An Insight into the Chromosomal Evolution of Lebiasinidae (Teleostei, Characiformes)
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32231057
PubMed Central
PMC7254295
DOI
10.3390/genes11040365
PII: genes11040365
Knihovny.cz E-zdroje
- Klíčová slova
- Neotropical fishes, comparative genomic hybridization, cytogenetics, karyotype, ribosomal DNA,
- MeSH
- Characiformes genetika MeSH
- chromozomy genetika MeSH
- genom * MeSH
- molekulární evoluce * MeSH
- repetitivní sekvence nukleových kyselin MeSH
- ribozomální DNA genetika MeSH
- rybí proteiny genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- ribozomální DNA MeSH
- rybí proteiny MeSH
Lebiasinidae fishes have been historically neglected by cytogenetical studies. Here we present a genomic comparison in eleven Lebiasinidae species, in addition to a review of the ribosomal DNA sequences distribution in this family. With that, we develop ten sets of experiments in order to hybridize the genomic DNA of representative species from the genus Copeina, Copella, Nannostomus, and Pyrrhulina in metaphase plates of Lebiasina melanoguttata. Two major pathways on the chromosomal evolution of these species can be recognized: (i) conservation of 2n = 36 bi-armed chromosomes in Lebiasininae, as a basal condition, and (ii) high numeric and structural chromosomal rearrangements in Pyrrhulininae, with a notable tendency towards acrocentrization. The ribosomal DNA (rDNA) distribution also revealed a marked differentiation during the chromosomal evolution of Lebiasinidae, since both single and multiple sites, in addition to a wide range of chromosomal locations can be found. With some few exceptions, the terminal position of 18S rDNA appears as a common feature in Lebiasinidae-analyzed species. Altogether with Ctenoluciidae, this pattern can be considered a symplesiomorphism for both families. In addition to the specific repetitive DNA content that characterizes the genome of each particular species, Lebiasina also keeps inter-specific repetitive sequences, thus reinforcing its proposed basal condition in Lebiasinidae.
Facultad de Ciencias Agropecuarias Universidad Técnica de Machala Machala 070151 Ecuador
Institute of Human Genetics University Hospital Jena Jena 07747 Germany
Museu de Zoologia da Universidade de São Paulo São Paulo SP 04263 000 Brazil
Secretaria de Estado de Educação do Mato Grosso SEDUC MT Cuiabá MT 78049 909 Brazil
Zobrazit více v PubMed
Sember A., Bohlen J., Šlechtová V., Altmanová M., Symonová R., Ráb P. Karyotype differentiation in 19 species of river loach fishes (Nemacheilidae, Teleostei): Extensive variability associated with rDNA and heterochromatin distribution and its phylogenetic and ecological interpretation. BMC Evol. Biol. 2015;15:251. doi: 10.1186/s12862-015-0532-9. PubMed DOI PMC
Weitzman S.H., Vari R.P. Miniaturization South American Fishes; an Overview and Discussion. Proc. Biol. Soc. Washingt. 1988;2:444–465.
de Moraes R.L.R., Bertollo L.A.C., Marinho M.M.F., Yano C.F., Hatanaka T., Barby F.F., Troy W.P., Cioffi M.d.B. Evolutionary Relationships and Cytotaxonomy Considerations in the Genus Pyrrhulina (Characiformes, Lebiasinidae) Zebrafish. 2017;14:536–546. doi: 10.1089/zeb.2017.1465. PubMed DOI
Souza Sousa J.F., Viana P.F., Bertollo L.A.C., Cioffi M.d.B., Feldberg E. Evolutionary Relationships among Boulengerella Species (Ctenoluciidae, Characiformes): Genomic Organization of Repetitive DNAs and Highly Conserved Karyotypes. Cytogenet. Genome Res. 2017;152:194–203. doi: 10.1159/000480141. PubMed DOI
Moraes R.L.R.d., Sember A., Bertollo L.A., De Oliveira E.A., Rab P., Hatanaka T., Marinho M.M., Liehr T., Al-Rikabi A.B., Feldberg E., et al. Comparative cytogenetics and neo-Y formation in small-sized fish species of the genus Pyrrhulina (Characiformes, Lebiasinidae) Front. Genet. 2019;10:1–13. doi: 10.3389/fgene.2019.00678. PubMed DOI PMC
Sassi F.d.M.C., Oliveira E.A.D., Bertollo L.A.C., Nirchio M., Hatanaka T., Marinho M.M.F., Moreira-Filho O., Aroutiounian R., Liehr T., Al-rikabi A.B.H., et al. Chromosomal Evolution and Evolutionary Relationships of Lebiasina Species (Characiformes, Lebiasinidae ) Int. J. Mol. Sci. 2019;20:1–17. doi: 10.3390/ijms20122944. PubMed DOI PMC
Toma G.A., De Moraes R.L.R., Sassi F.D.M.C., Bertollo L.A.C., De Oliveira E.A., Rab P., Sember A., Liehr T., Hatanaka T., Viana P.F., et al. Cytogenetics of the small-sized fish, Copeina guttata (Characiformes, Lebiasinidae): Novel insights into the karyotype differentiation of the family. PLoS ONE. 2019;14:1–13. doi: 10.1371/journal.pone.0226746. PubMed DOI PMC
Fricke R., Eschmeyer W.N., van der Laan R. Eschmeyer’s Catalog of Fishes: Genera, Species. [(accessed on 12 February 2020)]; Available online: http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp.
Netto-Ferreira A.L. Ph.D. Thesis. Universidade de São Paulo; São Paulo, Brazil: 2010. Revisão Taxonômica e Relações Interespecíficas de Lebiasinidae (Ostariophysi: Characiformes: Lebiasinidae)
Ortí G., Meyer A. The radiation of characiform fishes and the limits of resolution of mitochondrial ribosomal DNA sequences. Syst. Biol. 1997;46:75–100. doi: 10.1093/sysbio/46.1.75. PubMed DOI
Buckup P.A. Relationships of the Characidiinae and phylogeny of characiform fishes (Teleostei: Ostariophysi) Phylogeny Classif. Neotrop. Fishes. 1998;1:123–144.
Oyakawa O.T. Ph.D. Thesis. Universidade de São Paulo; São Paulo, Brazil: 1998. Relações Filogenéticas das Famílias Pyrrhulinidae, Lebiasinidae e Erythrinidae (Osteichthyes: Characiformes)
Calcagnotto D., Schaefer S.A., DeSalle R. Relationships among characiform fishes inferred from analysis of nuclear and mitochondrial gene sequences. Mol. Phylogenet. Evol. 2005;36:135–153. doi: 10.1016/j.ympev.2005.01.004. PubMed DOI
De Pinna M., Zuanon J., Rapp Py-Daniel L., Petry P. A new family of neotropical freshwater fishes from deep fossorial amazonian habitat, with a reappraisal of morphological characiform phylogeny (Teleostei: Ostariophysi) Zool. J. Linn. Soc. 2018;182:76–106. doi: 10.1093/zoolinnean/zlx028. DOI
Oliveira C., Avelino G.S., Abe K.T., Mariguela T.C., Benine R.C., Ortí G., Vari R.P., Corrêa Castro R.M. Phylogenetic relationships within the speciose family Characidae (Teleostei: Ostariophysi: Characiformes) based on multilocus analysis and extensive ingroup sampling. BMC Evol. Biol. 2011;11:1–25. doi: 10.1186/1471-2148-11-275. PubMed DOI PMC
Arcila D., Ortí G., Vari R., Armbruster J.W., Stiassny M.L.J., Ko K.D., Sabaj M.H., Lundberg J., Revell L.J., Betancur R.R. Genome-wide interrogation advances resolution of recalcitrant groups in the tree of life. Nat. Ecol. Evol. 2017;1:1–10. doi: 10.1038/s41559-016-0020. PubMed DOI
Betancur R., Arcila D., Vari R.P., Hughes L.C., Oliveira C., Sabaj M.H., Ortí G. Phylogenomic incongruence, hypothesis testing, and taxonomic sampling: The monophyly of characiform fishes*. Evolution. 2019;73:329–345. doi: 10.1111/evo.13649. PubMed DOI
Marinho M.M.F. Ph.D. Thesis. Universidade Estadual Paulista “Júlio de Mesquita Filho”; Sao Paulo, Brazil: Feb 27, 2014. Relações filogenéticas e revisão taxonômica das espécies do gênero Copella Myers, 1956 (Characiformes: Lebiasinidae)
Kallioniemi A., Kallioniemi O.P., Sudar D., Rutovitz D., Gray J.W., Waldman F., Pinkel D. Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science. 1992;258:818–821. doi: 10.1126/science.1359641. PubMed DOI
Symonová R., Flajšhans M., Sember A., Havelka M., Gela D., Kořínková T., Rodina M., Rábová M., Ráb P., Flajšhans M., et al. Molecular cytogenetics in artificial hybrid and highly polyploid sturgeons: An evolutionary story narrated by repetitive sequences. Cytogenet. Genome Res. 2013;141:153–162. doi: 10.1159/000354882. PubMed DOI
Yano C.F., Bertollo L.A.C., Liehr T., Troy W.P., Cioffi M.D.B. W Chromosome Dynamics in Triportheus Species (Characiformes, Triportheidae): An Ongoing Process Narrated by Repetitive Sequences. J. Hered. 2016;107:342–348. doi: 10.1093/jhered/esw021. PubMed DOI PMC
Oliveira E.A.d., Sember A., Bertollo L.A.C., Yano C.F., Ezaz T., Moreira-Filho O., Hatanaka T., Trifonov V., Liehr T., Al-Rikabi A.B.H., et al. Tracking the evolutionary pathway of sex chromosomes among fishes: Characterizing the unique XX/XY1Y2 system in Hoplias malabaricus (Teleostei, Characiformes) Chromosoma. 2018;127:115–128. doi: 10.1007/s00412-017-0648-3. PubMed DOI
Bertollo L.A.C., Cioffi M.d.B., Moreira-Filho O. Direct chromosome preparation from Freshwater Teleost Fishes. In: Ozouf-Costaz C., Pisano E., editors. Fish Cytogenetic Techniques (Chondrichthyans and Teleosts) CRC Press; Enfield, CT, USA: 2015. pp. 21–26.
Sember A., Oliveira E.A.d., Ráb P., Bertollo L.A.C., Freitas N.L.d., Viana P.F., Yano C.F., Hatanaka T., Marinho M.M.F., de Moraes R.L.R., et al. Centric Fusions behind the Karyotype Evolution of Neotropical Nannostomus Pencilfishes (Characiforme, Lebiasinidae): First Insights from a Molecular Cytogenetic Perspective. Genes. 2020;11:91. doi: 10.3390/genes11010091. PubMed DOI PMC
Sambrook J., Russell D.W. Molecular Cloning, a Laboratory Manual. Cold Spring Harbor Laboratory Press; New York, NY, USA: 2001.
Zwick M.S., Hanson R.E., Mcknight T.D., Islam-Faridi M.H., Stelly D.M., Wing R.A., Price H.J. A rapid procedure for the isolation of C 0 t-1 DNA from plants. Genome. 1997;40:138–142. doi: 10.1139/g97-020. PubMed DOI
Symonová R., Sember A., Majtánová Z., Ráb P. Characterization of fish genome by GISH and CGH. In: Ozouf-Costaz C., Pisano E., editors. Fish Cytogenetic Techniques. Ray-Fin Fishes and Chondrichthyans. CCR Press; Boca Raton, FL, USA: 2015. pp. 118–131.
Nirchio M., Rossi A.R., Foresti F., Oliveira C. Chromosome evolution in fishes: A new challenging proposal from Neotropical species. Neotrop. Ichthyol. 2014;12:761–770. doi: 10.1590/1982-0224-20130008. DOI
Arai R. Fish Karyotypes: A Check List. Springer; Berlin/Heidelberg, Germany: 2011.
White M.J.D. Animal Cytology and Evolution. 3rd ed. Cambridge University Press; Cambridge, UK: 1973.
Sola L., Cataudella S., Capanna E. New developments in vertebrate cytotaxonomy III. Karyology of bony fishes: A review. Genetica. 1981;54:285–328. doi: 10.1007/BF00135048. DOI
Bertollo L.A.C. Chromosome Evolution in the Neotropical Erythrinidae Fish Family: An Overview. In: Pisano E., Ozouf-Costaz C., editors. Fish Cytogenetics. CRC Press; Enfield, NH, USA: 2007. pp. 195–211.
Cioffi M.B., Franco W., Ferreira R., Bertollo L.A.C. Chromosomes as tools for discovering Biodiversity—The case of Erythrinidae fish family. In: Tirunilai P., editor. Recent Trends Cytogenet Studies Methodol Appl. InTech; Rijeka, Croatia: 2012. pp. 125–146.
Artoni R.F., Bertollo L.A.C. Cytogenetic studies on Hypostominae (Pisces, Siluriformes, Loricariidae). Considerations on karyotype evolution in the genus Hypostomus. Caryologia. 1996;49:81–90. doi: 10.1080/00087114.1996.10797353. DOI
Giuliano-Caetano L. Ph.D. Thesis. Universidade Federal de Sao Carlos-SP; Sao Paulo, Brazil: Polimorfismo cromossômico Robertsoniano em populações de Rineloricaria latirostris (Pisces, Loricariinae)
Kavalco K.F., Pazza R., Bertollo L.A.C., Moreira-Filho O. Karyotypic diversity and evolution of Loricariidae (Pisces, Siluriformes) Heredity. 2005;94:180–186. doi: 10.1038/sj.hdy.6800595. PubMed DOI
Goulding M., Barthem R., Ferreira E. The Smithsonian Atlas of the Amazon. Smithsonian Books; New York, NY, USA: 2003.
Netto-Ferreira A.L. Three new species of Lebiasina (Characiformes: Lebiasinidae) from the Brazilian shield border at Serra do Cachimbo, Pará, Brazil. Neotrop. Ichthyol. 2012;10:487–498. doi: 10.1590/S1679-62252012000300002. DOI
Zimmer E.A., Martins S.L., Beverly S.M., Kan Y.W., Wilson A.C. Rapid duplication and loss of genes coding for the alpha chains of hemoglobin. Proc. Natl. Acad. Sci. USA. 1980;77:2158–2162. doi: 10.1073/pnas.77.4.2158. PubMed DOI PMC
Dover G.A. Molecular drive: A cohesive model of species evolution. Nature. 1982;199:111–117. doi: 10.1038/299111a0. PubMed DOI
Roy V., Monti-Dedieu L., Chaminade N., Siljak-Yakovlev S., Aulard S., Lemeunier F., Montchamp-Moreau C. Evolution of the chromosomal location of rDNA genes in two Drosophila species subgroups: Ananassae and melanogaster. Heredity. 2005;94:388–395. doi: 10.1038/sj.hdy.6800612. PubMed DOI
Symonová R., Howell W. Vertebrate Genome Evolution in the Light of Fish Cytogenomics and rDNAomics. Genes. 2018;9:96. doi: 10.3390/genes9020096. PubMed DOI PMC
Sochorová J., Garcia S., Gálvez F., Symonová R., Kovařík A. Evolutionary trends in animal ribosomal DNA loci: Introduction to a new online database. Chromosoma. 2018;127:141–150. doi: 10.1007/s00412-017-0651-8. PubMed DOI PMC
Wang J., Gong B., Huang W., Wang Y., Zhou J. Bacterial community structure in simultaneous nitrification, denitrification and organic matter removal process treating saline mustard tuber wastewater as revealed by 16S rRNA sequencing. Bioresour. Technol. 2017;228:31–38. doi: 10.1016/j.biortech.2016.12.071. PubMed DOI
Kobayashi T. Ribosomal RNA gene repeats, their stability and cellular senescence. Proc. Jpn. Acad. Ser. B. 2014;90:119–129. doi: 10.2183/pjab.90.119. PubMed DOI PMC
Arefjev V.A. Problems of karyotypic variability in the family Characidae (Pisces, Characiformes) with the description of somatic karyotypes for six species of tetras. Caryologia. 1990;43:305–319. doi: 10.1080/00087114.1990.10797009. DOI
Salvadori S., Deiana A., Elisabetta C., Floridia G., Rossi E., Zuffardi O. Colocalization of (TTAGGG)n telomeric sequences and ribosomal genes in Atlantic eels. Chromosome Res. 1995;3:54–58. doi: 10.1007/BF00711162. PubMed DOI
Sola L., Rossi A.R., Annesi F., Gornung E. Cytogenetic studies in Sparus auratus (Pisces, Perciformes): Molecular organization of 5S rDNA and chromosomal mapping of 5S and 45S ribosomal genes and of telomeric repeats. Hereditas. 2003;139:232–236. doi: 10.1111/j.1601-5223.2003.01814.x. PubMed DOI
Gornung E. Twenty years of physical mapping of major ribosomal RNA genes across the teleosts: A review of research. Cytogenet. Genome Res. 2013;141:90–102. doi: 10.1159/000354832. PubMed DOI
Guerrero R.F., Kirkpatrick M. Local adaptation and the evolution of chromosome fusions. Evolution. 2014;68:2747–2756. doi: 10.1111/evo.12481. PubMed DOI
Ortiz-Barrientos D., Engelstädter J., Rieseberg L.H. Recombination rate evolution and the origin of species. Trends Ecol. Evol. 2016;31:226–236. doi: 10.1016/j.tree.2015.12.016. PubMed DOI
Kandul N.P., Lukhtanov V.A., Pierce N.E. Karyotypic diversity and speciation in Agrodiaetus butterflies. Evolution. 2007;61:546–559. doi: 10.1111/j.1558-5646.2007.00046.x. PubMed DOI
Ferreira M., Kavalco K.F., de Almeida-Toledo L.F., Garcia C. Cryptic diversity between two Imparfinis species (Siluriformes, Heptapteridae) by cytogenetic analysis and DNA barcoding. Zebrafish. 2014;11:306–317. doi: 10.1089/zeb.2014.0981. PubMed DOI
Ferreira M., Garcia C., Matoso D.A., de Jesus I.S., Cioffi M.d.B., Bertollo L.A.C., Zuanon J., Feldberg E. The Bunocephalus coracoideus species complex (Siluriformes, Aspredinidae). Signs of a speciation process through chromosomal, genetic and ecological diversity. Front. Genet. 2017;8:120. doi: 10.3389/fgene.2017.00120. PubMed DOI PMC
Zhu H.P., Ma D.M., Gui J.F. Triploid origin of the gibel carp as revealed by 5S rDNA localization and chromosome painting. Chromosome Res. 2006;14:767–776. doi: 10.1007/s10577-006-1083-0. PubMed DOI
Zhang C., Ye L., Chen Y., Xiao J., Wu Y., Tao M., Xiao Y., Liu S. The chromosomal constitution of fish hybrid lineage revealed by 5S rDNA FISH. BMC Genet. 2015;16:140. doi: 10.1186/s12863-015-0295-8. PubMed DOI PMC