = 42 and karyotype composed of 2 metacentric (m), 4 submetacentric (sm) and 36 subtelocentric to acrocentric (st-a) chromosomes. Blocks of constitutive heterochromatin were observed in the centromeric and interstitial regions of several chromosomes, in addition to a remarkably large distal block, heteromorphic in size, which fully corresponded with the 18S rDNA sites in the fourth chromosomal pair. This overlap was confirmed by 5S/18S rDNA dual-color FISH. On the other hand, 5S rDNA clusters were situated in the long and short arms of the 2nd and 15th pairs, respectively. No sex-linked karyotype differences were revealed by male/female CGH experiments. The genomic probes from other two lebiasinid species, Lebiasina melanoguttata and Pyrrhulina brevis, showed positive hybridization signals only in the NOR region in the genome of C. guttata. We demonstrated that karyotype diversification in lebiasinids was accompanied by a series of structural and numeric chromosome rearrangements of different types, including particularly fusions and fissions.

Zobrazit více v PubMed

Albert JS, Reis RE. Historical Biogeography of Neotropical Freshwather Fishes. Berkeley: University of California Press; 2011. 10.1525/california/9780520268685.001.0001 DOI

Reis RE, Albert JS, Di Dario F, Mincarone MM, Petry P, Rocha LA. Fish biodiversity and conservation in South America. J Fish Biol. 2016;89: 12–47. 10.1111/jfb.13016 PubMed DOI

Schaefer SA. Conflict and resolution: impact of new taxa on phylogenetic studies of the Neotropical cascudinhos (Siluroidei: Loricariidae) In: Malabarba LR, Reis RE, Vari RP, Lucena ZMS, Lucena CAS, editors. Phylogeny and Classification of Neotropical fishes. Porto Alegre: Edipucrs; 1998. Pp. 375–400.

Pereira LHG, Hanner R, Foresti F, Oliveira C. Can DNA barcoding accurately discriminate megadiverse Neotropical freshwater fish fauna? BMC Genet. 2013;14: 1–14. 10.1186/1471-2156-14-1 PubMed DOI PMC

Pires AA, Ramirez JL, Galetti PM, Troy WP, Freitas PD. Molecular analysis reveals hidden diversity in Zungaro (Siluriformes: Pimelodidade): a genus of giant South American catfish. Genetica. 2017;145: 335–340. 10.1007/s10709-017-9968-8 PubMed DOI

Prizon AC, Bruschi DP, Borin-Carvalho LA, Cius A, Barbosa LM, Ruiz HB, et al. Hidden diversity in the populations of the armored catfish Ancistrus Kner, 1854 (Loricariidae, Hypostominae) from the Paraná River Basin revealed by molecular and cytogenetic data. Front Genet. 2017;8: 185 10.3389/fgene.2017.00185 PubMed DOI PMC

Ramirez JL, Birindelli JL, Carvalho DC, Affonso PRAM, Venere PC, Ortega H, et al. Revealing hidden diversity of the underestimated neotropical ichthyofauna: DNA barcoding in the recently described genus Megaleporinus (Characiformes: Anostomidae). Front Genet. 2017;8: 149 10.3389/fgene.2017.00149 PubMed DOI PMC

Cioffi MB, Moreira-Filho O, Ráb P, Sember A, Molina WF, Bertollo LAC. Conventional Cytogenetic Approaches—Useful and Indispensable Tools in Discovering Fish Biodiversity. Curr Genet Med Rep. 2018;6: 176–186.

Cioffi MB, Bertollo LAC. Chromosomal distribution and evolution of repetitive DNAs in fish In: Garrido-Ramos MA, editor. Repetitive DNA. Basel: Karger Publishers; 2012. pp. 197–221. PubMed

Blanco D, Vicari M, Lui R, Artoni R, Almeida M, Traldi J, et al. Origin of the X1X1X2X2/X1X2Y sex chromosome system of Harttia punctata (Siluriformes, Loricariidae) inferred from chromosome painting and FISH with ribosomal DNA markers. Genetica. 2014;142. PubMed

Schemberger MO, Nascimento VD, Coan R, Ramos É, Nogaroto V, Ziemniczak K, et al. DNA transposon invasion and microsatellite accumulation guide W chromosome differentiation in a Neotropical fish genome. Chromosoma. 2019; 1–14. 10.1007/s00412-018-0679-4 PubMed DOI

Utsunomia R, de Andrade Silva DMZ, Ruiz-Ruano FJ, Goes CAG, Melo S, Ramos LP, et al. Satellitome landscape analysis of Megaleporinus macrocephalus (Teleostei, Anostomidae) reveals intense accumulation of satellite sequences on the heteromorphic sex chromosome. Sci Rep. 2019;9: 5856 10.1038/s41598-019-42383-8 PubMed DOI PMC

Artoni RF, Castro JP, Jacobina UP, Lima-Filho PA, da Costa F, Werneck GW, et al. Inferring diversity and evolution in fish by means of integrative molecular cytogenetics. Sci World J. 2015; 365787. PubMed PMC

Barbosa P, de Oliveira LA, Pucci MB, Santos MH, Moreira-Filho O, Vicari MR, et al. Identification and chromosome mapping of repetitive elements in the Astyanax scabripinnis (Teleostei: Characidae) species complex. Genetica. 2015;143: 55–62. 10.1007/s10709-014-9813-2 PubMed DOI

Schemberger MO, Nogaroto V, Almeida MC, Artoni RF, Valente GT, Martins C, et al. Sequence analyses and chromosomal distribution of the Tc1/Mariner element in Parodontidae fish (Teleostei: Characiformes). Gene. 2016;593: 308–314. 10.1016/j.gene.2016.08.034 PubMed DOI

Utsunomia R, Silva DMZ de A, Ruiz-Ruano FJ, Araya-Jaime C, Pansonato-Alves JC, Scacchetti PC, et al. Uncovering the ancestry of B chromosomes in Moenkhausia sanctaefilomenae (Teleostei, Characidae). PLoS One. 2016;11: e0150573 10.1371/journal.pone.0150573 PubMed DOI PMC

Barros AV, Wolski MAV, Nogaroto V, Almeida MC, Moreira-Filho O, Vicari MR. Fragile sites, dysfunctional telomere and chromosome fusions: what is 5S rDNA role? Gene. 2017;608: 20–27. 10.1016/j.gene.2017.01.013 PubMed DOI

Yano CF, Bertollo LAC, Rebordinos L, Merlo MA, Liehr T, Portela-Bens S, et al. Evolutionary dynamics of rDNAs and U2 small nuclear DNAs in Triportheus (Characiformes, Triportheidae): high variability and particular syntenic organization. Zebrafish. 2017; 14: 146–154. 10.1089/zeb.2016.1351 PubMed DOI

de Oliveira EA, Sember A, Bertollo LAC, Yano CF, Ezaz T, Moreira-Filho O, et al. Tracking the evolutionary pathway of sex chromosomes among fishes: characterizing the unique XX/XY1Y2 system in Hoplias malabaricus (Teleostei, Characiformes). Chromosoma. 2018;127: 115–128. 10.1007/s00412-017-0648-3 PubMed DOI

Borges AT, Cioffi MB, Bertollo LAC, Soares RX, Costa GWWF, Molina WF. Paracentric inversions differentiate the conservative karyotypes in two Centropomus species (Teleostei: Centropomidae). Cytogenet Genome Res. 2019;157:239–248. 10.1159/000499748 PubMed DOI

Nakayama C, Jégu M, Porto JIR, Feldberg E. Karyological evidence for a cryptic species of piranha within Serrasalmus rhombeus (Characidae, Serrasalminae) in the Amazon. Copeia. 2001; 3: 866–869.

Milhomem SSR, Pieczarka JC, Crampton WGR, Silva DS, De Souza ACP, Carvalho JR, et al. Chromosomal evidence for a putative cryptic species in the Gymnotus carapo species-complex (Gymnotiformes, Gymnotidae). BMC Genet. 2008;9: 75 10.1186/1471-2156-9-75 PubMed DOI PMC

Ferreira-Neto M, Artoni RF, Vicari MR, Moreira-Filho O, Camacho JPM, Bakkali M, et al. Three sympatric karyomorphs in the fish Astyanax fasciatus (Teleostei, Characidae) do not seem to hybridize in natural populations. Comp Cytogenet. 2012;6: 29–40. 10.3897/CompCytogen.v6i1.2151 PubMed DOI PMC

Ferreira M, Kavalco KF, de Almeida-Toledo LF, Garcia C. Cryptic diversity between two imparfinis species (Siluriformes, Heptapteridae) by cytogenetic analysis and DNA barcoding. Zebrafish. 2014;11: 306–317. 10.1089/zeb.2014.0981 PubMed DOI

Ferreira M, Garcia C, Matoso DA, de Jesus IS, Cioffi M de B, Bertollo LAC, et al. The Bunocephalus coracoideus species complex (Siluriformes, Aspredinidae). Signs of a speciation process through chromosomal, genetic and ecological diversity. Front Genet. 2017;8: 120 10.3389/fgene.2017.00120 PubMed DOI PMC

do Nascimento VD, Coelho KA, Nogaroto V, de Almeida RB, Ziemniczak K, Centofante L, et al. Do multiple karyomorphs and population genetics of freshwater darter characines (Apareiodon affinis) indicate chromosomal speciation? Zool Anz. 2018;272: 93–103. 10.1016/j.jcz.2017.12.006 DOI

Gavazzoni M, Paiz LM, Oliveira CAM, Pavanelli CS, Graça WJ, Margarido VP. Morphologically cryptic species of the Astyanax bimaculatus “caudal peduncle spot” subgroup diagnosed through cytogenetic characters. Zebrafish. 2018;15: 382–388. 10.1089/zeb.2018.1574 PubMed DOI

Nirchio M, Paim FG, Milana V, Rossi AR, Oliveira C. Identification of a new mullet species complex based on an integrative molecular and cytogenetic investigation of Mugil hospes (Mugilidae: Mugiliformes). Front Genet. 2018;9: 1–9. 10.3389/fgene.2018.00001 PubMed DOI PMC

Santos EO dos Deon GA, Almeida RB de, Oliveira EA de, Nogaroto V, Silva HP da, et al. Cytogenetics and DNA barcode reveal an undescribed Apareiodon species (Characiformes: Parodontidae). Genet Mol Biol. 2019; 42:365–373. 10.1590/1678-4685-GMB-2018-0066 PubMed DOI PMC

Neto CCM, Lima-Filho PA, Araújo WC, Bertollo LAC, Molina WF. Differentiated evolutionary pathways in Haemulidae (Perciformes): karyotype stasis versus morphological differentiation. Rev Fish Biol Fish. 2012;22: 457–465.

Barby F, Rab P, Lavoue S, Ezaz T, Bertollo LAC, Kilian A, et al. From chromosomes to genome: insights into the evolutionary relationships and biogeography of Old World knifefishes (Notopteridae; Osteoglossiformes). Genes. 2018; 9(6). pii: E306 10.3390/genes9060306 PubMed DOI PMC

da Silva FA, Feldberg E, Carvalho NDM, Rangel SMH, Schneider CH, Carvalho-Zilse GA, et al. Effects of environmental pollution on the rDNAomics of Amazonian fish. Environ Pollut. 2019;252: 180–187. 10.1016/j.envpol.2019.05.112 PubMed DOI

Soto MÁ, Castro JP, Walker LI, Malabarba LR, Santos MH, de Almeida MC, et al. Evolution of trans-Andean endemic fishes of the genus Cheirodon (Teleostei: Characidae) are associated with chromosomal rearrangements. Rev Chil Hist Nat. 2018;91: 8.

Weitzman M, Weitzman SH. Family Lebiasinidae In: Reis RE Kullander SO, Ferraris CJ Jr, editors. Check List of the Freshwater fishes of South and Central America. Porto Alegre: Edipucrs; 2003; pp. 241–250.

Eschmeyer WN, Fricke R, van der Laan R. Catalog of fishes: Genera, species, references. California Academy of Sciences, San Francisco, USA: 2019. Available from: http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp

Netto-Ferreira AL, Marinho MMF. New species of Pyrrhulina (Ostariophysi: Characiformes: Lebiasinidae) from the brazilian shield, with comments on a putative monophyletic group of species in the genus. Zootaxa. 2013;3664: 369–376. 10.11646/zootaxa.3664.3.7 PubMed DOI

Scheel JJ. Fish chromosomes and their evolution. Intern Rep Danmarks Akvar. 1973;22.

Arefjev VA. Karyotypic diversity of characidae families (Pisces, characidae). Caryologia. 1990;43: 291–304. 10.1080/00087114.1990.10797008 DOI

Oliveira C, Andreata AA, Toledo LFA, Toledo SA. Karyotype and nucleolus organizer regions of Pyrrhulina cf australis (Pisces, Characiformes, Lebiasinidae). Rev Bras Genética. 1991; 685–690.

Oliveira MIB, Sanguino ECB, Falcão JN. Estudos citogenéticos em Pyrrhulina sp. Teleostei, Characiformes, Lebiasinidae) IV Simpósio de Citogenética Evolutiva e Aplicada de Peixes Neotropicais. 1992;13.

Arai R. Fish karyotype a check list. Japan: Springer press; 2011. 10.1007/978-4-431-53877-6 DOI

Sassi F de MC, Oliveira EA de, Bertollo LAC, Nirchio M, Hatanaka T, Marinho MMF, et al. Chromosomal evolution and evolutionary relationships of Lebiasina species (Characiformes, Lebiasinidae). Int J Mol Sci. 2019;20: 2944. PubMed PMC

Moraes RLR, Bertollo LAC, Marinho MMF, Yano CF, Hatanaka T, Barby FF, et al. Evolutionary relationships and cytotaxonomy cin the genus Pyrrhulina (Characiformes, Lebiasinidae). Zebrafish. 2017;00: zeb.2017.1465. 10.1089/zeb.2017.1465 PubMed DOI

Moraes RLR, Sember A, Bertollo LAC, De Oliveira EA, Ráb P, Hatanaka T, et al. Comparative cytogenetics and neo-Y formation in small-sized fish species of the genus Pyrrhulina (Characiformes, Lebiasinidae). Front Genet. 2019;10: 678 10.3389/fgene.2019.00678 PubMed DOI PMC

Bertollo LAC, Cioffi MB, Moreira-Filho O. Direct chromosome preparation from freshwater teleost fishes In: Ozouf-Costaz C, Pisano E, Foresti F, Almeida Toledo LF, editors. Fish cytogenetic techniques (Chondrichthyans and Teleosts). Enfield USA: CRC Press; 2015. pp. 21–26. 10.1201/b18534-4 DOI

Sumner AT. A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res. 1972;75: 304–306. 10.1016/0014-4827(72)90558-7 PubMed DOI

Pendás AM, Morán P, Garcia-Vázquez E. Ribosomal RNA genes are interspersed throughout a heterochromatic chromosome arm in Atlantic salmon. Cytogenet Genome Res. 1993;63: 128–130. PubMed

Cioffi MB, Martins C, Centofante L, Jacobina U, Bertollo LAC. Chromosomal Variability among Allopatric Populations of Erythrinidae Fish Hoplias malabaricus: Mapping of three classes of repetitive DNAs. Cytogenet Genome Res. 2009;125: 132–141. Available from: 10.1159/000227838 PubMed DOI

Sambrook J, Russell DW. Molecular cloning: a laboratory manual. 3rd ed. New York, USA: Cold Spring Harbor Laboratory Press; 2001.

Zwick MS, Hanson RE, Mcknight TD, Islam-Faridi MH, Stelly DM, Wing RA, et al. A rapid procedure for the isolation of C 0 t-1 DNA from plants. Genome. 1997;40: 138–142. 10.1139/g97-020 PubMed DOI

Levan A, Fredga K, Sandberg AA. Nomenclature for centromeric position on chromosomes. Hereditas. 1964;52: 201–220. 10.1111/j.1601-5223.1964.tb01953.x DOI

Naorem S, Bhagirath T. Chromosomal differentiations in the evolution of channid fishes–molecular genetic perspective. Caryologia. 2006;59:235–40.

Cioffi MB, Bertollo LAC, Villa MA, Oliveira EA, Tanomtong A, Yano CF. Genomic organization of repetitive DNA elements and its implications for the chromosomal evolution of channid fishes (Actinopterygii, Perciformes). PLoS One. 2015;10(6):e0130199 10.1371/journal.pone.0130199 PubMed DOI PMC

Lowry DB, Willis JH. A widespread chromosomal inversion polymorphism contributes to a major life-history transition, local adaptation, and reproductive isolation. PLoS Biol. 2010;8: e1000500 10.1371/journal.pbio.1000500 PubMed DOI PMC

Ortiz-Barrientos D, Engelstädter J, Rieseberg LH. Recombination rate evolution and the origin of species. Trends Ecol Evol. 2016;31: 226–236. 10.1016/j.tree.2015.12.016 PubMed DOI

Kirkpatrick M. The evolution of genome structure by natural and sexual selection. J Hered. 2017;108: 3–11. 10.1093/jhered/esw041 PubMed DOI PMC

Jay P, Whibley A, Frézal L, Rodríguez de Cara MÁ, Nowell RW, Mallet J, et al. Supergene evolution triggered by the introgression of a chromosomal inversion. Curr Biol. 2018;28: 1839–1845.e3. 10.1016/j.cub.2018.04.072 PubMed DOI

Mérot C, Berdan EL, Babin C, Normandeau E, Wellenreuther M, Bernatchez L. Intercontinental karyotype-environment parallelism supports a role for a chromosomal inversion in local adaptation in a seaweed fly. Proc R Soc B Biol Sci. 2018; 285: 20180519 10.1098/rspb.2018.0519 PubMed DOI PMC

Supiwong W, Pinthong K, Seetapan K, Saenjundaeng P, Bertollo LAC, de Oliveira EA, et al. Karyotype diversity and evolutionary trends in the Asian swamp eel Monopterus albus (Synbranchiformes, Synbranchidae): a case of chromosomal speciation? BMC Evol Biol. 2019;19: 73 10.1186/s12862-019-1393-4 PubMed DOI PMC

Roussel P, André C, Comai L, Hernandez-Verdun D. The rDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs. J Cell Biol. 1996;133: 235 LP– 246. 10.1083/jcb.133.2.235 PubMed DOI PMC

Collares-Pereira MJ, Ráb P. NOR polymorphism in the Iberian species Chondrostoma lusitanicum (Pisces: Cyprinidae)–re-examination by FISH. Genetica. 1999;105: 301–303. 10.1023/a:1003885922023 PubMed DOI

Nirchio M, Róndon R, Oliveira C, Ferreira IA, Martins C, Pérez J, et al. Cytogenetic studies in three species of Lutjanus (Perciformes: Lutjanidae: Lutjaninae) from the Isla Margarita, Venezuela. Neotrop Ichthyol. 2008;6: 101–108.

Ghigliotti L, Near TJ, Ferrando S, Vacchi M, Pisano E. Cytogenetic diversity in the Antarctic plunderfishes (Notothenioidei: Artedidraconidae). Antarct Sci. 2010;22: 805–814. 10.1017/S0954102010000660 DOI

Sochorová J, Garcia S, Gálvez F, Symonová R, Kovařík A. Evolutionary trends in animal ribosomal DNA loci: introduction to a new online database. Chromosoma. 2018;127: 141–150. 10.1007/s00412-017-0651-8 PubMed DOI PMC

Martins C, Galetti PM. Two 5S rDNA arrays in Neotropical fish species: is it a general rule for fishes? Genetica. 2001;111: 439–446. 10.1023/a:1013799516717 PubMed DOI

Foster HA, Bridger JM. The genome and the nucleus: a marriage made by evolution. Chromosoma. 2005;114: 212–229. 10.1007/s00412-005-0016-6 PubMed DOI

Garrido-Ramos MA. Satellite DNA: an evolving topic. Genes. 2017: 8:230 10.3390/genes8090230 PubMed DOI PMC

Reichwald K, Petzold A, Koch P, Downie BR, Hartmann N, Pietsch S, et al. Insights into sex chromosome evolution and aging from the genome of a short-lived fish. Cell. 2015;163: 1527–1538. 10.1016/j.cell.2015.10.071 PubMed DOI

Krysanov E, Demidova T. Extensive karyotype variability of African fish genus Nothobranchius (Cyprinodontiformes). Comp Cytogenet. 2018;12: 387–402. 10.3897/CompCytogen.v12i3.25092 PubMed DOI PMC

De Souza E Sousa JF, Viana PF, Bertollo LAC, Cioffi MB, Feldberg E. Evolutionary relationships among Boulengerella Species (Ctenoluciidae, Characiformes): genomic organization of repetitive DNAs and highly conserved karyotypes. Cytogenet Genome Res. 2017; 152: 194–203. 10.1159/000480141 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...