Vertebrate Genome Evolution in the Light of Fish Cytogenomics and rDNAomics

. 2018 Feb 14 ; 9 (2) : . [epub] 20180214

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid29443947

To understand the cytogenomic evolution of vertebrates, we must first unravel the complex genomes of fishes, which were the first vertebrates to evolve and were ancestors to all other vertebrates. We must not forget the immense time span during which the fish genomes had to evolve. Fish cytogenomics is endowed with unique features which offer irreplaceable insights into the evolution of the vertebrate genome. Due to the general DNA base compositional homogeneity of fish genomes, fish cytogenomics is largely based on mapping DNA repeats that still represent serious obstacles in genome sequencing and assembling, even in model species. Localization of repeats on chromosomes of hundreds of fish species and populations originating from diversified environments have revealed the biological importance of this genomic fraction. Ribosomal genes (rDNA) belong to the most informative repeats and in fish, they are subject to a more relaxed regulation than in higher vertebrates. This can result in formation of a literal 'rDNAome' consisting of more than 20,000 copies with their high proportion employed in extra-coding functions. Because rDNA has high rates of transcription and recombination, it contributes to genome diversification and can form reproductive barrier. Our overall knowledge of fish cytogenomics grows rapidly by a continuously increasing number of fish genomes sequenced and by use of novel sequencing methods improving genome assembly. The recently revealed exceptional compositional heterogeneity in an ancient fish lineage (gars) sheds new light on the compositional genome evolution in vertebrates generally. We highlight the power of synergy of cytogenetics and genomics in fish cytogenomics, its potential to understand the complexity of genome evolution in vertebrates, which is also linked to clinical applications and the chromosomal backgrounds of speciation. We also summarize the current knowledge on fish cytogenomics and outline its main future avenues.

Zobrazit více v PubMed

Bernheim A. Cytogenomics of cancers: From chromosome to sequence. Mol. Oncol. 2010;4:309–322. doi: 10.1016/j.molonc.2010.06.003. PubMed DOI PMC

Xiang B., Leon A., Li M.M., Iqbal A.M., Li P., Li S., Papenhausen P.R., Schwartz S., Zhang X.-X., Geiersbach K.B., et al. Atlas of Cytogenomics in Oncology and Hematology: A Platform-Neutral Clinical Cancer Genomics Database. Cancer Genet. 2012;205:420. doi: 10.1016/j.cancergen.2012.07.005. DOI

McPherson M.C., Robinson C.M., Gehlen L.P., Delany M.E. Comparative cytogenomics of poultry: Mapping of single gene and repeat loci in the Japanese quail (Coturnix japonica) Chromosome Res. 2014;22:71–83. doi: 10.1007/s10577-014-9411-2. PubMed DOI

Barh D., Khan M.S., Davies E. PlantOmics: The Omics of Plant Science. Springer; New Delhi, India: 2015.

Kapusta A., Suh A. Evolution of bird genomes-a transposon’s-eye view. Ann. N. Y. Acad. Sci. 2017;1389:164–185. doi: 10.1111/nyas.13295. PubMed DOI

Nakajima R.T., Cabral-de-Mello D.C., Valente G.T., Venere P.C., Martins C. Evolutionary dynamics of rRNA gene clusters in cichlid fish. BMC Evol. Biol. 2012;12:198. doi: 10.1186/1471-2148-12-198. PubMed DOI PMC

Symonová R., Majtánová Z., Arias-Rodriguez L., Mořkovský L., Kořínková T., Cavin L., Pokorná M.J., Doležálková M., Flajšhans M., Normandeau E., et al. Genome Compositional Organization in Gars Shows More Similarities to Mammals than to Other Ray-Finned Fish: Cytogenomics of Gars. J. Exp. Zool. B Mol. Dev. Evol. 2017;328:607–619. doi: 10.1002/jez.b.22719. PubMed DOI

Symonová R., Ocalewicz K., Kirtiklis L., Delmastro G.B., Pelikánová Š., Garcia S., Kovařík A. Higher-order organisation of extremely amplified, potentially functional and massively methylated 5S rDNA in European pikes (Esox sp.) BMC Genom. 2017;18:391. doi: 10.1186/s12864-017-3774-7. PubMed DOI PMC

Cioffi M.B., Bertollo L.A.C. Chromosomal distribution and evolution of repetitive DNAs in fish. Genome Dyn. 2012;7:197–221. doi: 10.1159/000337950. PubMed DOI

Betancur-R R., Wiley E.O., Arratia G., Acero A., Bailly N., Miya M., Lecointre G., Ortí G. Phylogenetic classification of bony fishes. BMC Evol. Biol. 2017;17:162. doi: 10.1186/s12862-017-0958-3. PubMed DOI PMC

Saha N.R., Smith J., Amemiya C.T. Evolution of adaptive immune recognition in jawless vertebrates. Semin. Immunol. 2010;22:25–33. doi: 10.1016/j.smim.2009.12.002. PubMed DOI PMC

Gregory T.R. Animal Genome Size Database. [(accessed on 9 November 2017)]; Available online: http://genomesize.com.

Caputo Barucchi V., Giovannotti M., Nisi Cerioni P., Splendiani A. Genome Duplication in Early Vertebrates: Insights from Agnathan Cytogenetics. Cytogenet. Genome Res. 2013;141:80–89. doi: 10.1159/000354098. PubMed DOI

Smith J.J., Saha N.R., Amemiya C.T. Genome biology of the cyclostomes and insights into the evolutionary biology of vertebrate genomes. Integr. Comp. Biol. 2010;50:130–137. doi: 10.1093/icb/icq023. PubMed DOI PMC

Stingo V., Rocco L. Selachian cytogenetics: A review. Genetica. 2001;111:329–347. doi: 10.1023/A:1013747215866. PubMed DOI

Rock J., Eldridge M., Champion A., Johnston P., Joss J. Karyotype and nuclear DNA content of the Australian lungfish, Neoceratodus forsteri (Ceratodidae: Dipnoi) Cytogenet. Cell Genet. 1996;73:187–189. doi: 10.1159/000134336. PubMed DOI

Koch J., Lüdemann J., Spies R., Last M., Amemiya C.T., Burmester T. Unusual Diversity of Myoglobin Genes in the Lungfish. Mol. Biol. Evol. 2016;33:3033–3041. doi: 10.1093/molbev/msw159. PubMed DOI

Bogart J.P., Balon E.K., Bruton M.N. The chromosomes of the living coelacanth and their remarkable similarity to those of one of the most ancient frogs. J. Hered. 1994;85:322–325. doi: 10.1093/oxfordjournals.jhered.a111470. PubMed DOI

Andreyushkova D.A., Makunin A.I., Beklemisheva V.R., Romanenko S.A., Druzhkova A.S., Biltueva L.B., Serdyukova N.A., Graphodatsky A.S., Trifonov V.A. Next Generation Sequencing of Chromosome-Specific Libraries Sheds Light on Genome Evolution in Paleotetraploid Sterlet (Acipenser ruthenus) Genes. 2017;8:318. doi: 10.3390/genes8110318. PubMed DOI PMC

Romanenko S.A., Biltueva L.S., Serdyukova N.A., Kulemzina A.I., Beklemisheva V.R., Gladkikh O.L., Lemskaya N.A., Interesova E.A., Korentovich M.A., Vorobieva N.V., et al. Segmental paleotetraploidy revealed in sterlet (Acipenser ruthenus) genome by chromosome painting. Mol. Cytogenet. 2015;8:90. doi: 10.1186/s13039-015-0194-8. PubMed DOI PMC

Helfman G.S., Collette B.B., Facey D.E., Bowen B.W. The Diversity of Fishes: Biology, Evolution, and Ecology. 2nd ed. Wiley-Blackwell; Oxford, UK: 2009.

Nelson J.S., Grande T., Wilson M.V.H. Fishes of the World. 5th ed. John Wiley & Sons; Hoboken, NJ, USA: 2016.

Cavin L. Freshwater Fishes: 250 Million Years of Evolutionary History. ISTE Press/Elsevier; London, UK: 2017.

Sallan L.C. Major issues in the origins of ray-finned fish (Actinopterygii) biodiversity. Biol. Rev. Camb. Philos. Soc. 2014;89:950–971. doi: 10.1111/brv.12086. PubMed DOI

Majtánová Z., Symonová R., Arias-Rodriguez L., Sallan L., Ráb P. “Holostei versus Halecostomi” Problem: Insight from Cytogenetics of Ancient Nonteleost Actinopterygian Fish, Bowfin Amia calva. J. Exp. Zool. B Mol. Dev. Evol. 2017;328:620–628. doi: 10.1002/jez.b.22720. PubMed DOI

Vega C.G., Wiens J.J. Why are there so few fish in the sea? Proc. R. Soc. B Biol. Sci. 2012;279:2323–2329. doi: 10.1098/rspb.2012.0075. PubMed DOI PMC

Comber S.C.L., Smith C. Polyploidy in fishes: Patterns and processes: Polyploidy in fishes. Biol. J. Linn. Soc. 2004;82:431–442. doi: 10.1111/j.1095-8312.2004.00330.x. DOI

Smith E.M., Gregory T.R. Patterns of genome size diversity in the ray-finned fishes. Hydrobiologia. 2009;625:1–25. doi: 10.1007/s10750-009-9724-x. DOI

Mank J.E., Avise J.C. Phylogenetic conservation of chromosome numbers in Actinopterygiian fishes. Genetica. 2006;127:321–327. doi: 10.1007/s10709-005-5248-0. PubMed DOI

Francis W.R., Wörheide G. Similar Ratios of Introns to Intergenic Sequence across Animal Genomes. Genome Biol. Evol. 2017;9:1582–1598. doi: 10.1093/gbe/evx103. PubMed DOI PMC

Sarropoulou E., Fernandes J.M.O. Comparative genomics in teleost species: Knowledge transfer by linking the genomes of model and non-model fish species. Comp. Biochem. Physiol. Part D Genom. Proteom. 2011;6:92–102. doi: 10.1016/j.cbd.2010.09.003. PubMed DOI

Howe K., Clark M.D., Torroja C.F., Torrance J., Berthelot C., Muffato M., Collins J.E., Humphray S., McLaren K., Matthews L., et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013;496:498–503. doi: 10.1038/nature12111. PubMed DOI PMC

Santoriello C., Zon L.I. Hooked! Modeling human disease in zebrafish. J. Clin. Investig. 2012;122:2337–2343. doi: 10.1172/JCI60434. PubMed DOI PMC

Gibbons J.G., Branco A.T., Godinho S.A., Yu S., Lemos B. Concerted copy number variation balances ribosomal DNA dosage in human and mouse genomes. Proc. Natl. Acad. Sci. USA. 2015;112:2485–2490. doi: 10.1073/pnas.1416878112. PubMed DOI PMC

Symonová R., Majtánová Z., Sember A., Staaks G.B., Bohlen J., Freyhof J., Rábová M., Ráb P. Genome differentiation in a species pair of coregonine fishes: An extremely rapid speciation driven by stress-activated retrotransposons mediating extensive ribosomal DNA multiplications. BMC Evol. Biol. 2013;13:42. doi: 10.1186/1471-2148-13-42. PubMed DOI PMC

Xu B., Li H., Perry J.M., Singh V.P., Unruh J., Yu Z., Zakari M., McDowell W., Li L., Gerton J.L. Ribosomal DNA copy number loss and sequence variation in cancer. PLOS Genet. 2017;13:e1006771. doi: 10.1371/journal.pgen.1006771. PubMed DOI PMC

Cioffi M.B., Martins C., Bertollo L.A.C. Chromosome spreading of associated transposable elements and ribosomal DNA in the fish Erythrinus erythrinus. Implications for genome change and karyoevolution in fish. BMC Evol. Biol. 2010;10:271. doi: 10.1186/1471-2148-10-271. PubMed DOI PMC

Animal rDNA Database. [(accessed on 9 November 2017)]; Available online: www.animalrdnadatabase.com.

Sochorová J., Garcia S., Gálvez F., Symonová R., Kovařík A. Evolutionary trends in animal ribosomal DNA loci: Introduction to a new online database. Chromosoma. 2017 doi: 10.1007/s00412-017-0651-8. PubMed DOI PMC

Reed K.M., Phillips R.B. Structure and organization of the rDNA intergenic spacer in lake trout (Salvelinus namaycush) Chromosome Res. Int. J. Mol. Supramol. Evol. Asp. Chromosome Biol. 2000;8:5–16. doi: 10.1023/A:1009214800251. PubMed DOI

Reed K.M., Hackett J.D., Phillips R.B. Comparative analysis of intra-individual and inter-species DNA sequence variation in salmonid ribosomal DNA cistrons. Gene. 2000;249:115–125. doi: 10.1016/S0378-1119(00)00156-6. PubMed DOI

Mazzuchelli J., Kocher T.D., Yang F., Martins C. Integrating cytogenetics and genomics in comparative evolutionary studies of cichlid fish. BMC Genom. 2012;13:463. doi: 10.1186/1471-2164-13-463. PubMed DOI PMC

Chitramuthu B. Modeling Human Disease and Development in Zebrafish. Hum. Genet. Embryol. 2013;3:e108. doi: 10.4172/2161-0436.1000e108. DOI

Liu S., Leach S.D. Zebrafish Models for Cancer. Annu. Rev. Pathol. Mech. Dis. 2011;6:71–93. doi: 10.1146/annurev-pathol-011110-130330. PubMed DOI

Schartl M. Beyond the zebrafish: Diverse fish species for modeling human disease. Dis. Model. Mech. 2014;7:181–192. doi: 10.1242/dmm.012245. PubMed DOI PMC

Kari G., Rodeck U., Dicker A.P. Zebrafish: An emerging model system for human disease and drug discovery. Clin. Pharmacol. Ther. 2007;82:70–80. doi: 10.1038/sj.clpt.6100223. PubMed DOI

Amores A., Force A., Yan Y.L., Joly L., Amemiya C., Fritz A., Ho R.K., Langeland J., Prince V., Wang Y.L., et al. Zebrafish HOX clusters and vertebrate genome evolution. Science. 1998;282:1711–1714. doi: 10.1126/science.282.5394.1711. PubMed DOI

Braasch I., Postlethwait J.H. Polyploidy in Fish and the Teleost Genome Duplication. In: Soltis P.S., Soltis D.E., editors. Polyploidy and Genome Evolution. Springer; Berlin/Heidelberg, Germany: 2012. pp. 341–383.

Meyer A., Schartl M. Gene and genome duplications in vertebrates: The one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr. Opin. Cell Biol. 1999;11:699–704. doi: 10.1016/S0955-0674(99)00039-3. PubMed DOI

Postlethwait J.H., Woods I.G., Ngo-Hazelett P., Yan Y.L., Kelly P.D., Chu F., Huang H., Hill-Force A., Talbot W.S. Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Res. 2000;10:1890–1902. doi: 10.1101/gr.164800. PubMed DOI

Ceol C.J., Houvras Y., Jane-Valbuena J., Bilodeau S., Orlando D.A., Battisti V., Fritsch L., Lin W.M., Hollmann T.J., Ferré F., et al. The histone methyltransferase SETDB1 is recurrently amplified in melanoma and accelerates its onset. Nature. 2011;471:513–517. doi: 10.1038/nature09806. PubMed DOI PMC

Golzio C., Willer J., Talkowski M.E., Oh E.C., Taniguchi Y., Jacquemont S., Reymond A., Sun M., Sawa A., Gusella J.F., et al. KCTD13 is a major driver of mirrored neuroanatomical phenotypes of the 16p11.2 copy number variant. Nature. 2012;485:363–367. doi: 10.1038/nature11091. PubMed DOI PMC

Panizzi J.R., Becker-Heck A., Castleman V.H., Al-Mutairi D.A., Liu Y., Loges N.T., Pathak N., Austin-Tse C., Sheridan E., Schmidts M., et al. CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms. Nat. Genet. 2012;44:714–719. doi: 10.1038/ng.2277. PubMed DOI PMC

Roscioli T., Kamsteeg E.-J., Buysse K., Maystadt I., van Reeuwijk J., van den Elzen C., van Beusekom E., Riemersma M., Pfundt R., Vissers L.E.L.M., et al. Mutations in ISPD cause Walker-Warburg syndrome and defective glycosylation of α-dystroglycan. Nat. Genet. 2012;44:581–585. doi: 10.1038/ng.2253. PubMed DOI PMC

Patton E.E., Widlund H.R., Kutok J.L., Kopani K.R., Amatruda J.F., Murphey R.D., Berghmans S., Mayhall E.A., Traver D., Fletcher C.D.M., et al. BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr. Biol. 2005;15:249–254. doi: 10.1016/j.cub.2005.01.031. PubMed DOI

Wittbrodt J., Shima A., Schartl M. Medaka—A model organism from the far East. Nat. Rev. Genet. 2002;3:53–64. doi: 10.1038/nrg704. PubMed DOI

Albertson R.C., Cresko W., Detrich H.W., Postlethwait J.H. Evolutionary mutant models for human disease. Trends Genet. 2009;25:74–81. doi: 10.1016/j.tig.2008.11.006. PubMed DOI PMC

McGaugh S.E., Gross J.B., Aken B., Blin M., Borowsky R., Chalopin D., Hinaux H., Jeffery W.R., Keene A., Ma L., et al. The cavefish genome reveals candidate genes for eye loss. Nat. Commun. 2014;5:5307. doi: 10.1038/ncomms6307. PubMed DOI PMC

Protas M.E., Hersey C., Kochanek D., Zhou Y., Wilkens H., Jeffery W.R., Zon L.I., Borowsky R., Tabin C.J. Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism. Nat. Genet. 2006;38:107–111. doi: 10.1038/ng1700. PubMed DOI

Terzibasi E., Valenzano D.R., Cellerino A. The short-lived fish Nothobranchius furzeri as a new model system for aging studies. Exp. Gerontol. 2007;42:81–89. doi: 10.1016/j.exger.2006.06.039. PubMed DOI

Hárosi F.I., von Herbing I.H., Van Keuren J.R. Sickling of anoxic red blood cells in fish. Biol. Bull. 1998;195:5–11. doi: 10.2307/1542769. PubMed DOI

Meierjohann S., Schartl M. From Mendelian to molecular genetics: The Xiphophorus melanoma model. Trends Genet. 2006;22:654–661. doi: 10.1016/j.tig.2006.09.013. PubMed DOI

Schartl M., Walter R.B., Shen Y., Garcia T., Catchen J., Amores A., Braasch I., Chalopin D., Volff J.-N., Lesch K.-P., et al. The genome of the platyfish, Xiphophorus maculatus, provides insights into evolutionary adaptation and several complex traits. Nat. Genet. 2013;45:567–572. doi: 10.1038/ng.2604. PubMed DOI PMC

Schmale M.C., Hensley G.T., Udey L.R. Neurofibromatosis in the bicolor damselfish (Pomacentrus partitus) as a model of von Recklinghausen neurofibromatosis. Ann. N. Y. Acad. Sci. 1986;486:386–402. doi: 10.1111/j.1749-6632.1986.tb48092.x. PubMed DOI

Williams D.E. The rainbow trout liver cancer model: Response to environmental chemicals and studies on promotion and chemoprevention. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2012;155:121–127. doi: 10.1016/j.cbpc.2011.05.013. PubMed DOI PMC

Burnett K.G., Bain L.J., Baldwin W.S., Callard G.V., Cohen S., Di Giulio R.T., Evans D.H., Gómez-Chiarri M., Hahn M.E., Hoover C.A., et al. Fundulus as the premier teleost model in environmental biology: Opportunities for new insights using genomics. Comp. Biochem. Physiol. Part D Genom. Proteom. 2007;2:257–286. doi: 10.1016/j.cbd.2007.09.001. PubMed DOI PMC

Lampert K., Schartl M. The origin and evolution of a unisexual hybrid: Poecilia formosa. Philos. Trans. R. Soc. B Biol. Sci. 2008;363:2901–2909. doi: 10.1098/rstb.2008.0040. PubMed DOI PMC

Schartl M., Nanda I., Schlupp I., Wilde B., Epplen J.T., Schmid M., Parzefall J. Incorporation of subgenomic amounts of DNA as compensation for mutational load in a gynogenetic fish. Nature. 1995;373:68–71. doi: 10.1038/373068a0. DOI

Schartl A., Hornung U., Nanda I., Wacker R., Müller-Hermelink H.K., Schlupp I., Parzefall J., Schmid M., Schartl M. Susceptibility to the development of pigment cell tumors in a clone of the Amazon molly, Poecilia formosa, introduced through a microchromosome. Cancer Res. 1997;57:2993–3000. PubMed

Tobler M., Schlupp I. Parasites in sexual and asexual mollies (Poecilia, Poeciliidae, Teleostei): A case for the Red Queen? Biol. Lett. 2005;1:166–168. doi: 10.1098/rsbl.2005.0305. PubMed DOI PMC

Woodhead A.D., Setlow R.B., Pond V. The Amazon molly, Poecilia formosa, as a test animal in carcinogenicity studies: Chronic exposures to physical agents. Natl. Cancer Inst. Monogr. 1984;65:45–52. PubMed

Scahill C.M., Digby Z., Sealy I.M., Wojciechowska S., White R.J., Collins J.E., Stemple D.L., Bartke T., Mathers M.E., Patton E.E., et al. Loss of the chromatin modifier Kdm2aa causes BrafV600E-independent spontaneous melanoma in zebrafish. PLoS Genet. 2017;13:e1006959. doi: 10.1371/journal.pgen.1006959. PubMed DOI PMC

Cossins A.R., Crawford D.L. Fish as models for environmental genomics. Nat. Rev. Genet. 2005;6:324–333. doi: 10.1038/nrg1590. PubMed DOI

Aquaculture Genomics, Genetics and Breeding Workshop. Abdelrahman H., ElHady M., Alcivar-Warren A., Allen S., Al-Tobasei R., Bao L., Beck B., Blackburn H., Bosworth B., et al. Aquaculture genomics, genetics and breeding in the United States: Current status, challenges and priorities for future research. BMC Genom. 2017;18:191. doi: 10.1186/s12864-017-3557-1. PubMed DOI PMC

Kobayashi T. Genome Instability of Repetitive Sequence: Lesson from the Ribosomal RNA Gene Repeat. In: Hanaoka F., Sugasawa K., editors. DNA Replication, Recombination and Repair. Springer; Tokyo, Japan: 2016. pp. 235–247.

Wang M., Lemos B. Ribosomal DNA copy number amplification and loss in human cancers is linked to tumor genetic context, nucleolus activity and proliferation. PLoS Genet. 2017;13:e1006994. doi: 10.1371/journal.pgen.1006994. PubMed DOI PMC

Boisvert F.-M., van Koningsbruggen S., Navascués J., Lamond A.I. The multifunctional nucleolus. Nat. Rev. Mol. Cell Biol. 2007;8:574–585. doi: 10.1038/nrm2184. PubMed DOI

Guetg C., Santoro R. Formation of nuclear heterochromatin: The nucleolar point of view. Epigenetics. 2012;7:811–814. doi: 10.4161/epi.21072. PubMed DOI PMC

Makunin A.I., Dementyeva P.V., Graphodatsky A.S., Volobouev V.T., Kukekova A.V., Trifonov V.A. Genes on B chromosomes of vertebrates. Mol. Cytogenet. 2014;7:99. doi: 10.1186/s13039-014-0099-y. PubMed DOI PMC

Terencio M.L., Schneider C.H., Gross M.C., do Carmo E.J., Nogaroto V., de Almeida M.C., Artoni R.F., Vicari M.R., Feldberg E. Repetitive sequences: The hidden diversity of heterochromatin in prochilodontid fish. Comp. Cytogenet. 2015;9:465–481. doi: 10.3897/CompCytogen.v9i4.5299. PubMed DOI PMC

Tsekrekou M., Stratigi K., Chatzinikolaou G. The Nucleolus: In Genome Maintenance and Repair. Int. J. Mol. Sci. 2017;18:1411. doi: 10.3390/ijms18071411. PubMed DOI PMC

Braasch I., Gehrke A.R., Smith J.J., Kawasaki K., Manousaki T., Pasquier J., Amores A., Desvignes T., Batzel P., Catchen J., et al. The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nat. Genet. 2016;48:427–437. doi: 10.1038/ng.3526. PubMed DOI PMC

Dion- Côté A.-M., Symonová R., Ráb P., Bernatchez L. Reproductive isolation in a nascent species pair is associated with aneuploidy in hybrid offspring. Proc. R. Soc. B Biol. Sci. 2015;282:20142862. doi: 10.1098/rspb.2014.2862. PubMed DOI PMC

Clark M.S. Genomics and Mapping of Teleostei (Bony Fish) Comp. Funct. Genom. 2003;4:182–193. doi: 10.1002/cfg.259. PubMed DOI PMC

Carvalho G.R., Hauser L., Martinsohn J., Naish K. Fish, genes and genomes: Contributions to ecology, evolution and management. J. Fish Biol. 2016;89:2471–2478. doi: 10.1111/jfb.13228. PubMed DOI

Arai R. Fish Karyotypes. Springer; Tokyo, Japan: 2011.

Majtánová Z., Choleva L., Symonová R., Ráb P., Kotusz J., Pekárik L., Janko K. Asexual Reproduction Does Not Apparently Increase the Rate of Chromosomal Evolution: Karyotype Stability in Diploid and Triploid Clonal Hybrid Fish (Cobitis, Cypriniformes, Teleostei) PLoS ONE. 2016;11:e0146872. doi: 10.1371/journal.pone.0146872. PubMed DOI PMC

Rampin M., Bi K., Bogart J.P., Collares-Pereira M.J. Identifying parental chromosomes and genomic rearrangements in animal hybrid complexes of species with small genome size using Genomic In Situ Hybridization (GISH) Comp. Cytogenet. 2012;6:287–300. doi: 10.3897/compcytogen.v6i3.3543. PubMed DOI PMC

Havelka M., Bytyutskyy D., Symonová R., Ráb P., Flajšhans M. The second highest chromosome count among vertebrates is observed in cultured sturgeon and is associated with genome plasticity. Genet. Sel. Evol. 2016;48:12. doi: 10.1186/s12711-016-0194-0. PubMed DOI PMC

Jaillon O., Aury J.-M., Brunet F., Petit J.-L., Stange-Thomann N., Mauceli E., Bouneau L., Fischer C., Ozouf-Costaz C., Bernot A., et al. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature. 2004;431:946–957. doi: 10.1038/nature03025. PubMed DOI

Roest Crollius H., Weissenbach J. Fish genomics and biology. Genome Res. 2005;15:1675–1682. doi: 10.1101/gr.3735805. PubMed DOI

Phillips R.B., Amores A., Morasch M.R., Wilson C., Postlethwait J.H. Assignment of zebrafish genetic linkage groups to chromosomes. Cytogenet. Genome Res. 2006;114:155–162. doi: 10.1159/000093332. PubMed DOI

Phillips R.B., Nichols K.M., DeKoning J.J., Morasch M.R., Keatley K.A., Rexroad C., Gahr S.A., Danzmann R.G., Drew R.E., Thorgaard G.H. Assignment of rainbow trout linkage groups to specific chromosomes. Genetics. 2006;174:1661–1670. doi: 10.1534/genetics.105.055269. PubMed DOI PMC

Phillips R.B., Keatley K.A., Morasch M.R., Ventura A.B., Lubieniecki K.P., Koop B.F., Danzmann R.G., Davidson W.S. Assignment of Atlantic salmon (Salmo salar) linkage groups to specific chromosomes: Conservation of large syntenic blocks corresponding to whole chromosome arms in rainbow trout (Oncorhynchus mykiss) BMC Genet. 2009;10:46. doi: 10.1186/1471-2156-10-46. PubMed DOI PMC

Guyon R., Rakotomanga M., Azzouzi N., Coutanceau J.P., Bonillo C., D’Cotta H., Pepey E., Soler L., Rodier-Goud M., D’Hont A., et al. A high-resolution map of the Nile Tilapia genome: A resource for studying cichlids and other percomorphs. BMC Genom. 2012;13:222. doi: 10.1186/1471-2164-13-222. PubMed DOI PMC

Dion-Côté A.-M., Symonová R., Lamaze F.C., Pelikánová Š., Ráb P., Bernatchez L. Standing chromosomal variation in Lake Whitefish species pairs: The role of historical contingency and relevance for speciation. Mol. Ecol. 2017;26:178–192. doi: 10.1111/mec.13816. PubMed DOI

Rondeau E.B., Minkley D.R., Leong J.S., Messmer A.M., Jantzen J.R., von Schalburg K.R., Lemon C., Bird N.H., Koop B.F. The genome and linkage map of the northern pike (Esox lucius): Conserved synteny revealed between the salmonid sister group and the Neoteleostei. PLoS ONE. 2014;9:e102089. doi: 10.1371/journal.pone.0102089. PubMed DOI PMC

Sutherland B.J.G., Gosselin T., Normandeau E., Lamothe M., Isabel N., Audet C., Bernatchez L. Salmonid Chromosome Evolution as Revealed by a Novel Method for Comparing RADseq Linkage Maps. Genome Biol. Evol. 2016;8:3600–3617. doi: 10.1093/gbe/evw262. PubMed DOI PMC

Symonová R., Sutherland B.J.G., Bernatchez L. Residually tetrasomic sites in Coregonus clupeaformis. Under preparation.

Cozzi P., Milanesi L., Bernardi G. Segmenting the Human Genome into Isochores. Evol. Bioinform. 2015;11:253–261. doi: 10.4137/EBO.S27693. PubMed DOI PMC

Bernardi G. Structural and Evolutionary Genomics: Natural Selection in Genome Evolution. Elsevier; Amsterdam, The Netherlands: 2004. New Comprehensive Biochemistry.

Daniel-Silva M.F.Z., Almeida-Toledo L.F. Chromosome evolution in fish: BrdU replication patterns demonstrate chromosome homeologies in two species of the genus Astyanax. Cytogenet. Genome Res. 2005;109:497–501. doi: 10.1159/000084209. PubMed DOI

Zerbino D.R., Achuthan P., Akanni W., Amode M.R., Barrell D., Bhai J., Billis K., Cummins C., Gall A., Girón C.G., et al. Ensembl 2018. Nucleic Acids Res. 2018;46:D754–D761. doi: 10.1093/nar/gkx1098. PubMed DOI PMC

Cioffi M.B., Yano C.F., Sember A., Bertollo L.A.C. Chromosomal Evolution in Lower Vertebrates: Sex Chromosomes in Neotropical Fishes. Genes. 2017;8:258. doi: 10.3390/genes8100258. PubMed DOI PMC

Cioffi M.B., Franco W., Ferreira R., Carlos Bertollo L.A. Chromosomes as Tools for Discovering Biodiversity—The Case of Erythrinidae Fish Family. In: Tirunilai P., editor. Recent Trends in Cytogenetic Studies—Methodologies and Applications. InTech; Rijeka, Croatia: 2012.

Glasauer S.M.K., Neuhauss S.C.F. Whole-genome duplication in teleost fishes and its evolutionary consequences. Mol. Genet. Genom. 2014;289:1045–1060. doi: 10.1007/s00438-014-0889-2. PubMed DOI

Mable B., Alexandrou M., Taylor M. Genome duplication in amphibians and fish: An extended synthesis. J. Zool. 2011;284:151–182. doi: 10.1111/j.1469-7998.2011.00829.x. DOI

Symonová R., Havelka M., Amemiya C.T., Howell W.M., Kořínková T., Flajšhans M., Gela D., Ráb P. Molecular cytogenetic differentiation of paralogs of HOX paralogs in duplicated and re-diploidized genome of the North American paddlefish (Polyodon spathula) BMC Genet. 2017;18:19. doi: 10.1186/s12863-017-0484-8. PubMed DOI PMC

Nagpure N.S., Rashid I., Pathak A.K., Singh M., Singh S.P., Sarkar U.K. FBIS: A regional DNA barcode archival and analysis system for Indian fishes. Bioinformation. 2012;8:483–488. doi: 10.6026/97320630008483. PubMed DOI PMC

Nagpure N.S., Rashid I., Pathak A.K., Singh M., Pati R., Singh S.P., Sarkar U.K. FMiR: A Curated Resource of Mitochondrial DNA Information for Fish. PLoS ONE. 2015;10:e0136711. doi: 10.1371/journal.pone.0136711. PubMed DOI PMC

Nagpure N.S., Rashid I., Pati R., Pathak A.K., Singh M., Singh S.P., Sarkar U.K. FishMicrosat: A microsatellite database of commercially important fishes and shellfishes of the Indian subcontinent. BMC Genom. 2013;14:630. doi: 10.1186/1471-2164-14-630. PubMed DOI PMC

Avvaru A.K., Saxena S., Sowpati D.T., Mishra R.K. MSDB: A Comprehensive Database of Simple Sequence Repeats. Genome Biol. Evol. 2017;9:1797–1802. doi: 10.1093/gbe/evx132. PubMed DOI PMC

Nagpure N.S., Pathak A.K., Pati R., Rashid I., Sharma J., Singh S.P., Singh M., Sarkar U.K., Kushwaha B., Kumar R., et al. Fish Karyome version 2.1: A chromosome database of fishes and other aquatic organisms. Database. 2016;2016:baw012. doi: 10.1093/database/baw012. PubMed DOI PMC

Froese R., Pauly D. FishBase. World Wide Web Electronic Publication. [(accessed on 9 November 2017)];2017 Available online: www.fishbase.org.

Bhartiya D., Maini J., Sharma M., Joshi P., Laddha S.V., Jalali S., Patowary A., Purkanti R., Lalwani M., Singh A.R., et al. FishMap Zv8 update—A genomic regulatory map of zebrafish. Zebrafish. 2010;7:179–180. doi: 10.1089/zeb.2009.0624. PubMed DOI

Amores A., Postlethwait J.H. Methods in Cell Biology. Volume 60. Elsevier; Amsterdam, The Netherlands: 1998. Banded Chromosomes and the Zebrafish Karyotype; pp. 323–338. PubMed

Gornung E., De Innocentiis S., Annesi F., Sola L. Zebrafish 5S rRNA genes map to the long arms of chromosome 3. Chromosome Res. Int. J. Mol. Supramol. Evol. Asp. Chromosome Biol. 2000;8:362. doi: 10.1023/A:1009252017097. PubMed DOI

Phillips R.B., Reed K.M. Localization of repetitive DNAs to zebrafish (Danio rerio) chromosomes by fluorescence in situ hybridization (FISH) Chromosome Res. Int. J. Mol. Supramol. Evol. Asp. Chromosome Biol. 2000;8:27–35. doi: 10.1023/A:1009271017998. PubMed DOI

Sola L., Gornung E. Classical and molecular cytogenetics of the zebrafish, Danio rerio (Cyprinidae, Cypriniformes): An overview. Genetica. 2001;111:397–412. doi: 10.1023/A:1013776323077. PubMed DOI

National Center for Biotechnology Information (NCBI). Genome Browser. [(accessed on 9 November 2017)]; Available online: www.ncbi.nlm.nih.gov/genome/browse.

Personal Webpage of Radka Symonová. [(accessed on 9 November 2017)]; Available online: http://lide.uhk.cz/Symonra1.

Kitts P.A., Church D.M., Thibaud-Nissen F., Choi J., Hem V., Sapojnikov V., Smith R.G., Tatusova T., Xiang C., Zherikov A., et al. Assembly: A resource for assembled genomes at NCBI. Nucleic Acids Res. 2016;44:D73–D80. doi: 10.1093/nar/gkv1226. PubMed DOI PMC

European Nucleotide Archive (ENA). Genome Assembly Database. [(accessed on 9 November 2017)]; Available online: www.ebi.ac.uk/ena/browse/genome-assembly-database.

Tørresen O.K., Star B., Jentoft S., Reinar W.B., Grove H., Miller J.R., Walenz B.P., Knight J., Ekholm J.M., Peluso P., et al. An improved genome assembly uncovers prolific tandem repeats in Atlantic cod. BMC Genom. 2017;18:95. doi: 10.1186/s12864-016-3448-x. PubMed DOI PMC

Malmstrøm M., Matschiner M., Tørresen O.K., Jakobsen K.S., Jentoft S. Whole genome sequencing data and de novo draft assemblies for 66 teleost species. Sci. Data. 2017;4:160132. doi: 10.1038/sdata.2016.132. PubMed DOI PMC

Koepfli K.-P., Paten B. Genome 10K Community of Scientists; O’Brien, S.J. The Genome 10K Project: A way forward. Annu. Rev. Anim. Biosci. 2015;3:57–111. doi: 10.1146/annurev-animal-090414-014900. PubMed DOI PMC

Pasquier J., Cabau C., Nguyen T., Jouanno E., Severac D., Braasch I., Journot L., Pontarotti P., Klopp C., Postlethwait J.H., et al. Gene evolution and gene expression after whole genome duplication in fish: The PhyloFish database. BMC Genom. 2016;17:368. doi: 10.1186/s12864-016-2709-z. PubMed DOI PMC

China National Genebank. [(accessed on 9 November 2017)];FishT1K. Available online: https://db.cngb.org/fisht1k/status.

Garamszegi L. Z. Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology: Concepts and Practice. Springer; Berlin, Germany: 2014.

Hardie D.C., Hebert P.D.N. The nucleotypic effects of cellular DNA content in cartilaginous and ray-finned fishes. Genome. 2003;46:683–706. doi: 10.1139/g03-040. PubMed DOI

Lefébure T., Morvan C., Malard F., François C., Konecny-Dupré L., Guéguen L., Weiss-Gayet M., Seguin-Orlando A., Ermini L., Sarkissian C.D., et al. Less effective selection leads to larger genomes. Genome Res. 2017;27:1016–1028. doi: 10.1101/gr.212589.116. PubMed DOI PMC

Gregory T.R., Witt J.D.S. Population size and genome size in fishes: A closer look. Genome. 2008;51:309–313. doi: 10.1139/G08-003. PubMed DOI

Elliott T.A., Gregory T.R. Do larger genomes contain more diverse transposable elements? BMC Evol. Biol. 2015;15:69. doi: 10.1186/s12862-015-0339-8. PubMed DOI PMC

Tarallo A., Angelini C., Sanges R., Yagi M., Agnisola C., D’Onofrio G. On the genome base composition of teleosts: The effect of environment and lifestyle. BMC Genom. 2016;17:173. doi: 10.1186/s12864-016-2537-1. PubMed DOI PMC

Hardie D.C., Hebert P.D. Genome-size evolution in fishes. Can. J. Fish. Aquat. Sci. 2004;61:1636–1646. doi: 10.1139/f04-106. DOI

Yi S., Streelman J.T. Genome size is negatively correlated with effective population size in ray-finned fish. Trends Genet. 2005;21:643–646. doi: 10.1016/j.tig.2005.09.003. PubMed DOI

Vervoort A. Tetraploidy in Protopterus (Dipnoi) Experientia. 1980;36:294–296. doi: 10.1007/BF01952284. DOI

Paim F.G., da Hora Almeida L.A., de Mell Affonso P.R.A., Sobrinho-Scudeler P.E., Oliveira C., Diniz D. Chromosomal stasis in distinct families of marine Percomorpharia from South Atlantic. Comp. Cytogenet. 2017;11:299–307. doi: 10.3897/compcytogen.v11i2.11942. PubMed DOI PMC

Camacho J.P.M., Sharbel T.F., Beukeboom L.W. B-chromosome evolution. Philos. Trans. R. Soc. B Biol. Sci. 2000;355:163–178. doi: 10.1098/rstb.2000.0556. PubMed DOI PMC

Valente G.T., Nakajima R.T., Fantinatti B.E.A., Marques D.F., Almeida R.O., Simões R.P., Martins C. B chromosomes: From cytogenetics to systems biology. Chromosoma. 2017;126:73–81. doi: 10.1007/s00412-016-0613-6. PubMed DOI

Anderson J.L., Rodríguez Marí A., Braasch I., Amores A., Hohenlohe P., Batzel P., Postlethwait J.H. Multiple sex-associated regions and a putative sex chromosome in zebrafish revealed by RAD mapping and population genomics. PLoS ONE. 2012;7:e40701. doi: 10.1371/journal.pone.0040701. PubMed DOI PMC

Bradley K.M., Breyer J.P., Melville D.B., Broman K.W., Knapik E.W., Smith J.R. An SNP-Based Linkage Map for Zebrafish Reveals Sex Determination Loci. G3. 2011;1:3–9. doi: 10.1534/g3.111.000190. PubMed DOI PMC

Nagabhushana A., Mishra R.K. Finding clues to the riddle of sex determination in zebrafish. J. Biosci. 2016;41:145–155. doi: 10.1007/s12038-016-9593-1. PubMed DOI

Matsuda M., Nagahama Y., Shinomiya A., Sato T., Matsuda C., Kobayashi T., Morrey C.E., Shibata N., Asakawa S., Shimizu N., et al. DMY is a Y-specific DM-domain gene required for male development in the Medaka fish. Nature. 2002;417:559–563. doi: 10.1038/nature751. PubMed DOI

De Andrade Silva D.M.Z., Utsunomia R., Ruiz-Ruano F.J., Daniel S.N., Porto-Foresti F., Hashimoto D.T., Oliveira C., Camacho J.P.M., Foresti F. High-throughput analysis unveils a highly shared satellite DNA library among three species of fish genus Astyanax. Sci. Rep. 2017;7:12726. doi: 10.1038/s41598-017-12939-7. PubMed DOI PMC

Ruiz-Estévez M., López-León M.D., Cabrero J., Camacho J.P.M. B-chromosome ribosomal DNA is functional in the grasshopper Eyprepocnemis plorans. PLoS ONE. 2012;7:e36600. doi: 10.1371/journal.pone.0036600. PubMed DOI PMC

Utsunomia R., de Andrade Silva D.M.Z., Ruiz-Ruano F.J., Araya-Jaime C., Pansonato-Alves J.C., Scacchetti P.C., Hashimoto D.T., Oliveira C., Trifonov V.A., Porto-Foresti F., et al. Uncovering the Ancestry of B Chromosomes in Moenkhausia sanctaefilomenae (Teleostei, Characidae) PLoS ONE. 2016;11:e0150573. doi: 10.1371/journal.pone.0150573. PubMed DOI PMC

Lamatsch D.K., Trifonov V., Schories S., Epplen J. T., Schmid M., Schartl M. Isolation of a cancer-associated microchromosome in the sperm-dependent parthenogen Poecilia formosa. Cytogenet. Genome Res. 2011;135:135–142. doi: 10.1159/000331271. PubMed DOI

Schmid M., Ziegler C.G., Steinlein C., Nanda I., Schartl M. Cytogenetics of the bleak (Alburnus alburnus), with special emphasis on the B chromosomes. Chromosome Res. Int. J. Mol. Supramol. Evol. Asp. Chromosome Biol. 2006;14:231–242. doi: 10.1007/s10577-006-1038-5. PubMed DOI

Takagui F.H., Dias A.L., Birindelli J.L.O., Swarça A.C., da Rosa R., Lui R.L., Fenocchio A.S., Giuliano-Caetano L. First report of B chromosomes in three neotropical thorny catfishes (Siluriformes, Doradidae) Comp. Cytogenet. 2017;11:55–64. doi: 10.3897/CompCytogen.v11i1.10496. PubMed DOI PMC

Jones R.N., Diez M. The B chromosome database. Cytog. Gen. Res. 2004;106:149–150. doi: 10.1159/000079280. PubMed DOI

D’Ambrosio U., Alonso-Lifante M.P., Barros K., Kovařík A., Mas de Xaxars G., Garcia S. B-chrom: A database on B-chromosomes of plants, animals and fungi. New Phytol. 2017;216:635–642. doi: 10.1111/nph.14723. PubMed DOI

Grummt I. The nucleolus—Guardian of cellular homeostasis and genome integrity. Chromosoma. 2013;122:487–497. doi: 10.1007/s00412-013-0430-0. PubMed DOI

Ide S., Miyazaki T., Maki H., Kobayashi T. Abundance of ribosomal RNA gene copies maintains genome integrity. Science. 2010;327:693–696. doi: 10.1126/science.1179044. PubMed DOI

Charlesworth B., Sniegowski P., Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994;371:215–220. doi: 10.1038/371215a0. PubMed DOI

Federico C., Scavo C., Cantarella C.D., Motta S., Saccone S., Bernardi G. Gene-rich and gene-poor chromosomal regions have different locations in the interphase nuclei of cold-blooded vertebrates. Chromosoma. 2006;115:123–128. doi: 10.1007/s00412-005-0039-z. PubMed DOI

Kirubakaran T.G., Grove H., Kent M.P., Sandve S.R., Baranski M., Nome T., De Rosa M.C., Righino B., Johansen T., Otterå H., et al. Two adjacent inversions maintain genomic differentiation between migratory and stationary ecotypes of Atlantic cod. Mol. Ecol. 2016;25:2130–2143. doi: 10.1111/mec.13592. PubMed DOI

Fujiwara A., Abe S., Yamaha E., Yamazaki F., Yoshida M.C. Chromosomal localization and heterochromatin association of ribosomal RNA gene loci and silver-stained nucleolar organizer regions in salmonid fishes. Chromosome Res. Int. J. Mol. Supramol. Evol. Asp. Chromosome Biol. 1998;6:463–471. doi: 10.1023/A:1009200428369. PubMed DOI

Costa G.W.W.F., Cioffi M.B., Bertollo L.A.C., Molina W.F. Unusual dispersion of histone repeats on the whole chromosomal complement and their colocalization with ribosomal genes in Rachycentron canadum (Rachycentridae, Perciformes) Cytogenet. Genome Res. 2014;144:62–67. doi: 10.1159/000366301. PubMed DOI

Costa G.W.W.F., Cioffi M.B., Bertollo L.A.C., Molina W.F. The Evolutionary Dynamics of Ribosomal Genes, Histone H3 and Transposable Rex Elements in the Genome of Atlantic Snappers. J. Hered. 2016;107:173–180. doi: 10.1093/jhered/esv136. PubMed DOI PMC

Mehner T., Pohlmann K., Elkin C., Monaghan M.T., Nitz B., Freyhof J. Genetic population structure of sympatric and allopatric populations of Baltic ciscoes (Coregonus albula complex, Teleostei, Coregonidae) BMC Evol. Biol. 2010;10:85. doi: 10.1186/1471-2148-10-85. PubMed DOI PMC

Kobayashi T. Ribosomal RNA gene repeats, their stability and cellular senescence. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2014;90:119–129. doi: 10.2183/pjab.90.119. PubMed DOI PMC

Glazer A.M., Killingbeck E.E., Mitros T., Rokhsar D.S., Miller C.T. Genome Assembly Improvement and Mapping Convergently Evolved Skeletal Traits in Sticklebacks with Genotyping-by-Sequencing. G3. 2015;5:1463–1472. doi: 10.1534/g3.115.017905. PubMed DOI PMC

Chen X., Zhong L., Bian C., Xu P., Qiu Y., You X., Zhang S., Huang Y., Li J., Wang M., et al. High-quality genome assembly of channel catfish, Ictalurus punctatus. GigaScience. 2016;5 doi: 10.1186/s13742-016-0142-5. PubMed DOI PMC

Liu Z., Liu S., Yao J., Bao L., Zhang J., Li Y., Jiang C., Sun L., Wang R., Zhang Y., et al. The channel catfish genome sequence provides insights into the evolution of scale formation in teleosts. Nat. Commun. 2016;7:11757. doi: 10.1038/ncomms11757. PubMed DOI PMC

Liu H., Chen C., Gao Z., Min J., Gu Y., Jian J., Jiang X., Cai H., Ebersberger I., Xu M., et al. The draft genome of blunt snout bream (Megalobrama amblycephala) reveals the development of intermuscular bone and adaptation to herbivorous diet. GigaScience. 2017;6:1–13. doi: 10.1093/gigascience/gix039. PubMed DOI PMC

Pan H., Yu H., Ravi V., Li C., Lee A. P., Lian M.M., Tay B.-H., Brenner S., Wang J., Yang H., et al. The genome of the largest bony fish, ocean sunfish (Mola mola), provides insights into its fast growth rate. GigaScience. 2016;5 doi: 10.1186/s13742-016-0144-3. PubMed DOI PMC

Brawand D., Wagner C.E., Li Y.I., Malinsky M., Keller I., Fan S., Simakov O., Ng A.Y., Lim Z.W., Bezault E., et al. The genomic substrate for adaptive radiation in African cichlid fish. Nature. 2014;513:375–381. doi: 10.1038/nature13726. PubMed DOI PMC

Conte M.A., Gammerdinger W.J., Bartie K.L., Penman D.J., Kocher T.D. A high quality assembly of the Nile Tilapia (Oreochromis niloticus) genome reveals the structure of two sex determination regions. BMC Genom. 2017;18 doi: 10.1186/s12864-017-3723-5. PubMed DOI PMC

Lien S., Koop B.F., Sandve S.R., Miller J.R., Kent M.P., Nome T., Hvidsten T.R., Leong J.S., Minkley D.R., Zimin A., et al. The Atlantic salmon genome provides insights into rediploidization. Nature. 2016;533:200–205. doi: 10.1038/nature17164. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

FISH mapping in Xenopus pygmaeus refines understanding of genomic rearrangements and reveals jumping NORs in African clawed frogs

. 2025 Mar 01 ; () : . [epub] 20250301

A Detailed Karyological Investigation of three Endemic Cobitis Linnaeus, 1758 Species (Teleostei, Cobitidae) in Anatolia, Türkiye

. 2024 ; 164 (5-6) : 243-256. [epub] 20241202

Cytogenetic Analysis of the Fish Genus Carassius Indicates Divergence, Fission, and Segmental Duplication as Drivers of Tandem Repeat and Microchromosome Evolution

. 2024 Mar 02 ; 16 (3) : .

Cytogenetics Meets Genomics: Cytotaxonomy and Genomic Relationships among Color Variants of the Asian Arowana Scleropages formosus

. 2023 May 19 ; 24 (10) : . [epub] 20230519

Chromosomes of Asian Cyprinid Fishes: Genomic Differences in Conserved Karyotypes of 'Poropuntiinae' (Teleostei, Cyprinidae)

. 2023 Apr 20 ; 13 (8) : . [epub] 20230420

Small Body, Large Chromosomes: Centric Fusions Shaped the Karyotype of the Amazonian Miniature Fish Nannostomus anduzei (Characiformes, Lebiasinidae)

. 2023 Jan 11 ; 14 (1) : . [epub] 20230111

GC and Repeats Profiling along Chromosomes-The Future of Fish Compositional Cytogenomics

. 2020 Dec 31 ; 12 (1) : . [epub] 20201231

Present and Future Salmonid Cytogenetics

. 2020 Dec 06 ; 11 (12) : . [epub] 20201206

Chromosomes of Asian cyprinid fishes: Variable karyotype patterns and evolutionary trends in the genus Osteochilus (Cyprinidae, Labeoninae, "Osteochilini")

. 2020 ; 43 (4) : e20200195. [epub] 20201106

An Insight into the Chromosomal Evolution of Lebiasinidae (Teleostei, Characiformes)

. 2020 Mar 28 ; 11 (4) : . [epub] 20200328

Deciphering the Evolutionary History of Arowana Fishes (Teleostei, Osteoglossiformes, Osteoglossidae): Insight from Comparative Cytogenomics

. 2019 Sep 02 ; 20 (17) : . [epub] 20190902

Comparative Cytogenetics and Neo-Y Formation in Small-Sized Fish Species of the Genus Pyrrhulina (Characiformes, Lebiasinidae)

. 2019 ; 10 () : 678. [epub] 20190802

Deciphering the Origin and Evolution of the X1X2Y System in Two Closely-Related Oplegnathus Species (Oplegnathidae and Centrarchiformes)

. 2019 Jul 22 ; 20 (14) : . [epub] 20190722

Genomic Organization of Repetitive DNA Elements and Extensive Karyotype Diversity of Silurid Catfishes (Teleostei: Siluriformes): A Comparative Cytogenetic Approach

. 2019 Jul 19 ; 20 (14) : . [epub] 20190719

Integrative rDNAomics-Importance of the Oldest Repetitive Fraction of the Eukaryote Genome

. 2019 May 07 ; 10 (5) : . [epub] 20190507

Dynamics of tandemly repeated DNA sequences during evolution of diploid and tetraploid botiid loaches (Teleostei: Cobitoidea: Botiidae)

. 2018 ; 13 (3) : e0195054. [epub] 20180328

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...