Asexual Reproduction Does Not Apparently Increase the Rate of Chromosomal Evolution: Karyotype Stability in Diploid and Triploid Clonal Hybrid Fish (Cobitis, Cypriniformes, Teleostei)
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26808475
PubMed Central
PMC4726494
DOI
10.1371/journal.pone.0146872
PII: PONE-D-14-55151
Knihovny.cz E-zdroje
- MeSH
- biologická evoluce * MeSH
- diploidie * MeSH
- karyotyp * MeSH
- máloostní genetika MeSH
- nepohlavní rozmnožování genetika MeSH
- triploidie * MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Interspecific hybridization, polyploidization and transitions from sexuality to asexuality considerably affect organismal genomes. Especially the last mentioned process has been assumed to play a significant role in the initiation of chromosomal rearrangements, causing increased rates of karyotype evolution. We used cytogenetic analysis and molecular dating of cladogenetic events to compare the rate of changes of chromosome morphology and karyotype in asexually and sexually reproducing counterparts in European spined loach fish (Cobitis). We studied metaphases of three sexually reproducing species and their diploid and polyploid hybrid clones of different age of origin. The material includes artificial F1 hybrid strains, representatives of lineage originated in Holocene epoch, and also individuals of an oldest known age to date (roughly 0.37 MYA). Thereafter we applied GISH technique as a marker to differentiate parental chromosomal sets in hybrids. Although the sexual species accumulated remarkable chromosomal rearrangements after their speciation, we observed no differences in chromosome numbers and/or morphology among karyotypes of asexual hybrids. These hybrids possess chromosome sets originating from respective parental species with no cytogenetically detectable recombinations, suggesting their integrity even in a long term. The switch to asexual reproduction thus did not provoke any significant acceleration of the rate of chromosomal evolution in Cobitis. Asexual animals described in other case studies reproduce ameiotically, while Cobitis hybrids described here produce eggs likely through modified meiosis. Therefore, our findings indicate that the effect of asexuality on the rate of chromosomal change may be context-dependent rather than universal and related to particular type of asexual reproduction.
Department of Biology and Ecology Faculty of Science University of Ostrava Ostrava Czech Republic
Department of Biology Faculty of Education Trnava University Trnava Slovakia
Department of Zoology Faculty of Science Charles University Prague Prague Czech Republic
Institute of Botany SAS Bratislava Slovakia
Museum of Natural History University of Wrocław Wrocław Poland
Research Institute for Limnology University of Innsbruck Mondsee Austria
Zobrazit více v PubMed
Rieseberg LH. Chromosomal rearrangements and speciation. Trends Ecol Evol. 2001;16: 351–358. 10.1016/S0169-5347(01)02187-5 PubMed DOI
Wilson AC, Maxson LR, Sarich VM. Two types of molecular evolution. Evidence from studies of interspecific hybridization. Proc Natl Acad Sci U S A. 1974;71: 2843–2847. PubMed PMC
Schmid M, Steinlein C, Bogart JP, Feichtinger W, León P, La Marca E, et al. The chromosomes of terraranan frogs. Insights into vertebrate cytogenetics. Cytogenet Genome Res. 2010;130–131: 1–568. 10.1159/000301339 PubMed DOI
Nelson JS. Fishes of the world. Fourth edition Nelson, Joseph S.; Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E9, Canada, Canada: John Wiley & Sons, Inc; 2006.
Kohn M, Högel J, Vogel W, Minich P, Kehrer-Sawatzki H, Graves JAM, et al. Reconstruction of a 450-My-old ancestral vertebrate protokaryotype. Trends Genet TIG. 2006;22: 203–210. 10.1016/j.tig.2006.02.008 PubMed DOI
Mank JE, Avise JC. Phylogenetic conservation of chromosome numbers in Actinopterygiian fishes. Genetica. 2006;127: 321–327. 10.1007/s10709-005-5248-0 PubMed DOI
Arai R. Fish karyotypes: a check list. 2011 edition Tokyo ; New York: Springer; 2011.
Ravi V, Venkatesh B. Rapidly evolving fish genomes and teleost diversity. Curr Opin Genet Dev. 2008;18: 544–550. 10.1016/j.gde.2008.11.001 PubMed DOI
Phillips R, Ráb P. Chromosome evolution in the Salmonidae (Pisces): an update. Biol Rev Camb Philos Soc. 2001;76: 1–25. PubMed
Otto SP, Whitton J. Polyploid incidence and evolution. Annu Rev Genet. 2000;34: 401–437. 10.1146/annurev.genet.34.1.401 PubMed DOI
Mayer VW, Aguilera A. High levels of chromosome instability in polyploids of Saccharomyces cerevisiae. Mutat Res Mol Mech Mutagen. 1990;231: 177–186. 10.1016/0027-5107(90)90024-X PubMed DOI
Martens K, Loxdale HD, Schön I. The elusive clone—in search of its true nature and identity In: Schön I, Martens K, Dijk P, editors. Lost Sex. Springer; Netherlands; 2009. pp. 187–200. Available: http://link.springer.com/chapter/10.1007/978-90-481-2770-2_9 DOI
Sunnucks P, England PR, Taylor AC, Hales DF. Microsatellite and chromosome evolution of parthenogenetic Sitobion aphids in Australia. Genetics. 1996;144: 747–756. PubMed PMC
Schneider MC, Cella DM. Karyotype conservation in 2 populations of the parthenogenetic scorpion Tityus serrulatus (Buthidae): rDNA and its associated heterochromatin are concentrated on only one chromosome. J Hered. 2010;101: 491–496. 10.1093/jhered/esq004 PubMed DOI
Welch MD, Meselson M. Evidence for the evolution of bdelloid rotifers without sexual reproduction or genetic exchange. Science. 2000;288: 1211–1215. PubMed
Normark BB. Evolution in a putatively ancient asexual aphid lineage: recombination and rapid karyotype change. Evolution. 1999;53: 1458 10.2307/2640892 PubMed DOI
Spence JM, Blackman RL. Inheritance and meiotic behaviour of a de novo chromosome fusion in the aphid Myzus persicae (Sulzer). Chromosoma. 2000;109: 490–497. PubMed
Welch JLM, Welch DBM, Meselson M. Cytogenetic evidence for asexual evolution of bdelloid rotifers. Proc Natl Acad Sci U S A. 2004;101: 1618–1621. 10.1073/pnas.0307677100 PubMed DOI PMC
Triantaphyllou AC. Oogenesis and the chromosomes of the parthenogenic root-knot nematode Meloidogyne incognita. J Nematol. 1981;13: 95–104. PubMed PMC
Blackman RL, Spence JM, Normark BB. High diversity of structurally heterozygous karyotypes and rDNA arrays in parthenogenetic aphids of the genus Trama (Aphididae: Lachninae). Heredity. 2000;84 (Pt 2): 254–260. PubMed
Suomalainen E, Saura A, Lokki J. Cytology in evolution of parthenogenesis. 1 edition Boca Raton, Fla: CRC Press; 1987.
Stenberg P, Saura A. Cytology of asexual animals In: Schön I, Martens K, Dijk P, editors. Lost Sex. Springer; Netherlands; 2009. pp. 63–74. Available: http://link.springer.com/chapter/10.1007/978-90-481-2770-2_4 DOI
Normark BB, Judson OP, Moran NA. Genomic signatures of ancient asexual lineages. Biol J Linn Soc. 2003;79: 69–84. 10.1046/j.1095-8312.2003.00182.x DOI
Lutes AA, Neaves WB, Baumann DP, Wiegraebe W, Baumann P. Sister chromosome pairing maintains heterozygosity in parthenogenetic lizards. Nature. 2010;464: 283–286. 10.1038/nature08818 PubMed DOI PMC
Bi K, Bogart JP. Identification of intergenomic recombinations in unisexual salamanders of the genus Ambystoma by genomic in situ hybridization (GISH). Cytogenet Genome Res. 2006;112: 307–312. 10.1159/000089885 PubMed DOI
Janko K, Culling MA, Ráb P, Kotlík P. Ice age cloning—comparison of the Quaternary evolutionary histories of sexual and clonal forms of spiny loaches (Cobitis; Teleostei) using the analysis of mitochondrial DNA variation. Mol Ecol. 2005;14: 2991–3004. 10.1111/j.1365-294X.2005.02583.x PubMed DOI
Choleva L, Musilova Z, Kohoutova-Sediva A, Paces J, Rab P, Janko K. Distinguishing between incomplete lineage sorting and genomic introgressions: complete fixation of allospecific mitochondrial DNA in a sexually reproducing fish (Cobitis; Teleostei), despite clonal reproduction of hybrids. PLoS ONE. 2014;9: e80641 10.1371/journal.pone.0080641 PubMed DOI PMC
Janko K, Bohlen J, Lamatsch D, Flajshans M, Epplen JT, Ráb P, et al. The gynogenetic reproduction of diploid and triploid hybrid spined loaches (Cobitis: Teleostei), and their ability to establish successful clonal lineages on the evolution of polyploidy in asexual vertebrates. Genetica. 2007;131: 185–194. 10.1007/s10709-006-9130-5 PubMed DOI
Choleva L, Janko K, De Gelas K, Bohlen J, Šlechtová V, Rábová M, et al. Synthesis of clonality and polyploidy in vertebrate animals by hybridization between two sexual species. Evol Int J Org Evol. 2012;66: 2191–2203. 10.1111/j.1558-5646.2012.01589.x PubMed DOI
Janko K, Kotusz J, De Gelas K, Šlechtová V, Opoldusová Z, Drozd P, et al. Dynamic formation of asexual diploid and polyploid lineages: multilocus analysis of Cobitis reveals the mechanisms maintaining the diversity of clones. PLoS ONE. 2012;7: e45384 10.1371/journal.pone.0045384 PubMed DOI PMC
Saat TV. Reproduction of the diploid and polyploid spinous loach (Cobitis, Teleostei), oocyte maturation and fertilization in the triploid form. Russ J Dev Biol. 1991;22: 332–338.
Juchno D, Boroń A, Spóz A, Kujawa R, Kolczyńska J. Diplotene chromosomes of oocytes of polyploid hybrid Cobitis (Pisces, Cobitidae) Konferencja Embriologiczna, Acta Biologica Cracoviensia,series Botanica. Poznań; 2014. p. 64.
Itono M, Morishima K, Fujimoto T, Bando E, Yamaha E, Arai K. Premeiotic endomitosis produces diploid eggs in the natural clone loach, Misgurnus anguillicaudatus (Teleostei: Cobitidae). J Exp Zoolog A Comp Exp Biol. 2006;305: 513–523. 10.1002/jez.a.283 PubMed DOI
Janko K, Flajšhans M, Choleva L, Bohlen J, Šlechtová V, Rábová M, et al. Diversity of European spined loaches (genus Cobitis L.): an update of the geographic distribution of the Cobitis taenia hybrid complex with a description of new molecular tools for species and hybrid determination. J Fish Biol. 2007;71: 387–408. 10.1111/j.1095-8649.2007.01663.x DOI
Choleva L, Apostolou A, Ráb P, Janko K. Making it on their own: sperm-dependent hybrid fishes (Cobitis) switch the sexual hosts and expand beyond the ranges of their original sperm donors. Philos Trans R Soc B Biol Sci. 2008;363: 2911–2919. 10.1098/rstb.2008.0059 PubMed DOI PMC
Rábová M, Pelikánová Š, Choleva L, Ráb P. Cytogenetics of bisexual species and their asexual hybrid clones in European spined loaches, genus Cobitis. II. Mapping of telomeric (TTAGGG)n sequences and DAPI-positive heterochromatins in four parental species. ECI XII European Congress of Ichthyology, Book of Abstracts. Cavtat, Croatia; 2007. p. 59.
Boroń A. Replication banding patterns in the spined loach, Cobitis taenia L. (Pisces, Cobitidae). Genetica. 2003;119: 51–55. PubMed
Ráb P, Bohlen J, Rábová M, Flajšhans M, Kalous L. Cytogenetics as a tool in fish conservation: the present situation in Europe In: Pisano E, Ozouf-Costaz C, Foresti F, Kapoor BG, editors. Fish Cytogenetics. Enfield, NH 03748, USA: Science Publishers; 2007. pp. 215–241.
Ráb P, Roth P. Cold-blooded vertebrates In: Balíček P, Forejt J, Rubeš J, editors. Methods of chromosome analysis. Brno: Cytogenet Sect Cs Biol Soc Publishers; 1988. pp. 115–124.
Völker M, Ráb P. Direct chromosome preparation from regenerating fin tissue In: Ozouf-Costaz C, Pisano E, Foresti F, Foresti de Almeida-Toledo L, editors. Fish Cytogenetic Techniques. Enfield, NH 03748, USA: CRC Press, Inc; 2015. pp. 37–41.
Levan A, Fredga K, Sandberg AA. Nomenclature for centromeric position on chromosomes. Hereditas. 1964;52: 201–220. 10.1111/j.1601-5223.1964.tb01953.x DOI
Symonová R, Sember A, Majtánová Z, Ráb P. Characterization of fish genomes by GISH and CGH In: Ozouf-Costaz C, Pisano E, Foresti F, de Almeida L, editors. Fish Cytogenetic Techniques. CRC Press; 2015. pp. 118–131. Available: http://www.crcnetbase.com/doi/10.1201/b18534-17 DOI
Griffiths RC, Tavare S. Simulating probability distributions in the coalescent. Theor Popul Biol. 1994;46: 131–159. 10.1006/tpbi.1994.1023 DOI
Yang Z, Rannala B. Bayesian species delimitation using multilocus sequence data. Proc Natl Acad Sci. 2010; 200913022. 10.1073/pnas.0913022107 PubMed DOI PMC
Yang Z. Likelihood and Bayes estimation of ancestral population sizes in hominoids using data from multiple loci. Genetics. 2002;162: 1811–1823. PubMed PMC
Tang Q, Freyhof J, Xiong B, Liu H. Multiple invasions of Europe by East Asian cobitid loaches (Teleostei: Cobitidae). Hydrobiologia. 2008;605: 17–28. 10.1007/s10750-008-9296-1 DOI
Doadrio I, Perdices A. Phylogenetic relationships among the Ibero-African cobitids (Cobitis, cobitidae) based on cytochrome b sequence data. Mol Phylogenet Evol. 2005;37: 484–493. PubMed
Šlechtová V, Bohlen J, Perdices A. Molecular phylogeny of the freshwater fish family Cobitidae (Cypriniformes: Teleostei): delimitation of genera, mitochondrial introgression and evolution of sexual dimorphism. Mol Phylogenet Evol. 2008;47: 812–831. 10.1016/j.ympev.2007.12.018 PubMed DOI
Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22: 2688–2690. 10.1093/bioinformatics/btl446 PubMed DOI
Sanderson MJ. Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Mol Biol Evol. 2002;19: 101–109. PubMed
Paradis E. Analysis of phylogenetics and evolution with R. 1 edition New York: Springer; 2006.
Paradis E. Molecular dating of phylogenies by likelihood methods: a comparison of models and a new information criterion. Mol Phylogenet Evol. 2013;67: 436–444. 10.1016/j.ympev.2013.02.008 PubMed DOI
Bohlen J, Perdices A, Doadrio I, Economidis PS. Vicariance, colonisation, and fast local speciation in Asia Minor and the Balkans as revealed from the phylogeny of spined loaches (Osteichthyes; Cobitidae). Mol Phylogenet Evol. 2006;39: 552–561. PubMed
Zaleśna A, Choleva L, Ogielska M, Rábová M, Marec F, Ráb P. Evidence for integrity of parental genomes in the diploid hybridogenetic water frog Pelophylax esculentus by genomic in situ hybridization. Cytogenet Genome Res. 2011;134: 206–212. 10.1159/000327716 PubMed DOI
Rampin M, Bi K, Bogart JP, Collares-Pereira MJ. Identifying parental chromosomes and genomic rearrangements in animal hybrid complexes of species with small genome size using Genomic In Situ Hybridization (GISH). Comp Cytogenet. 2012;6: 287–300. 10.3897/CompCytogen.v6i3.3543 PubMed DOI PMC
Pereira CSA, Rab P, Collares-Pereira MJ. Chromosomes of Iberian Leuciscinae (Cyprinidae) revisited: evidence of genome restructuring in homoploid hybrids using dual-color FISH and CGH. Cytogenet Genome Res. 2013;141: 143–152. 10.1159/000354582 PubMed DOI
Pereira CSA, Aboim MA, Ráb P, Collares-Pereira MJ. Introgressive hybridization as a promoter of genome reshuffling in natural homoploid fish hybrids (Cyprinidae, Leuciscinae). Heredity. 2014;112: 343–350. 10.1038/hdy.2013.110 PubMed DOI PMC
Knytl M, Kalous L, Symonová R, Rylková K, Ráb P. Chromosome studies of European cyprinid fishes: cross-species painting reveals natural allotetraploid origin of a Carassius female with 206 chromosomes. Cytogenet Genome Res. 2013;139: 276–283. 10.1159/000350689 PubMed DOI
Symonová R, Flajšhans M, Sember A, Havelka M, Gela D, Kořínková T, et al. Molecular cytogenetics in artificial hybrid and highly polyploid sturgeons: An evolutionary story narrated by repetitive sequences. Cytogenet Genome Res. 2013;141: 153–162. 10.1159/000354882 PubMed DOI
Pokorná M, Rens W, Rovatsos M, Kratochvíl L. A ZZ/ZW sex chromosome system in the thick-tailed Gecko (Underwoodisaurus milii; Squamata: Gekkota: Carphodactylidae), a member of the ancient gecko lineage. Cytogenet Genome Res. 2014;142: 190–196. 10.1159/000358847 PubMed DOI
Zhu H-P, Gui J-F. Identification of genome organization in the unusual allotetraploid form of Carassius auratus gibelio. Aquaculture. 2007;265: 109–117. 10.1016/j.aquaculture.2006.10.026 DOI
Valente TG, Schneider HC, Gross CM, Feldberg E, Martins C. Comparative cytogenetics of cichlid fishes through genomic in-situ hybridization (GISH) with emphasis on Oreochromis niloticus. Chromosome Res Int J Mol Supramol Evol Asp Chromosome Biol. 2009;17: 791–799. 10.1007/s10577-009-9067-5 PubMed DOI
Uzzell T, Gűnther R, Berger L. Rana ridibunda and Rana esculenta: a leaky hybridogenetic system (Amphibia, Salientia). Proc Acad Nat Sci Phila. 1977;128: 147–171.
Alves MJ, Coelho MM, Collares-Pereira MJ. Evolution in action through hybridisation and polyploidy in an Iberian freshwater fish: a genetic review. Genetica. 2001;111: 375–385. PubMed
Arai K, Mukaino M. Clonal nature of gynogenetically induced progeny of triploid (diploid × tetraploid) loach, Misgurnus anguillicaudatus (Pisces: Cobitididae). J Exp Zool—J EXP ZOOL. 1997;278: 412–421.
da Barbiano LA, Gompert Z, Aspbury AS, Gabor CR, Nice CC. Population genomics reveals a possible history of backcrossing and recombination in the gynogenetic fish Poecilia formosa. Proc Natl Acad Sci. 2013; 201303730. 10.1073/pnas.1303730110 PubMed DOI PMC
Mikulíček P, Kautman M, Demovic B, Janko K. When a clonal genome finds its way back to a sexual species: evidence from ongoing but rare introgression in the hybridogenetic water frog complex. J Evol Biol. 2014;27: 628–642. 10.1111/jeb.12332 PubMed DOI
Robertson AV, Ramsden C, Niedzwiecki J, Fu J, Bogart JP. An unexpected recent ancestor of unisexual Ambystoma. Mol Ecol. 2006;15: 3339–3351. 10.1111/j.1365-294X.2006.03005.x PubMed DOI
Bi K, Bogart JP. Time and time again: unisexual salamanders (genus Ambystoma) are the oldest unisexual vertebrates. BMC Evol Biol. 2010;10: 238 10.1186/1471-2148-10-238 PubMed DOI PMC
Eichler EE, Sankoff D. Structural dynamics of eukaryotic chromosome evolution. Science. 2003;301: 793–797. 10.1126/science.1086132 PubMed DOI
Snowdon RJ, Köhler W, Friedt W, Köhler A. Genomic in situ hybridization in Brassica amphidiploids and interspecific hybrids. Theor Appl Genet. 1997;95: 1320–1324. 10.1007/s001220050699 DOI
Hickey DA. Selfish DNA: a sexually-transmitted nuclear parasite. Genetics. 1982;101: 519–531. PubMed PMC
Arkhipova I, Meselson M. Transposable elements in sexual and ancient asexual taxa. Proc Natl Acad Sci. 2000;97: 14473–14477. 10.1073/pnas.97.26.14473 PubMed DOI PMC
A cyclical switch of gametogenic pathways in hybrids depends on the ploidy level
Cytogenetics of the Hybridogenetic Frog Pelophylax grafi and Its Parental Species Pelophylax perezi
Genetic and karyotype divergence between parents affect clonality and sterility in hybrids
Uniparental Genome Elimination in Australian Carp Gudgeons
Vertebrate Genome Evolution in the Light of Fish Cytogenomics and rDNAomics