Sex chromosomes in meiotic, hemiclonal, clonal and polyploid hybrid vertebrates: along the 'extended speciation continuum'
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
34304588
PubMed Central
PMC8310718
DOI
10.1098/rstb.2020.0103
Knihovny.cz E-zdroje
- Klíčová slova
- clonal reproduction, evolution, hybridization, sex chromosomes, speciation,
- MeSH
- hybridizace genetická * MeSH
- meióza * MeSH
- obratlovci genetika MeSH
- pohlavní chromozomy genetika MeSH
- polyploidie * MeSH
- vznik druhů (genetika) * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
We review knowledge about the roles of sex chromosomes in vertebrate hybridization and speciation, exploring a gradient of divergences with increasing reproductive isolation (speciation continuum). Under early divergence, well-differentiated sex chromosomes in meiotic hybrids may cause Haldane-effects and introgress less easily than autosomes. Undifferentiated sex chromosomes are more susceptible to introgression and form multiple (or new) sex chromosome systems with hardly predictable dominance hierarchies. Under increased divergence, most vertebrates reach complete intrinsic reproductive isolation. Slightly earlier, some hybrids (linked in 'the extended speciation continuum') exhibit aberrant gametogenesis, leading towards female clonality. This facilitates the evolution of various allodiploid and allopolyploid clonal ('asexual') hybrid vertebrates, where 'asexuality' might be a form of intrinsic reproductive isolation. A comprehensive list of 'asexual' hybrid vertebrates shows that they all evolved from parents with divergences that were greater than at the intraspecific level (K2P-distances of greater than 5-22% based on mtDNA). These 'asexual' taxa inherited genetic sex determination by mostly undifferentiated sex chromosomes. Among the few known sex-determining systems in hybrid 'asexuals', female heterogamety (ZW) occurred about twice as often as male heterogamety (XY). We hypothesize that pre-/meiotic aberrations in all-female ZW-hybrids present Haldane-effects promoting their evolution. Understanding the preconditions to produce various clonal or meiotic allopolyploids appears crucial for insights into the evolution of sex, 'asexuality' and polyploidy. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part II)'.
Amphibian Research Center Hiroshima University Higashi Hiroshima 739 8526 Japan
Department of Zoology Faculty of Science Charles University Viničná 7 Prague 2 128 00 Czech Republic
Research Department for Limnology University of Innsbruck Mondseestrasse 9 A 5310 Mondsee Austria
Zobrazit více v PubMed
Darwin C. 1859. On the origin of species by means of natural selection or the preservation of favoured races in the struggle for life. London, UK: J. Murray. PubMed PMC
Mayr E. 1942. Systematics and the origin of species from the viewpoint of a zoologist. New York, NY: Columbia University Press.
Via S. 2009. Natural selection in action during speciation. Proc. Natl Acad. Sci. USA 106, 9939-9946. (10.1073/pnas.0901397106) PubMed DOI PMC
Coyne JA, Orr HA. 2004. Speciation. Sunderland, MA: Sinauer Associates.
Petit RJ, Excoffier L. 2009. Gene flow and species delimitation. Trends Ecol. Evol. 24, 386-393. (10.1016/j.tree.2009.02.011) PubMed DOI
Abbott R, et al. 2013. Hybridization and speciation. J. Evol. Biol. 26, 229-246. (10.1111/j.1420-9101.2012.02599.x) PubMed DOI
Marques D, Meier J, Seehausen O. 2019. A combinatorial view on speciation and adaptive radiation. Trends Ecol. Evol. 34, 531-544. (10.1016/j.tree.2019.02.008) PubMed DOI
McGee MD, et al. 2020. The ecological and genomic basis of explosive adaptive radiation. Nature 586, 75-79. (10.1038/s41586-020-2652-7) PubMed DOI
Matute DR, Cooper BS. 2021. Comparative studies on speciation: 30 years since Coyne and Orr. Evolution 75, 764-778. (10.1111/evo.14181) PubMed DOI PMC
Nosil P. 2012. Ecological speciation. New York, NY: Oxford University Press.
Wu C. 2001. The genic view of the process of speciation. J. Evol. Biol. 14, 851-865. (doi:10.1046/ j.1420-9101.2001.00335.x) DOI
Frankel N, Erezyilmaz D, McGregor A, Wang S, Payre F, Stern DL. 2011. Morphological evolution caused by many subtle-effect substitutions in regulatory DNA. Nature 474, 598-603. (10.1038/nature10200) PubMed DOI PMC
Nosil P, Schluter D. 2011. The genes underlying the process of speciation. Trends Ecol. Evol. 26, 160-167. (10.1016/j.tree.2011.01.001) PubMed DOI
Mallet J. 2008. Hybridization, ecological races and the nature of species: empirical evidence for the ease of speciation. Phil. Trans. R. Soc. B 363, 2971-2986. (10.1098/rstb.2008.0081) PubMed DOI PMC
Dufresnes C, Bonato L, Novarini N, Betto-Colliard C, Perrin N, Stöck M. 2014. Inferring the degree of incipient speciation in secondary contact zones of closely related lineages of Palearctic green toads (Bufo viridis subgroup). Heredity 113, 9-20. (10.1038/hdy.2014.26) PubMed DOI PMC
Dufresnes C, Lymberakis P, Kornilios P, Savary R, Perrin N, Stöck M. 2018. Phylogeography of Aegean green toads (Bufo viridis subgroup): continental hybrid swarm vs. insular diversification with discovery of a new island endemic. BMC Evol. Biol. 18, 67. (10.1186/s12862-018-1179-0) PubMed DOI PMC
Singhal S, Moritz C. 2013. Reproductive isolation between phylogeographic lineages scales with divergence. Proc. R. Soc. B 280, 20132246. (10.1098/rspb.2013.2246) PubMed DOI PMC
Poelstra JW, et al. 2014. The genomic landscape underlying phenotypic integrity in the face of gene flow in crows. Science 20, 1410-1414. (10.1126/science.1253226) PubMed DOI
McDevitt AD, Mariani S, Hebblewhite M, Decesare NJ, Morgantini L, Seip D, Weckworth BV, Musiani M. 2009. Survival in the Rockies of an endangered hybrid swarm from diverged caribou (Rangifer tarandus) lineages. Mol. Ecol. 18, 665-679. (10.1111/j.1365-294X.2008.04050.x) PubMed DOI
Kallman KD. 1975. The platyfish Xiphophorus maculatus. In Handbook of genetics , vol. 4 (ed. King RC), pp. 81-132. New York, NY: Plenum Press.
Volff JN, Schartl M. 2002. Sex determination and sex chromosome evolution in the medaka, Oryzias latipes, and the platyfish, Xiphophorus maculatus. Cytogenet. Genome Res. 99, 170-177. (10.1159/000071590) PubMed DOI
Lee BY, Hulata G, Kocher TD. 2004. Two unlinked loci controlling the sex of blue tilapia (Oreochromis aureus). Heredity 92, 543-549. (10.1038/sj.hdy.6800453) PubMed DOI
Cnaani A, et al. 2008. Genetics of sex determination in tilapiine species. Sex. Dev. 2, 43-54. (10.1159/000117718) PubMed DOI
Ser JR, Roberts RB, Kocher TD. 2010. Multiple interacting loci control sex determination in Lake Malawi cichlid fish. Evolution 64, 486-501. (10.1111/j.1558-5646.2009.00871.x) PubMed DOI PMC
Dufresnes C, Majtyka T, Baird SJE, Gerchen J, Borzée A, Savary R, Ogielska M, Perrin N, Stöck M. 2016. Empirical evidence for large X-effects in animals with undifferentiated sex chromosomes. Sci. Rep. 6, 21029. (10.1038/srep21029) PubMed DOI PMC
Gerchen JF, Dufresnes C, Stöck M. 2018. Introgression across hybrid zones is not mediated by large X-effects in green toads with undifferentiated sex chromosomes. Am. Nat. 192, E178-E188. (10.1086/699162) PubMed DOI
Carling MD, Brumfield RT. 2008. Haldane's rule in an avian system: using cline theory and divergence population genetics to test for differential introgression of mitochondrial, autosomal, and sex-linked loci across the Passerina bunting hybrid zone. Evolution 62, 2600-2615. (10.1111/j.1558-5646.2008.00477.x) PubMed DOI
Storchová R, Reif J, Nachman MW. 2010. Female heterogamety and speciation: reduced introgression of the Z chromosome between two species of nightingales. Evolution 64, 456-471. (10.1111/j.1558-5646.2009.00841.x) PubMed DOI PMC
Janoušek V, et al. 2012. Genome-wide architecture of reproductive isolation in a naturally occurring hybrid zone between Mus musculus musculus and M. m. domesticus. Mol. Ecol. 21, 3032-3047. (10.1111/j.1365-294X.2012.05583.x) PubMed DOI PMC
Carneiro M, et al. 2014. The genomic architecture of population divergence between subspecies of the European rabbit. PLoS Genet. 10, e1003519. (10.1371/journal.pgen.1003519) PubMed DOI PMC
Kottler VA, et al. 2020. Independent origin of XY and ZW sex determination mechanisms in mosquitofish sister species. Genetics 14, 193-209. (10.1534/genetics.119.302698) PubMed DOI PMC
Miura I. 2007. An evolutionary witness: the frog Rana rugosa underwent change of heterogametic sex from XY male to ZW female. Sex. Dev. 1, 323-331. (10.1159/000111764) PubMed DOI
Ogata M, Lambert M, Ezaz T, Miura I. 2018. Reconstruction of female heterogamety from admixture of XX-XY and ZZ-ZW sex chromosome systems within a frog species. Mol. Ecol. 27, 4078-4089. (10.1111/mec.14831) PubMed DOI
Ogata M, Suzuki K, Yuasa Y, Miura I. 2021. Sex-chromosome evolution from a heteromorphic to a homomorphic system by inter-population hybridization in a frog. Phil. Trans. R. Soc. B 376, 20200105. (10.1098/2020.0105) PubMed DOI PMC
Betto-Colliard C, Hofmann S, Sermier R, Perrin N, Stöck M. 2018. Profound genetic divergence and asymmetric parental genome contributions as hallmarks of hybrid speciation in polyploid toads. Proc. R. Soc. B 285, 20172667. (10.1098/rspb.2017.2667) PubMed DOI PMC
Saetre G-P, Borge T, Lindroos K, Haavie J, Sheldon BC, Primmer C, Syvänen AC. 2003. Sex chromosome evolution and speciation in Ficedula flycatchers. Proc. R. Soc. B 270, 53-59. (10.1098/rspb.2002.2204) PubMed DOI PMC
Bolfíková B, Hulva P. 2012. Microevolution of sympatry: landscape genetics of hedgehogs Erinaceus europaeus and E. roumanicus in Central Europe. Heredity 108, 248-255. (10.1038/hdy.2011.67) PubMed DOI PMC
Janko K, et al. 2018. Hybrid asexuality as a primary postzygotic barrier between nascent species: on the interconnection between asexuality, hybridization and speciation. Mol. Ecol. 27, 248-263. (10.1111/mec.14377) PubMed DOI PMC
Tarkhnishvili D, et al. 2020. Genotypic similarities among the parthenogenetic Darevskia rock lizards with different hybrid origins. BMC Evol. Biol. 20, 122. (10.1186/s12862-020-01690-9) PubMed DOI PMC
Kupriyanova LA. 2014. Concept of hybridogeneous speciation of vertebrate animals: Complex studies of unisexual species of reptilia. Proc. Zool. Inst. 318, 382-390.
Moritz C, Bi K. 2011. Spontaneous speciation by ploidy elevation: laboratory synthesis of a new clonal vertebrate. Proc. Natl Acad. Sci. USA 108, 9733-9734. (10.1073/pnas.1106455108) PubMed DOI PMC
Cole CJ, Dessauer HC, Paulissen MA, Walker JM. 2020. Hybridization between whiptail lizards in Texas: Aspidoscelis laredoensis and A. gularis, with notes on reproduction of a hybrid. Am. Mus. Nov. 3947, 1-13. (10.1206/3947.1) DOI
Stöck M, Roth P, Podloucky R, Grossenbacher K. 2008b. Wechselkröten – unter Berücksichtigung von Bufo viridis Laurenti, 1768; Bufo variabilis (Pallas, 1769); Bufo boulengeri Lataste, 1879; Bufo balearicus Böttger, 1880 und Bufo siculus Stöck, Sicilia, Belfiore, Lo Brutto, Lo Valvo und Arculeo, 2008, pp. 413-498. In Handbuch der amphibien und reptilien europas, vol. 5 (ed. Grossenbacher K). (Froschlurche II) [Handbook of the Amphibians and Reptiles of Europe. vol. 5 (Anura II)], pp. 413-498. Wiesbaden, Germany: AULA-Verlag.
Randler C. 2006. Extrapair paternity and hybridization in birds. J. Avian Biol. 37, 1-5. (10.1111/j.2006.0908-8857.03592.x) DOI
Zechner U, Reule M, Orth A, Bonhomme F, Strack B, Guénet JL, Hameister H, Fundele R. 1996. An X-chromosome linked locus contributes to abnormal placental development in mouse interspecific hybrids. Nat. Gen. 12, 398-403. (10.1038/ng0496-398) PubMed DOI
Avise IJ. 2008. Clonality: The genetics, ecology, and evolution of sexual abstinence in vertebrate animals. New York, NY: Oxford University Press.
Hubbs CL, Hubbs LC. 1932. Apparent parthenogenesis in nature, in a form of fish of hybrid origin. Science 76, 628-630. (10.1126/science.76.1983.628) PubMed DOI
Schartl M, Nanda I, Schlupp I, Wilde B, Eppenlen JT, Schmid M, Parzefall J. 1995. Incorporation of subgenomic amounts of DNA as compensation for mutational load in a gynogenetic fish. Nature 373, 68-71. (10.1038/373068a0) DOI
Lamatsch DK, Stöck M. 2009. Sperm-dependent parthenogenesis and hybridogenesis in teleost fishes. In Lost sex—The evolutionary biology of parthenogenesis (eds Schön I, Martens K, van Dijk P.), pp. 399-432. Heidelberg, Berlin, Germany: Springer.
Stöck M, Ustinova J, Betto-Colliard C, Schartl M, Moritz C, Perrin N. 2012. Simultaneous Mendelian and clonal genome transmission in a sexually reproducing, all-triploid vertebrate. Proc. R. Soc. B 279, 1293-1299. (10.1098/rspb.2011.1738) PubMed DOI PMC
Schultz RJ. 1967. Gynogenesis and triploidy in the viviparous fish Poeciliopsis. Science 157, 1564-1567. (10.1126/science.157.3796.1564) PubMed DOI
Tunner HG. 1973. Demonstration of the hybrid origin of the common green frog Rana esculenta. Naturwissenschaften 60, 481-482. (10.1007/BF00592872) PubMed DOI
Tunner HG, Heppich S. 1981. Premeiotic genome exclusion during oogenesis in the common edible frog, Rana esculenta. Naturwissenschaften 68, 207. (10.1007/bf01047207) PubMed DOI
Ogielska M. 1994. Nucleus-like bodies in gonial cells of Rana esculenta (Amphibia, Anura) tadpoles—a putative way of chromosome elimination. Zool. Pol. 39, 461-474.
Dedukh D, Riumin S, Chmielewska M, Rozenblut-Kościsty B, Kolenda K, Kaźmierczak M, Dudzik A, Ogielska M, Krasikova A. 2020. Micronuclei in germ cells of hybrid frogs from Pelophylax esculentus complex contain gradually eliminated chromosomes. Sci. Rep. 10, 1-13. (10.1038/s41598-020-64977-3) PubMed DOI PMC
Cimino MC. 1972. Egg-production, polyploidization and evolution in a diploid all-female fish of the genus Poeciliopsis. Evolution 26, 294-306. (10.2307/2407039) PubMed DOI
Berger L. 1968. Morphology of the F1 generation of various crosses within Rana esculenta complex. Acta Zool. Cracov. 13, 301-324.
Heppich S, Tunner HG, Greilhuber J. 1982. Premeiotic chromosome doubling after genome elimination during spermatogenesis of the species hybrid Rana esculenta. Theor. Appl. Genet. 61, 101-104. (10.1007/BF00273874) PubMed DOI
Christiansen DG, Fog K, Pedersen BV, Boomsma JJ. 2005. Reproduction and hybrid load in all-hybrid populations of Rana esculenta waterfrogs in Denmark. Evolution 59, 1348-1361. (10.1111/j.0014-3820.2005.tb01784.x) PubMed DOI
Günther R. 1983. Zur Populationsgenetik der Mitteleuropäischen Wasserfrösche des Rana esculenta-Synkleptons (Anura, Ranidae). Zool. Anz. 211, 43-54 [in German].
Bogart JP, Bi K, Fu J, Noble DW, Niedzwiecki J. 2007. Unisexual salamanders (genus Ambystoma) present a new reproductive mode for eukaryotes. Genome 50, 119-136. (10.1139/G06-152) PubMed DOI
MacGregor H, Uzzell T. 1964. Gynogenesis in salamanders related to Ambystoma jeffersonianum. Science 143, 1043-1045. (10.1126/science.143.3610.1043) PubMed DOI
Bi K, Bogart JP. 2010. Probing the meiotic mechanism of intergenomic exchanges by genomic in situ hybridization on lampbrush chromosomes of unisexual Ambystoma (Amphibia: Caudata). Chromosome Res. 18, 371-382. (10.1007/s10577-010-9121-3) PubMed DOI
Monaco PJ, Rasch EM, Balsano JS. 1984. Apomictic reproduction in the Amazon molly, Poecilia formosa, and its triploid hybrids. In Evolutionary genetics of fishes. Monographs in evolutionary biology (ed. Turner BJ), pp. 311-328. Boston, MA: Berlin, Germany: Springer. (10.1007/978-1-4684-4652-4_6) DOI
Yamashita M, Jiang J, Onozato H, Nakanishi T, Nagahama Y. 1993. A tripolar spindle formed at meiosis I assures the retention of the original ploidy in the gynogenetic triploid crucian carp, ginbuna Carassius auratus langsdorfii. Dev. Growth Differ. 35, 631-636. (10.1111/j.1440-169X.1993.00631.x) PubMed DOI
Dedukh D, et al. 2020. Parthenogenesis as a solution to hybrid sterility: the mechanistic basis of meiotic distortions in clonal and sterile hybrids. Genetics 215, 975-987. (10.1534/genetics.119.302988) PubMed DOI PMC
Bohlen J, Rab P. 2001. Species and hybrid richness in spined loaches of the genus Cobitis L. (Teleostei: Cobitidae), with a checklist of European forms and suggestions for their conservation. J. Fish Biol. 59, 79-85. (10.1111/j.1095-8649.2001.tb01380.x) DOI
Juchno D, Arai K, Boroń A, Kujawa R. 2016. Meiotic chromosome configurations in oocytes of Cobitis taenia and its polyploid hybrids. Ichthyol. Res. 64, 240-243. (10.1007/s10228-016-0556-1) DOI
Lutes AA, Neaves WB, Baumann DP, Wiegraebe W, Baumann P. 2010. Sister chromosome pairing maintains heterozygosity in parthenogenetic lizards. Nature 464, 283-286. (10.1038/nature08818) PubMed DOI PMC
Cuellar O. 1971. Reproduction and the mechanism of meiotic restitution in the parthenogenetic lizard Cnemidophorus uniparens. J. Morphol. 133, 139-165. (10.1002/jmor.1051330203) PubMed DOI
Spangenberg V, et al. 2020. Cytogenetic mechanisms of unisexuality in rock lizards. Sci. Rep. 10, 8697. (10.1038/s41598-020-65686-7) PubMed DOI PMC
Zhang Q, Arai K, Yamashita M. 1998. Cytogenetic mechanisms for triploid and haploid egg formation in the triploid loach Misgurnus anguillicaudatus. J. Exp. Zool. 281, 608-619. (10.1002/(SICI)1097-010X(19980815)281:6<608::AID-JEZ9>3.0.CO;2-R) DOI
Stöck M, et al. 2002. A bisexually reproducing all-triploid vertebrate. Nat. Gen. 30, 325-328. (10.1038/ng839) PubMed DOI
Nei M, Kumar S. 2000. Molecular evolution and phylogenetics. Oxford, UK and New York, NY: Oxford University Press.
Sinclair EA, Pramuk JB, Bezy RL, Crandall KA, Sites JW Jr. 2009. DNA evidence for nonhybrid origins of parthenogenesis in natural populations of vertebrates. Evolution 64, 1346-1357. (10.1111/j.1558-5646.2009.00893.x) PubMed DOI
Lampert KP. 2008. Facultative parthenogenesis in vertebrates: reproductive error or chance? Sex. Dev. 2, 290-301. (doi:10..1159/000195678) PubMed DOI
Booth W, Schuett GW. 2016. The emerging phylogenetic pattern of parthenogenesis in snakes. Biol. J. Linn. Soc. 118, 172-186. (10.1111/bij.12744) DOI
Straube N, Lampert K, Geiger M, Weib J, Kirchhauser J. 2016. First record of second-generation facultative parthenogenesis in a vertebrate species, the white spotted bamboo shark Chiloscyllium plagiosum. J. Fish Biol. 88, 668-675. (10.1111/jfb.12862) PubMed DOI
Dobzhansky T. 1937. Genetics and the origin of species. New York, NY: Columbia University.
Muller HJ. 1942. Isolating mechanisms, evolution, and temperature. Biol. Symp. 6, 71-125.
Turelli M, Orr HA. 2000. Dominance, epistasis and the genetics of postzygotic isolation. Genetics 154, 1663-1679. (10.1093/genetics/154.4.1663) PubMed DOI PMC
Orr HA, Masly JP, Presgraves DC. 2004. Speciation genes. Curr. Opin. Genet. Dev. 14, 675-679. (10.1016/j.gde.2004.08.009) PubMed DOI
Presgraves DC. 2010. The molecular evolutionary basis of species formation. Nat. Rev. Genet. 11, 175-180. (10.1038/nrg2718) PubMed DOI
Ting CT, Tsaur SC, Wu ML, Wu CI. 1998. A rapidly evolving homeobox at the site of a hybrid sterility gene. Science 282, 1501-1504. (10.1126/science.282.5393.1501) PubMed DOI
Phadnis N, Orr HA. 2009. A single gene causes both male sterility and segregation distortion in Drosophila hybrids. Science 323, 376-379. (10.1126/science.1163934) PubMed DOI PMC
Oliver PL, et al. 2009. Accelerated evolution of the Prdm9 speciation gene across diverse metazoan taxa. PLoS Genet. 5, e1000753. (10.1371/journal.pgen.10007539) PubMed DOI PMC
Gregorova S, et al. 2018. Modulation of Prdm9-controlled meiotic chromosome asynapsis overrides hybrid sterility in mice. eLife 7, e34282. (10.7554/eLife.34282) PubMed DOI PMC
Bateson W. 1909. Heredity and variation in modern lights. In Darwin and modern science, vol. 1909 (ed. Seward AC), pp. 85-101. Cambridge, UK: Cambridge University Press.
Forsdyke DR. 2003. William Bateson, Richard Goldschmidt, and non-genic modes of speciation. J. Biol. Syst. 11, 341-350. (10.1142/S0218339003000932) DOI
White MJD. 1978. In Modes of speciation. San Francisco, CA: WH Freeman.
Rieseberg LH. 2001. Chromosomal arrangements and speciation. Trends Ecol. Evol. 16, 351-358. (10.1016/S0169-5347(01)02187-5) PubMed DOI
Tulchinsky AY, Johnson NA, Watt WB, Porter AH. 2014. Hybrid incompatibility arises in a sequence-based bioenergetic model of transcription factor binding. Genetics 198, 1155-1166. (10.1093/genetics/198.3.NP) PubMed DOI PMC
Petrov DA, Schutzman JL, Hartl DL, Lozovskaya ER. 1995. Diverse transposable elements are mobilized in hybrid dysgenesis in Drosophila virilis. Proc. Natl Acad. Sci. USA 92, 8050-8054. (10.1073/pnas.92.17.8050) PubMed DOI PMC
O'Neill RJ, O'Neill MJ, Graves JAM. 1998. Undermethylation associated with retroelement activation and chromosome remodeling in an interspecific mammalian hybrid. Nature 393, 68-72. (10.1038/29985) PubMed DOI
Hill T, Schlötterer C, Betancourt AJ. 2016. Hybrid dysgenesis in Drosophila simulans associated with a rapid invasion of the P-element. PLoS Genet. 12, e1006058. (10.1371/journal.pgen.1006058) PubMed DOI PMC
Peona V, et al. 2021. The avian W chromosome is a refugium for endogenous retroviruses with likely effects on female-biased mutational load and genetic incompatibilities. Phil. Trans. R. Soc. B 376, 20200186. (10.1098/rstb.2020.0186) PubMed DOI PMC
Charlesworth B, Coyne J, Barton N. 1987. The relative rates of evolution of sex chromosomes and autosomes. Am. Nat. 130, 113-146. (10.1086/284701) DOI
Masly JP, Presgraves DC. 2007. High-resolution genome-wide dissection of the two rules of speciation in Drosophila. PLoS Biol. 5, e243. (10.1371/journal.pbio.0050243) PubMed DOI PMC
Payseur BA, Presgraves DC, Filatov DA. 2018. Introduction: sex chromosomes and speciation. Mol. Ecol. 27, 3745-3748. (10.1111/mec.14828) PubMed DOI PMC
Haldane JBS. 1922. Sex ratio and unisexual sterility in hybrid animals. J. Genet. 12, 101-109. (10.1007/BF02983075) DOI
Orr HA. 1997. Haldane's Rule. Annu. Rev. Ecol. Syst. 28, 195-218. (10.1146/annurev.ecolsys.28.1.195) DOI
Coyne JA, Orr HA. 1989. Two rules of speciation. In Speciation and Its consequences (eds Otte D, Endler J), pp. 180-207. Sunderland, MA: Sinauer Associates.
Turelli M, Moyle LC. 2007. Asymmetric postmating isolation: Darwin's corollary to Haldane's rule. Genetics 176, 1059-1088. (10.1093/genetics/176.2.NP) PubMed DOI PMC
Llopart A. 2012. The rapid evolution of X-linked male-biased gene expression and the large-X effect in Drosophila yakuba, D. santomea, and their hybrids. Mol. Biol. Evol. 29, 3873-3886. (10.1093/molbev/mss190) PubMed DOI
Meisel RP, Connallon T. 2013. The faster-X effect: integrating theory and data. Trends Genet. 29, 537-544. (10.1016/j.tig.2013.05.009) PubMed DOI PMC
Janoušek V, Fischerová J, Mořkovský L, Reif J, Antczak M, Albrecht T, Reifová R. 2019. Postcopulatory sexual selection reduces Z-linked genetic variation and might contribute to the large Z effect in passerine birds. Heredity 122, 622-635. (10.1038/s41437-018-0161-3) PubMed DOI PMC
Hurst LD, Pomiankowski A. 1991. Causes of sex ratio bias may account for unisexual sterility in hybrids: a new explanation of Haldane's rule and related phenomena. Genetics 128, 841-858. (10.1093/genetics/128.4.841) PubMed DOI PMC
Bhattacharyya T, Gregorova S, Mihola O, Anger M, Sebestova J, Denny P, Simecek P, Forejt J. 2013. Mechanistic basis of infertility of mouse intersubspecific hybrids. Proc. Natl Acad. Sci. USA 110, E468-E477. (10.1073/pnas.1219126110) PubMed DOI PMC
Bhattacharyya T, Reifova R, Gregorova S, Simecek P, Gergelits V, Mistrik M, Martincova I, Pialek J, Forejt J. 2014. X chromosome control of meiotic chromosome synapsis in mouse inter-subspecific hybrids. PLoS Genet. 10, e1004088. (10.1371/journal.pgen.1004088) PubMed DOI PMC
Filatov DA. 2018. The two ‘rules of speciation’ in species with young sex chromosomes. Mol. Evol. 27, 3799-3810. (10.1111/mec.14721) PubMed DOI
Beukeboom L, Perrin N. 2014. The evolution of sex determination. New York, NY: Oxford University Press.
Roux C, Fraïsse C, Romiguier J, Anciaux Y, Galtier N, Bierne N. 2016. Shedding light on the grey zone of speciation along a continuum of genomic divergence. PLoS Biol. 14, e2000234. (10.1371/journal.pbio.2000234) PubMed DOI PMC
Melander SL, Mueller RL. 2020. Comprehensive analysis of salamander hybridization suggests a consistent relationship between genetic distance and reproductive isolation across tetrapods. Copeia 108, 987-1003. (10.1643/CH-19-319) DOI
Barton NH, Charlesworth B. 1984. Genetic revolutions, founder effects and speciation. Annu. Rev. Ecol. Evol. Syst. 15, 133-164. (10.1146/annurev.es.15.110184.001025) DOI
Hendry AP, Bolnick DI, Berner D, Peichel CL. 2009. Along the speciation continuum in sticklebacks. J. Fish. Biol. 75, 2000-2036. (10.1111/j.1095-8649.2009.02419.x) PubMed DOI
Peccoud J, Ollivier A, Plantegenest M, Simon J-C. 2009. A continuum of genetic divergence from sympatric host races to species in the pea aphid complex. Proc. Natl Acad. Sci. USA 106, 7495-7500. (10.1073/pnas.0811117106) PubMed DOI PMC
De Queiroz K. 2007. Species concepts and species delimitation. Syst. Biol. 56, 879-886. (10.1080/10635150701701083) PubMed DOI
Galtier N. 2019. Delineating species in the speciation continuum: a proposal. Evol. Appl. 12, 657-663. (10.1111/eva.12748) PubMed DOI PMC
Malinsky M, Challis RJ, Tyers AM, Schiffels S, Terai Y, Ngatunga BP, Turner GF. 2015. Genomic islands of speciation separate cichlid ecomorphs in an East African crater lake. Science 350, 1493-1498. (10.1126/science.aac9927) PubMed DOI PMC
Wolf JB, Ellegren H. 2016. Making sense of genomic islands of differentiation in light of speciation. Nat. Rev. Genet. 18, 87-100. (10.1038/nrg.2016.133) PubMed DOI
Mořkovský L, Janoušek V, Reif J, Rídl J, Pačes J, Choleva L, Janko K, Nachman MW, Reifová R. 2018. Genomic islands of differentiation in two songbird species reveal candidate genes for hybrid female sterility. Mol. Ecol. 27, 949-958. (10.1111/mec.14479) PubMed DOI PMC
Hey J, Pinho C. 2012. Population genetics and objectivity in species diagnosis. Evolution 66, 1413-1429. (10.1111/j.1558-5646.2011.01542.x) PubMed DOI PMC
Orr HA, Turelli M. 2001. The evolution of postzygotic isolation: accumulating Dobzhansky-Muller incompatibilities. Evolution 55, 1085-1094. (10.1111/j.0014-3820.2001.tb00628.x) PubMed DOI
Matute DR, Butler IA, Turissini DA, Coyne JA. 2010. A test of the snowball theory for the rate of evolution of hybrid incompatibilities. Science 329, 1518-1521. (10.1126/science.1193440) PubMed DOI
Coyne JA, Orr HA. 1997. Patterns of speciation in Drosophila revisited. Evol. Int. J. Org. Evol. 51, 295-303. (10.2307/2410984) PubMed DOI
Presgraves DC. 2002. Patterns of postzygotic isolation in Lepidoptera. Evol. Int. J. Org. Evol. 56, 1168-1183. (10.1111/j.0014-3820.2002.tb01430.x) PubMed DOI
`Ravinet M, Yoshida K, Shigenobu S, Toyoda A, Fujiyama A, Kitano J. 2018. The genomic landscape at a late stage of stickleback speciation: high genomic divergence interspersed by small localized regions of introgression. PLoS Genet. 14, e1007358. (10.1371/journal.pgen.1007358) PubMed DOI PMC
Sciuchetti L, Dufresnes C, Cavoto E, Brelsford A, Perrin P. 2018. Dobzhansky–Muller incompatibilities, dominance drive, and sex-chromosome introgression at secondary contact zones: a simulation study. Evolution 72, 1350-1361. (10.1111/evo.13510) PubMed DOI
Turelli M, Begun DJ. 1997. Haldane's rule and X-chromosome size in Drosophila. Genetics 147, 1799-1815. (10.1093/genetics/147.4.1799) PubMed DOI PMC
Lima TG. 2014. Higher levels of sex chromosome heteromorphism are associated with markedly stronger reproductive isolation. Nat. Commun. 5, 4743. (10.1038/ncomms5743) PubMed DOI
Roco AS, Olmstead AW, Degitz SJ, Amano T, Zimmerman LB, Bullejos M. 2015. Coexistence of Y, W, and Z sex chromosomes in Xenopus tropicalis. Proc. Natl Acad. Sci. USA 112, E4752-E4761. (10.1073/pnas.1505291112) PubMed DOI PMC
Mitros T, et al. 2019. A chromosome-scale genome assembly and dense genetic map for Xenopus tropicalis. Dev. Biol. 452, 8-20. (10.1016/j.ydbio.2019.03.015) PubMed DOI
Schartl M. 2015. Sex determination by multiple sex chromosomes in Xenopus tropicalis. Proc. Natl Acad. Sci. USA 112, 10575-10576. (10.1073/pnas.1513518112) PubMed DOI PMC
Furman BLS, Cauret CMS, Knytl M, Song X-Y, Premachandra T, Ofori-Boateng C, Jordan DC, Horb ME, Evans BJ. 2020. A frog with three sex chromosomes that co-mingle together in nature: Xenopus tropicalis has a degenerate W and a Y that evolved from a Z chromosome. PLoS Genet. 16, e1009121. (10.1371/journal.pgen.1009121) PubMed DOI PMC
Hall DW, Kirkpatrick M. 2006. Reinforcement and sex linkage. Evolution 60, 908-921. (10.1111/j.0014-3820.2006.tb01170.x) PubMed DOI
Wilk RJ, Horth L. 2016. A genetically distinct hybrid zone occurs for two globally invasive mosquito fish species with striking phenotypic resemblance. Ecol. Evol. 6, 8375-8388. (10.1002/ece3.2562) PubMed DOI PMC
Johannesson K, Le Moann A, Perini S, André C. 2020. A Darwinian laboratory of multiple contact zones. Trends Ecol. Evol. 35, 1021-1036. (10.1016/j.tree.2020.07.015) PubMed DOI
Runemark A, Eroukhmanoff F, Nava-Bolaños A, Hermansen JS, Meier JI. 2018. Hybridization, sex-specific genomic architecture and local adaptation. Phil. Trans. R. Soc. B 373, 20170419. (10.1098/rstb.2017.0419) PubMed DOI PMC
Dixon G, Kitano J, Kirkpatrick M. 2018. The origin of a new sex chromosome by introgression between two stickleback fishes. Mol. Biol. Evol. 36, 28-38. (10.1093/molbev/msy181) PubMed DOI PMC
Takahashi H, Nagai T, Goto A. 2005. Hybrid male sterility between the fresh- and brackish-water types of ninespine stickleback Pungitius pungitius (Pisces, Gasterosteidae). Zool. Sci. 22, 35-40. (10.2108/zsj.22.35) PubMed DOI
Uno Y, Nishida C, Oshima Y, Yokoyama S, Miura I, Matsuda Y, Nakamura M. 2008. Comparative chromosome mapping of sex-linked genes and identification of sex chromosomal rearrangements in the Japanese wrinkled frog (Rana rugosa, Ranidae) with ZW and XY sex chromosome systems. Chrom. Res. 16, 637-647. (10.1007/s10577-008-1217-7) PubMed DOI
Ito M. 2018. Sex determination and differentiation in frogs. In Reproductive and developmental strategies. Diversity and commonality in animals (eds Kobayashi K, Kitano T, Iwao Y, Kondo M), pp. 349-366. Tokyo, Japan: Springer.
Ogata M, Hasegawa Y, Ohtani H, Mineyama M, Miura I. 2008. The ZZ/ZW sex-determining mechanism originated twice and independently during evolution of the frog, Rana rugosa. Heredity 100, 92-99. (10.1038/sj.hdy.6801068) PubMed DOI
Runemark A, Vallejo-Marin M, Meier JI. 2019. Eukaryote hybrid genomes. PLoS Genet. 15, e1008404. (10.1371/journal.pgen.1008404) PubMed DOI PMC
Ernst A. 1918. Bastardierung als ursache der apogamie im pflanzenreich. Eine Hypothese zur experimentellen Vererbungs- und Abstammungslehre. Jena, Germany: Fischer-Verlag; [in German].
Wetherington JD, Kotora KE, Vrijenhoek RC. 1987. A test of the spontaneous heterosis hypothesis for unisexual vertebrates. Evolution 41, 721-723. (10.1111/j.1558-5646.1987.tb05848.x) PubMed DOI
Moritz C, Brown WM, Densmore LD, Wright JW, Vyas D, Donnellan S, Adams M, Baverstock P. et al. 1989. Genetic diversity and the dynamics of hybrid parthenogenesis in Cnemidophorus (Teiidae) and Heteronotia (Gekkonidae). In Evolution and ecology of unisexual vertebrates), pp. 268-280. Albany, NY: New York State Museum.
Stöck M, Lampert KP, Möller D, Schlupp I, Schartl M. 2010. Monophyletic origin of multiple clonal lineages in an asexual fish (Poecilia formosa). Mol. Ecol. 19, 5204-5215. (10.1111/j.1365-294X.2010.04869.x) PubMed DOI
Warren W, et al. 2018. Clonal polymorphism and high heterozygosity in the celibate genome of the Amazon molly. Nat. Ecol. Evol. 2, 669-679. (10.1038/s41559-018-0473-y) PubMed DOI PMC
Hojsgaard D, Schartl M. 2021. Skipping sex: a non-recombinant genomic assemblage of complementary reproductive modules. Bioessays 43, e2000111. (10.1002/bies.202000111) PubMed DOI
Kearney M, Fujita MK, Ridenour J. 2009. Lost sex in the reptiles: constraints and correlations. In Lost sex—The evolutionary biology of parthenogenesis (eds Schön I, Martens K, van Dijk P.), pp. 447-474. Heidelberg, Berlin, Germany: Springer. (10.1007/978-90-481-2770-2_21) DOI
Fujita MK, Moritz C. 2009. Origin and evolution of parthenogenetic genomes in lizards: current state and future directions. Cytogenet. Genome Res. 127, 261-272. (10.1159/000295177) PubMed DOI
Choleva L, Janko K. 2013. Rise and persistence of animal polyploidy: evolutionary constraints and potential. Cytogenet. Genome Res. 140, 151-170. (10.1159/000353464) PubMed DOI
Simon J-C, Delmotte F, Rispe C, Crease T. 2003. Phylogenetic relationships between parthenogens and their sexual relatives: the possible routes to parthenogenesis in animals. Biol. J. Linn. Soc. 79, 151-163. (10.1046/j.1095-8312.2003.00175.x) DOI
Bogart JP. 1980. Evolutionary implications of polyploidy in amphibians and reptiles. In Polyploidy: biological relevance (ed. Lewis WH), pp. 341-378. New York, NY: Plenum Press. PubMed
Schmid M, Evans BJ, Bogart JP. 2015. Polyploidy in amphibia. Cytogenet. Gen. Res. 145, 315-330. (10.1159/000431388) PubMed DOI
De Storme N, Mason A. 2014. Plant speciation through chromosome instability and ploidy change: cellular mechanisms, molecular factors and evolutionary relevance. Curr. Plant Biol. 1, 10-33. (10.1016/j.cpb.2014.09.002) DOI
Faria R, Navarro A. 2010. Chromosomal speciation revisited: rearranging theory with pieces of evidence. Trends Ecol. Evol. 25, 660-669. (10.1016/j.tree.2010.07.008) PubMed DOI
Carman JG. 1997. Asynchronous expression of duplicate genes in angiosperms may cause apomixis, bispory, tetraspory, and polyembryony. Biol. J. Linn. Soc. 61, 51-94. (10.1111/j.1095-8312.1997.tb01778.x) DOI
Husband BC. 2000. Constraints on polyploid evolution: a test of the minority cytotype exclusion principle. Proc. R. Soc. B 267, 217-223. (10.1098/rspb.2000.0990) PubMed DOI PMC
Neaves WB, Baumann P. 2011. Unisexual reproduction among vertebrates. Trends Genet. 27, 81-88. (10.1016/j.tig.2010.12.002) PubMed DOI
Choleva L, Janko K, De Gelas K, Bohlen J, Šlechtová V, Rábová M, Ráb P. 2012. Synthesis of clonality and polyploidy in vertebrate animals by hybridization between two sexual species. Evolution 66, 2191-2203. (10.1111/j.1558-5646.2012.01589.x) PubMed DOI
Schultz RJ. 1969. Hybridization, unisexuality, and polyploidy in the teleost Poeciliopsis (Poeciliidae) and other vertebrates. Am. Nat. 103, 605-619. (10.1086/282629) DOI
Dawley RM, Bogart JP (eds). 1989. Evolution and ecology of unisexual vertebrates (eds RM Dawley, JP Bogart). New York State Museum Bulletin 466. Albany, NY: New York State Museum.
Butlin R, Schön I, Griffiths HI. 1998. Introduction to reproductive modes: sex and parthenogenesis. In Evolutionary ecology of reproductive modes in non-marine ostracods (ed. Martens K), pp. 1-24. Leiden, The Netherlands: Backhuys Publ.
Stenberg P, Saura A. 2009. Cytology of asexual animals. In Lost sex (eds Schön I, Martens K, Dijk P), pp. 63-74. Dordrecht, The Netherlands: Springer. (10.1007/978-90-481-2770-2_4) DOI
Stenberg P, Saura A. 2013. Meiosis and its deviations in polyploid animals. Cytogenet. Genome Res. 140, 185-203. (10.1159/000351731) PubMed DOI
Mason AS, Pires C. 2015. Unreduced gametes: meiotic mishap or evolutionary mechanism? Trends Genet. 31, 3-10. (10.1016/j.tig.2014.09.011) PubMed DOI
Cunha C, Doadrio I, Coelho MM. 2008. Speciation towards tetraploidization after intermediate processes of non-sexual reproduction. Phil. Trans. R. Soc. B 363, 2921-2929. (10.1098/rstb.2008.0048) PubMed DOI PMC
Hojsgaard D, Hörandl E. 2015. Apomixis as a facilitator of range expansion and diversification in plants. In Evolutionary biology: biodiversification from genotype to phenotype (ed. Pontarott P), pp. 305-327. Cham, Switzerland: Springer International Publishing. (10.1007/978-3-319-19932-0_16) DOI
Husband BC. 2004. The role of triploid hybrids in the evolutionary dynamics of mixed-ploidy populations. Biol. J. Linn. Soc. 82, 537-546. (10.1111/j.1095-8312.2004.00339.x) DOI
Christiansen GR. 2009. Gamete types, sex determination and stable equilibria of all-hybrid populations of diploid and triploid edible frogs (Pelophylax esculentus). BMC Evol. Biol. 9, 135. (10.1186/1471-2148-9-135) PubMed DOI PMC
Stöck M, Ustinova J, Lamatsch DK, Schartl M, Perrin N, Moritz C. 2010. A vertebrate reproductive system involving three ploidy levels: hybrid origin of triploids in a contact zone of diploid and tetraploid Palearctic green toads (Bufo viridis subgroup). Evolution 64, 944-959. (10.1111/j.1558-5646.2009.00876.x) PubMed DOI
Collares-Pereira MJ, Matos I, Morgado-Santos M, Coelho MM. 2013. Natural pathways towards polyploidy in animals: the Squalius alburnoides fish complex as a model system to study genome size and genome reorganization in polyploids. Cytogenet. Genome Res. 140, 47-116. (10.1159/000351729) PubMed DOI
Alves MJ, Coelho MM, Collares-Pereira MJ. 2001. Evolution in action through hybridisation and polyploidy in an Iberian freshwater fish: a genetic review. Genetica 111, 375-385. (10.1023/a:1013783029921) PubMed DOI
Lloyd A, Bomblies K. 2016. Meiosis in autopolyploid and allopolyploid Arabidopsis. Curr. Opin. Plant Biol. 30, 116-122. (10.1016/j.pbi.2016.02.004) PubMed DOI
Lenormand T, Engelstädter J, Johnston SE, Wijnker E, Haag CR. 2016. Evolutionary mysteries in meiosis. Phil. Trans. R. Soc. B 371, 20160001. (10.1098/rstb.2016.0001) PubMed DOI PMC
Mallet J. 2007. Hybrid speciation. Nature 446, 279-283. (10.1038/nature05706) PubMed DOI
Chapman MA, Burke JM. 2007. Genetic divergence and hybrid speciation. Evolution 61, 1773-1780. (10.1111/j.1558-5646.2007.00134.x) PubMed DOI
Lukhtanov VA, Dincă V, Friberg M, Šíchová J, Olofsson M, Vila R, Marec F, Wiklund C. 2018. Versatility of multivalent orientation, inverted meiosis, and rescued fitness in holocentric chromosomal hybrids. Proc. Natl Acad. Sci. USA 115, 9610-9619. (10.1073/pnas.1802610115) PubMed DOI PMC
Jančúchová-Lásková J, Landová E, Frytna D. 2015. Are genetically distinct lizard species able to hybridize? A review. Curr. Zool. 61, 155-180. (10.1093/czoolo/61.1.155) DOI
Hernández Chávez C, Turgeon J. 2007. Asexual and sexual hybrids between Fundulus diaphanus and F. heteroclitus in the Canadian Atlantic region. Mol. Ecol. 16, 1467-1480. (10.1111/j.1365-294X.2007.03239.x) PubMed DOI
Shimizu Y, Shibata N, Yamashita M. 1997. Spermiogenesis without preceding meiosis in the hybrid medaka between Oryzias latipes and O. curvinotus. J. Exp. Zool. 279, 102-112. (10.1002/(SICI)1097-010X(19970901)279:1<102::AID-JEZ10>3.0.CO;2-A) DOI
Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN. 2005. DNA barcoding Australia's fish species. Phil. Trans. R. Soc. B 360, 1847-1857. (10.1098/rstb.2005.1716) PubMed DOI PMC
Mabragana E, Diaz de Astarloa JM, Hanner R, Zhang J, Gonzallez Castro M. 2011. DNA barcoding identifies Argentine fishes from marine and brackish waters. PLoS ONE 6, e28655. (10.1371/journal.pone.0028655) PubMed DOI PMC
Chang C-H, Shao K-T, Lin H-Y, Chiu Y-C, Lee M-Y, Liu S-H, Lin P-L. 2017. DNA barcodes of the native ray-finned fishes in Taiwan. Mol. Ecol. Res. 17, 796-805. (10.1111/1755-0998.12601) PubMed DOI
Che J, Chen H-M, Yang J-X, Jin J-Q, Jiang K, Yuan ZY, Murphy RW, Zhang YP. 2012. Universal COI primers for DNA barcoding amphibians. Mol. Ecol. Res. 12, 247-258. (10.1111/j.1755-0998.2011.03090.x) PubMed DOI
Xia Y, Gu H-F, Peng R, Chen Q, Zheng Y-C, Murphy RW, Zeng XM. 2012. COI is better than 16S rRNA for DNA barcoding Asiatic salamanders (Amphibia: Caudata: Hynobiidae). Mol. Evol. Res. 12, 48-56. (10.1111/j.1755-0998.2011.03055.x) PubMed DOI
Jeong TJ, Jun J, Han S, Kim HT, Oh K, Kwak M. 2013. DNA barcode reference data for the Korean herpetofauna and their applications. Mol. Eol. Res. 13, 1019-1132. (10.1111/1755-0998.12055) PubMed DOI
Perl BRG, Nagy Z, Sonet G, Glaw F, Wollenberg Valero KC, Vences M. 2014. DNA barcoding Madagascar's amphibian fauna. Amphibia-Reptilia 35, 197-206. (10.1163/15685381-00002942) DOI
Chambers EA, Hebert PDN. 2016. Assessing DNA barcodes for species identification in North American reptiles and amphibians in natural history collections. PLoS ONE 11, e0154363. (10.1371/journal.pone.0154363) PubMed DOI PMC
Vrijenhoek RC, Dawley RM, Cole CJ, Bogart JP. 1989. A list of the known unisexual vertebrates. In Evolution and ecology of unisexual vertebrates (eds Dawley RM, Bogart JP), pp. 19-23. New York State Museum Bulletin 466. Albany, NY: New York State Museum.
Vrijenhoek RC. 1994. Unisexual fish: model systems for studying ecology and evolution. Annu. Rev. Ecol. Syst. 25, 71-96. (10.1146/annurev.es.25.110194.000443) DOI
Komaru A, Konishi K. 1999. Non-reductional spermatozoa in three shell color types of the freshwater clam Corbicula fluminea in Taiwan. Zoolog. Sci. 16, 105-108. (10.2108/zsj.16.105) DOI
Morgado-Santos M, Carona S, Vicente L, Collares-Pereira MJ. 2017. First empirical evidence of naturally occurring androgenesis in vertebrates. R. Soc. Open Sci. 4, 170200. (10.1098/rsos.170200) PubMed DOI PMC
Park J-Y, Kim I-S, Ko M-H. 2011. Characteristics of rare males in the cobitid unisexual complex, Cobitis hankugensis-Iksookimia longicorpa. Folia Zool. Praha 60, 290-294. (10.25225/fozo.v60.i4.a4.2011) DOI
Spangenberg V, Arakelyan M, Galoyan E, Matveevsky S, Petrosyan R, Bogdanov Y, Danielyan F, Kolomiets O. 2017. Reticulate evolution of the rock lizards: meiotic chromosome dynamics and spermatogenesis in diploid and triploid males of the genus Darevskia. Genes 8, 149. (10.3390/genes8060149) PubMed DOI PMC
Kuroda M, Fujimoto T, Murakami M, Yamaha E, Arai K. 2019. Aberrant meiotic configurations cause sterility in clone-origin triploid and inter-group hybrid males of the Dojo loach, Misgurnus anguillicaudatus. Cytogenet. Genome Res. 158, 46-54. (10.1159/000500303) PubMed DOI
Kuroda M, Fujimoto T, Murakami M, Yamaha E, Arai K. 2018. Clonal reproduction assured by sister chromosome pairing in Dojo loach, a teleost fish. Chromosome Res. 26, 243-253. (10.1007/s10577-018-9581-4) PubMed DOI
Shimizu Y, Shibata N, Sakaizumi M, Yamashita M. 2000. Production of diploid eggs through premeiotic endomitosis in the hybrid medaka between Oryzias latipes and O. curvinotus. Zoolog. Sci. 17, 951-958. (10.1002/(SICI)1097-010X(19970901)279:1<102::AID-JEZ10>3.0.CO;2-) DOI
Graf J-D, Polls Pelaz M. 1989. Evolutionary genetics of the Rana esculenta complex. In Evolution and ecology of unisexual vertebrates (eds Dawley RM, Bogart JP), pp. 289-302. New York State Museum Bulletin 466. Albany, NY: New York State Museum.
Uzzell T, Günther R, Berger L. 1976. Rana ridibunda and Rana esculenta: a leaky hybridogenetic system (Amphibia Salientia). Proc. Acad. Nat. Sci. Phila. 128, 147-171.
Dedukh D, Litvinchuk S, Rosanov J, Shabanov D, Krasikova A. 2017. Mutual maintenance of di- and triploid Pelophylax esculentus hybrids in R-E systems: results from artificial crossings experiments. BMC Evol. Biol. 17, 220. (10.1186/s12862-017-1063-3) PubMed DOI PMC
Doležálková-Kaštánková M, Pruvost NBM, Plötner J, Reyer H-U, Janko K, Choleva L. 2018. All-male hybrids of a tetrapod Pelophylax esculentus share its origin and genetics of maintenance. Biol. Sex Differ. 9, 13. (10.1186/s13293-018-0172-z) PubMed DOI PMC
Mateos M, Sanjur OI, Vrijenhoek RC. 2002. Historical biogeography of the livebearing fish genus Poeciliopsis (Cyprinodontiformes). Evolution 56, 972-984. (10.1111/j.0014-3820.2002.tb01409.x) PubMed DOI
Mateos M. 2005. Comparative phylogeography of livebearing fishes in the genera Poeciliopsis and Poecilia (Poeciliidae: Cyprinodontiformes) in central Mexico. J. Biogeo. 32, 775-780. (10.1111/j.1365-2699.2005.01236.x) DOI
Cole CJ, Taylor HL, Neaves WB, Baumann DP, Newton A, Schnittker R, Baumann P. 2017. The second known tetraploid species of parthenogenetic tetrapod (Reptilia: Squamata: Teiidae): description, reproduction, comparisons with ancestral taxa, and origins of multiple clones. Bull. Mus. Comp. Zool. 161, 285-321. (10.3099/MCZ37.1) DOI
Yoshikawa H, Morishima K, Fujimoto T, Saito T, Kobayashi T, Yamaha E, Arai K. 2009. Chromosome doubling in early spermatogonia produces diploid spermatozoa in a natural clonal fish. Biol. Reprod. 80, 973-979. (10.1095/biolreprod.108.075150) PubMed DOI
Schilthuizen M, Giesbers MC, Beukeboom LW. 2011. Haldane's rule in the 21st century. Heredity 107, 95-102. (10.1038/hdy.2010.170) PubMed DOI PMC
Brandvain Y, Pauly GB, May M, Turelli M. 2014. Explaining Darwin's corollary to Haldane's Rule: the role of mitonuclear interactions in asymmetric postzygotic isolation among toads. Genetics 197, 743-747. (10.1534/genetics.113.161133) PubMed DOI PMC
Muller HJ. 1925. Why polyploidy is rarer in animals than in plants. Am. Nat. 59, 346-353.
Orr A. 1990. "Why polyploidy is rarer in animals than in plants" revisited. Am. Nat. 136, 759-770. (10.1086/285130) DOI
Otto SP, Whitton J. 2000. Polyploid incidence and evolution. Annu. Rev. Genet. 34, 401-437. (10.1146/annurev.genet.34.1.401) PubMed DOI
Mable BK. 2004. ‘Why polyploidy is rarer in animals than in plants': myths and mechanisms. Biol. J. Linn. Soc. 82, 453-466. (10.1111/j.1095-8312.2004.00332.x) DOI
Wertheim B, Beukeboom LW, van de Zande L. 2013. Polyploidy in animals: effects of gene expression on sex determination, evolution and ecology. Cytogenet. Genome Res. 140, 256-269. (10.1159/000351998) PubMed DOI
Evans BJ, Pyron RA, Wiens JJ. 2012. Polyploidization and sex chromosome evolution in Amphibians. In Polyploidy and genome evolution (eds Soltis PS, Soltis DE), pp. 385-410. Berlin, Heidelberg, Germany: Springer. (10.1007/978-3-642-31442-1_18) DOI
Mawaribuchi S, et al. 2017. Sex chromosome differentiation and the W- and Z-specific loci in Xenopus laevis. Dev. Biol. 426, 393-400. (10.1016/j.ydbio.2016.06.015) PubMed DOI
Morishima K, Horie S, Yamaha E, Arai K. 2002. A cryptic clonal line of the loach Misgurnus anguillicaudatus (Teleostei: Cobitidae) evidenced by induced gynogenesis, interspecific hybridization, microsatellite genotyping and multilocus DNA fingerprinting. Zoolog. Sci. 19, 565-575. (10.2108/zsj.19.565) PubMed DOI
Morishima K, Yoshikawa H, Arai K. 2012. Diploid clone produces unreduced diploid gametes but tetraploid clone generates reduced diploid gametes in the Misgurnus loach. Biol. Reprod. 86, 33, 1–8. (10.1095/biolreprod.111.093302) PubMed DOI
Saitoh K, Kim I-S, Lee E-H. 2004. Mitochondrial gene introgression between spined loaches via hybridogenesis. Zoolog. Sci. 21, 795-798. (10.2108/zsj.21.795) PubMed DOI
Itono M, Morishima K, Fujimoto T, Bando E, Yamaha E, Arai K. 2006. Premeiotic endomitosis produces diploid eggs in the natural clone loach, Misgurnus anguillicaudatus (Teleostei: Cobitidae). J. Exp. Zoolog. A Comp. Exp. Biol. 305A, 513-523. (10.1002/jez.a.283) PubMed DOI
Itono M, Okabayashi N, Morishima K, Fujimoto T, Yoshikawa H, Yamaha E, Arai K. 2007. Cytological mechanisms of gynogenesis and sperm incorporation in unreduced diploid eggs of the clonal loach, Misgurnus anguillicaudatus (Teleostei: Cobitidae). J. Exp. Zool. Part Ecol. Genet. Physiol. 307, 35-50. (10.1002/jez.a.344) PubMed DOI
Janko K, Bohlen J, Lamatsch D, Flajšhans M, Epplen JT, Ráb P, Kotlík P, Šlechtová V. 2007. The gynogenetic reproduction of diploid and triploid hybrid spined loaches (Cobitis: Teleostei), and their ability to establish successful clonal lineages—on the evolution of polyploidy in asexual vertebrates. Genetica 131, 185-194. (10.1007/s10709-006-9130-5) PubMed DOI
Oshima K, Morishima K, Yamaha E, Arai K. 2005. Reproductive capacity of triploid loaches obtained from Hokkaido Island, Japan. Ichthyol. Res. 52, 1-8. (10.1007/s10228-004-0245-3) DOI
Arias-Rodriguez L, Yasui GS, Kusuda S, Arai K. 2010. Reproductive and genetic capacity of spermatozoa of inter-populational hybrid males in the loach, Misgurnus anguillicaudatus. J. Appl. Ichthyol. 26, 653-658. (10.1111/j.1439-0426.2010.01534.x) DOI
Juchno D, Pecio A, Boroń A, Leska A, Jablonska O, Cejko BI, Kowalski RK, Judycka S, Przybylski M. 2017. Evidence of the sterility of allotetraploid Cobitis loaches (Teleostei, Cobitidae) using testes ultrastructure. J. Exp. Zool. Part Ecol. Integr. Physiol. 327, 66-74. (10.1002/jez.2071) PubMed DOI
Suzuki R, Oshiro T, Nakanishi T. 1985. Survival, growth and fertility of gynogenetic diploids induced in the cyprinid loach, Misgurnus anguillicaudatus. Aquaculture 48, 45-55. (10.1016/0044-8486(85)90051-1) DOI
Saitoh K. 1989. Multiple sex-chromosome system in a loach fish. Cytogenet. Cell Genet. 52, 62-64. (10.1159/000132840) PubMed DOI
Vasil'ev VP. 1995. Karyological diversity and taxonomic heterogeneity of Cobitis taenia (Pisces, Cobitidae). Doklady Biol. Sci. 342, 308-311.
Vasil'eva ED, Vasil'ev VP. 1998. Sibling species in genus Cobitis (Cobitidae). Cobitis rossomeridionalis sp. nova. J. Ichthyol. 38, 580-590.
Arai K, Fujimoto T. 2013. Genomic constitution and atypical reproduction in polyploid and unisexual lineages of the Misgurnus loach, a teleost fish. Cytogenet. Genome Res. 140, 226-240. (10.1159/000353301) PubMed DOI
Boroń A. 2003. Karyotypes and cytogenetic diversity of the genus Cobitis (Pisces, Cobitidae) in Poland: a review. Cytogenetic evidence for a hybrid origin of some Cobitis triploids. Folia Biol. (Praha) 51(Suppl.), 49-54. PubMed
Majtánová Z, Choleva L, Symonová R, Ráb P, Kotusz J, Pekárik L, Janko K. 2016. Asexual reproduction does not apparently increase the rate of chromosomal evolution: karyotype stability in diploid and triploid clonal hybrid fish (Cobitis, Cypriniformes, Teleostei). PLoS ONE 11, e0146872. (10.1371/journal.pone.0146872) PubMed DOI PMC
Marta A, Dedukh D, Bartoš O, Majtánová Z, Janko K. 2020. Cytogenetic characterization of seven novel satDNA markers in two species of spined loaches (Cobitis) and their clonal hybrids. Genes 11, 617. (10.3390/genes11060617) PubMed DOI PMC
Sola L, Rossi AR, Iaselli V, Rasch EM, Monaco PJ. 1992. Cytogenetics of bisexual/unisexual species of Poecilia. II. Analysis of heterochromatin and nuclear organizer regions in Poecilia mexicana mexicana by C-banding, DAPI, Chromomycin A3, and Ag-staining. Cytogen. Cell Genet. 60, 229-235. (10.1159/000133346) PubMed DOI
Avise J, Trexler J, Travis J, Nelson W. 1991. Poecilia mexicana is the recent female parent of the unisexual fish P. formosa. Evolution 46, 1530-1533. (10.2307/2409901) PubMed DOI
Lampert KP, Lamatsch DK, Fischer P, Epplen JT, Nanda I, Schmid M, Schartl M. 2007. Automictic reproduction in interspecific hybrids of poeciliid fish. Curr. Biol. 17, 1948-1953. (10.1016/j.cub.2007.09.064) PubMed DOI
Schartl M, Schlupp I, Schartl A, Meyer MK, Nanda I, Schmid M, Epplen JT, Parzefall J. 1991. On the stability of dispensable constituents of the eukaryotic genome: stability of coding sequences versus truly hypervariable sequences in a clonal vertebrate, the Amazon molly, Poecilia formosa. Proc. Natl Acad. Sci. USA 88, 8759-8763. (10.1073/pnas.88.19.8759) PubMed DOI PMC
Rasch EM, Balsano JS. 1973. Biochemical and cytogenetic studies of Poecilia from eastern Mexico. II. Frequency, perpetuation, and probable origin of triploid genomes in females associated with Poecilia formosa. Rev. Biol. Trop. 21, 351-381.
Lamatsch DK, Steinlein C, Schmid M, Schartl M. 2000. Non-invasive determination of genome size and ploidy level in fishes by flow cytometry detection of triploid Poecilia formosa. Cytometry 39, 91-95. (10.1002/(SICI)1097-0320(20000201)39:2<91::AID-CYTO1>3.0.CO;2-4) PubMed DOI
Lamatsch DK, Stöck M, Fuchs R, Döbler M, Wacker R, Parzefall J, Schlupp I, Schartl M. 2010. Morphology, testes development and behaviour of unusual triploid males in microchromosome-carrying clones of Poecilia formosa. J. Fish Biol. 77, 1459-1487. (10.1111/j.1095-8649.2010.02766.x) PubMed DOI
Lu Y, Bierbach D, Ormanns J, Warren WC, Walter RB, Schartl M. 2021. Fixation of allelic gene expression landscapes and expression bias pattern shape the transcriptome of the Amazon molly. Genome Res. 31, 1-8. (10.1101/gr.268870.120) PubMed DOI PMC
Bogart JP. 2019. Unisexual salamanders in the genus Ambystoma. Herpetologica 75, 259-267. (10.1655/Herpetologica-D-19-00043.1) DOI
Bogart JP, Bartoszek J, Noble DWA, Bi K. 2009. Sex in unisexual salamanders: discovery of a new sperm donor with ancient affinities. Heredity 103, 483-449. (10.1038/hdy.2009.83) PubMed DOI
Bogart JP. 2019. A family study to examine clonal diversity in unisexual salamanders (genus Ambystoma). Genome 62, 549-561. (10.1139/gen-2019-0034) PubMed DOI
Bogart J. 2003. Genetics and systematics of hybrid species. In Reproductive biology and phylogeny of urodela (ed. Sever DM), pp. 109-134. Enfield, NH: M/s Science Inc.
Bi K, Bogart JP. 2010. Time and time again: unisexual salamanders (genus Ambystoma) are the oldest unisexual vertebrates. BMC Evol. Biol. 10, 238. (10.1186/1471-2148-10-238) PubMed DOI PMC
Sessions SK. 1982. Cytogenetics of diploid and triploid salamanders of the Ambystoma jeffersonianum complex. Chromosoma 84, 599-621. (10.1007/BF00286329) DOI
Bi K, Bogart JP. 2006. Identification of intergenomic recombinations in unisexual salamanders of the genus Ambystoma by genomic in situ hybridization (GISH). Cytogenet. Genome Res. 112, 307-312. (10.1159/000089885) PubMed DOI
Robertson AV, Ramsden C, Niedzwiecki J, Fu J, Bogart JP. 2006. An unexpected recent ancestor of unisexual Ambystoma. Mol. Ecol. 15, 3339-3351. (10.1111/j.1365-294X.2006.03005.x) PubMed DOI
Bi K, Bogart JP, Fu J. 2008. The prevalence of genome replacement in unisexual salamanders of the genus Ambystoma (Amphibia, Caudata) revealed by nuclear gene genealogy. BMC Evol. Biol. 8, 158. (10.1186/1471-2148-8-158.) PubMed DOI PMC
Bi K, Bogart JP, Fu J. 2007. Intergenomic translocations in unisexual salamanders of the genus Ambystoma (Amphibia, Caudata). Cytogenet. Genome Res. 116, 289-297. (10.1159/000100413) PubMed DOI
Keinath MC, Timoshevskaya N, Timoshevskiy VA, Voss R, Smith JJ. 2018. Miniscule differences between sex chromosomes in the giant genome of a salamander. Sci. Rep. 8, 17882. (10.1038/s41598-018-36209-2) PubMed DOI PMC
Tymowska J. 1991. Polyploidy and cytogenetic variation in frogs of the genus Xenopus. In Amphibian cytogenetics and evolution (eds Green DM, Sessions SK), pp. 259-297. San Diego, CA: Academic Press.
Session AM, et al. 2016. Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538, 336-343. (10.1038/nature19840) PubMed DOI PMC
Furman BLS, Evans BJ. 2018. Divergent evolutionary trajectories of two young, homomorphic, and closely related sex chromosome systems. Genome Biol. Evol. 10, 742-755. (10.1093/gbe/evy045) PubMed DOI PMC
Yoshimoto S, Ito M. 2011. A ZZ/ZW-type sex determination in Xenopus laevis. FEBS J. 278, 1020-1026. (10.1111/j.1742-4658.2011.08031.x) PubMed DOI
Bewick AJ, Anderson DW, Evans BJ. 2011. Evolution of the closely related, sex-related genes DM-W and DMRT1 in African clawed frogs (Xenopus). Evolution 65, 698-712. (10.1111/j.1558-5646.2010.01163.x) PubMed DOI
Furman BLS, Evans BJ. 2016. Sequential turnovers of sex chromosomes in African clawed frogs (Xenopus) suggest some genomic regions are good at sex determination. G3 (Bethesda) 6, 3625-3633. (10.1534/g3.116.033423) PubMed DOI PMC
Furman BLS, Dang UJ, Evans BJ, Golding GB. 2018. Divergent subgenome evolution after allopolyploidization in African clawed frogs (Xenopus). J. Evol. Biol. 31, 1945-1858. (10.1111/jeb.13391) PubMed DOI
Song X-Y, et al. 2021. Sex chromosome degeneration, turnover, and sex-biased expression of sex-linked transcripts in African clawed frogs (Xenopus). Phil. Trans. R. Soc. B 376, 20200095. (10.1098/20200095) PubMed DOI PMC
Günther R. 1990. Die Wasserfrösche Europas. [The water frogs of Europe]. Die Neue Brehm-Bücherei 600. Wittenberg, Germany: Ziemsen. [In German.]
Plötner J. 2005. Die westpaläarktischen Wasserfrösche. Von Märtyrern der Wissenschaft zur biologischen Sensation. [The Western-Palearctic water frogs. From martyrs of science to biological sensation]. Beiheft, Zeitschrift f. Feldherpetologie, pp. 1–166. Bielefeld, Germany: Laurenti Verlag. [In German.]
Graf J-D, Karch F, Moreillon M-C. 1977. Biochemical variation on the Rana esculenta complex: a new hybrid form related to Rana perezei and Rana ridibunda. Experientia 33, 1582-1584. (10.1007/BF01934010) PubMed DOI
Uzzell T, Hotz H. 1979. Electrophoretic and morphological evidence for two forms of green frog (Rana esculenta complex) in peninsular Italy (Amphibia: Salentia). Mitteilungen aus dem Zoologischen Museum in Berlin 55, 13-27
Holsbeek G, Jooris R. 2010. Potential impact of genome exclusion by alien species in the hybridogenetic water frogs (Pelophylax esculentus complex). Biol. Inv. 12, 1-13. (10.1007/s10530-009-9427-2) DOI
Berger L. 1990. On the origin of genetic systems of European waterfrogs. Zool. Pol. 35, 5-27.
Heppich S, Tunner HG. 1979. Chromosomal constitution and C-banding in homotypic Rana esculenta crosses. Mitt. Zool. Mus. Berlin 55, 111-114.
Miura I. 1995. The late replication banding patterns of chromosomes are highly conserved in the genera Rana, Hyla, and Bufo (Amphibia: Anura). Chromosoma 103, 567-574. (10.1007/BF00355322) PubMed DOI
Jeffries DL, et al. 2018. A rapid rate of sex-chromosome turnover and non-random transitions in true frogs. Nat. Commun. 9, 4088. (10.1038/s41467-018-06517-2) PubMed DOI PMC
Berger L, Uzzell T, Hotz TZ. 1988. Sex determination and sex ratios in western Palearctic water frogs: XX and XY female hybrids in the Pannonian Basin? Proc. Acad. Nat. Sci. Phila. 140, 220-239.
Hotz H, Uzzell T, Berger L. 1997. Linkage groups of protein-coding genes in western Palearctic water frogs reveal extensive evolutionary conservation. Genetics 147, 255-270. PubMed PMC
Schempp W, Schmid M. 1981. Chromosome banding in Amphibia. VI. BrdU-replication patterns in Anura and demonstration of XX/XY sex chromosomes in Rana esculenta. Chromosoma (Berlin) 83, 697-710. (10.1007/BF00328528) PubMed DOI
Berger L, Günther R. 1991–1992 Inheritance patterns of water frog males from the environments of nature reserve Steckby, Germany. Zool. Pol. 37, 87-100.
Christiansen DG, Reyer HU. 2009. From clonal to sexual hybrids: genetic recombination via triploids in all-hybrid populations of water frogs. Evolution 63, 1754-1768. (10.1111/j.1558-5646.2009.00673.x) PubMed DOI
Perrin N. 2021. Sex-chromosome evolution in frogs: What role for sex-antagonistic genes? Phil. Trans. R. Soc. B 376, 20200094. (10.1098/rstb.2020.0094) PubMed DOI PMC
Stöck M, Moritz C, Hickerson M, Frynta D, Dujsebayeva T, Eremchenko V, Macey JR, Papenfuss TJ, Wake DB. 2006. Evolution of mitochondrial relationships and biogeography of Palearctic green toads (Bufo viridis subgroup) with insights in their genomic plasticity. Mol. Phylogenet. Evol. 41, 663-689. (10.1016/j.ympev.2006.05.026) PubMed DOI
Stöck M, Sicilia A, Belfiore N, Buckley D, Lo Brutto S, Lo Valvo M, Arculeo M. 2008. Post-Messinian evolutionary relationships across the Sicilian channel: mitochondrial and nuclear markers link a new green toad from Sicily to African relatives. BMC Evol. Biol. 8, 56. (10.1186/1471-2148-8-56) PubMed DOI PMC
Colliard C, Sicilia A, Turrisi GF, Arculeo M, Perrin N, Stöck M. 2010. Strong reproductive barriers in a narrow hybrid zone of West-Mediterranean green toads (Bufo viridis subgroup) with Plio-Pleistocene divergence. BMC Evol. Biol. 10, 232. (10.1186/1471-2148-10-232) PubMed DOI PMC
Stöck M, Steinlein C, Lamatsch DK, Schartl M, Schmid M. 2005. Multiple origins of tetraploid taxa in the Eurasian Bufo viridis subgroup. Genetica 124, 255-272. (10.1007/s10709-005-3085-9) PubMed DOI
Betto-Colliard C, Sermier R, Litvinchuk S, Perrin N, Stöck M. 2015. Origin and genome evolution of polyploid green toads in Central Asia: evidence from microsatellite markers. Heredity 114, 300-308. (10.1038/hdy.2014.100) PubMed DOI PMC
Stöck M, Croll D, Dumas Z, Biollay S, Wang J, Perrin N. 2011. A cryptic heterogametic transition revealed by sex-linked DNA markers in Palearctic green toads. J. Evol. Biol. 24, 1064-1070. (10.1111/j.1420-9101.2011.02239.x) PubMed DOI
Stöck M, Savary R, Betto-Colliard C, Biollay S, Jourdan-Pineau H, Perrin N. 2013. Low rates of X-Y recombination, not turnovers, account for homomorphic sex chromosomes in several diploid species of Palearctic green toads (Bufo viridis subgroup). J. Evol. Biol. 3, 674-682. (10.1111/jeb.12086) PubMed DOI
Brelsford A, et al. 2013. Homologous sex chromosomes in three deeply divergent anuran species. Evolution 67, 2434-2440. (10.1111/evo.12151) PubMed DOI
Tamschick S, Rozenblut-Kościsty B, Bonato L, Dufresnes C, Lymberakis P, Kloas W, Ogielska M, Stöck M. 2015. Sex chromosome conservation, Dmrt1-phylogeny and gonad morphology in diploid Palearctic green toads (Bufo viridis subgroup). Cytogenet. Genome Res. 144, 315-324. (10.1159/000380841) PubMed DOI
Fujita MK, Singhal S, Brunes TO, Maldonado JA. 2020. Evolutionary dynamics and consequences of parthenogenesis in vertebrates. Annu. Rev. Ecol. Evol. Syst. 51, 191-214. (10.1146/annurev-ecolsys-011720-114900) DOI
Pellegrino KCM, Rodrigues MT, Harris DJ, Yonenaga-Yassuda Y, Sites JW Jr. 2011. Molecular phylogeny, biogeography and insights into the origin of parthenogenesis in the Neotropical genus Leposoma (Squamata: Gymnophthalmidae): ancient links between the Atlantic Forest and Amazonia. Mol. Phylogenet. Evol. 61, 446-459. (10.1016/j.ympev.2011.07.010) PubMed DOI
Brunes TO, da Silva AJ, Marques-Souza S, Rodrigues MT, Pellegrino KCM. 2019. Not always young: the first vertebrate ancient origin of true parthenogenesis found in an Amazon leaf litter lizard with evidence of mitochondrial haplotypes surfing on the wave of a range expansion. Mol. Phylogenet. Evol. 135, 105-122. (10.1016/j.ympev.2019.01.023) PubMed DOI
Murphy RW, Fu J, MacCulloch RD, Darevsky IS, Kupriyanova LA. 2000. A fine line between sex and unisexuality: the phylogenetic constraints on parthenogenesis in lacertid lizards. Zool. J. Linn. Soc. 130, 527-549. (10.1111/j.1096-3642.2000.tb02200.x) DOI
Serena M. 1984. Distribution and habitats of parthenogenetic and sexual Cnemidophorus lemniscatus (Sauria: Teiidae) in Surinam. Copeia 1984, 713-719. (10.2307/1445154) DOI
Lutes AA, Baumann DP, Neaves WB, Baumann P. 2011. Laboratory synthesis of an independently reproducing vertebrate species. Proc. Natl Acad. Sci. USA 108, 9910-9915. (10.1073/pnas.1102811108) PubMed DOI PMC
Moritz C. 1990. Patterns and processes of sex chromosome evolution in Gekkonid lizards (Sauria: Reptilia). In Cytogenetics of amphibians and reptiles (ed. Olmo E), pp. 205-219. Berlin, Germany: Birkhäuser-Verlag.
Reeder TW, Cole CJ, Dessauer HC. 2002. Phylogenetic relationships of whiptail lizards of the genus Cnemidophorus (Squamata: Teiidae): a test of monophyly, reevaluation of karyotypic evolution, and review of hybrid origins. Am. Mus. Novit. 3365, 1-61. (10.1206/0003-0082(2002)365<0001:PROWLO>2.0.CO;2) DOI
Moritz C, Uzzell T, Spolsky C, Hotz H, Darevsky I, Kupriyanova L, Danielyan F. 1992. The maternal ancestry and approximate age of parthenogenetic species of Caucasian rock lizards (Lacerta: Lacertidae). Genetica 87, 53-62. (10.1007/BF00128773) DOI
Darevsky IS, Kupriyanova LA, Uzzell TM. 1985. Parthenogenesis in reptiles. In Biology of the reptilia (eds Gans C, Billett F), pp. 412-526. New York, NY: John Wiley and Sons Inc.
Cole JC, Painter CW, Dessauer HC, Taylor HL. 2007. Hybridization between the endangered unisexual gray-checkered whiptail lizard (Aspidoscelis dixoni) and the bisexual western whiptail lizard (Aspidoscelis tigris) in southwestern New Mexico. Am. Mus. Nov. 3555, 1-31. (doi:10.1206/0003-0082(2007)3555 [1:HBTEUG]2.0.CO;2) DOI
Densmore LD III, Wright JW, Brown WM. 1989. Mitochondrial DNA analyses and the origin and relative age of parthenogenetic lizards (genus Cnemidophorus). II. C. neomexicanus and the C. tesselatus complex. Evolution 43, 943-957. (10.1111/j.1558-5646.1989.tb02541.x) PubMed DOI
Parker ED Jr, Selander RK. 1976. The organisation of genetic diversity in the parthenogenetic lizard Cnemidophorus tesselatus. Genetics 84, 791-805. PubMed PMC
Uzzell T, Darevsky IS. 1974. The evidence of the hybrid origin of parthenogenetic Caucasian rock lizards of the Lacerta genus. Zhurnal Obshchei Biol. 35, 553-561. PubMed
Darevsky IS, Kupriyanova LA, Danielyan FD. 1986. New evidence of hybrid males of parthenogenetic species. In Studies in herpetology (ed. Rocek Z), pp. 207-212. Prague, Czechoslovakia: Charles University.
Uzzell T, Darevsky IS. 1975. Biochemical evidence for the hybrid origin of the parthenogenetic species of the Lacerta saxicola complex (Sauria, Lacertidae), with a discussion of some ecological and evolutionary implications. Copeia 1975, 204-222. (10.2307/1442879) DOI
Kupriyanova LA. 1999. Genetic variations in hybrid unisexual species and forms of the genus Lacerta (Lacertidae, Reptilia): possible cytogenetic mechanisms, cytogenetics of meiosis in natural polyploidy forms. Tsytologia 41, 1038-1047.
Rovatsos M, Vukic J, Altmanová M, Johnson Pokorná M, Moravec J, Kratochvíl L. 2016. Conservation of sex chromosomes in lacertid lizards. Mol. Ecol. 25, 3120-3126. (10.1111/mec.13635) PubMed DOI
Kupriyanova LA. 1989. Cytogenetic evidence for genome interaction in hybrid lacertid lizards. In Evolution and ecology of unisexual vertebrates (eds Dawley RM, Bogart JP), pp. 236-240. New York State Museum Bulletin 466. Albany, NY: New York State Museum.
Kupriyanova LA. 1992. Diversity in parthenogenetic lacertid lizards: cytogenetic studies. In Proceedings of the Sixth Ordinary General Meeting of Societas Europaea Herpetologica (eds Korsós Z, Kiss I), pp. 273-279, Budapest, Hungary, 19–23 August 1991.
Spangenberg V et al. 2020. Evolution of the parthenogenetic rock lizard hybrid karyotype: Robertsonian translocation between two maternal chromosomes in Darevskia rostombekowi. Chromosoma 129, 275-283. (10.1007/s00412-020-00744-7) PubMed DOI
Trifonov VA, Paoletti A, Caputo Barucchi V, Kalinina T, O'Brien PCM, Ferguson-Smith MA, Giovannotti M. 2015. Comparative chromosome painting and NOR distribution suggest a complex hybrid origin of triploid Lepidodactylus lugubris (Gekkonidae). PLoS ONE 10, e0132380. (10.1371/journal.pone.0132380) PubMed DOI PMC
Moritz C, Case TJ, Bolger DT, Donnellan SC. 1993. Genetic diversity and the history of some Pacific island house geckos (Hemidactylus and Lepidodactylus). Biol. J. Linn. Soc. 48, 113-133. (10.1111/j.1095-8312.1993.tb00882.x) DOI
Darevsky IS, Kupriyanova LA, Roshchin V. 1984. A new all-female triploid species of gecko and karyological data on the bisexual Hemidactylus frenatus from Vietnam. J. Herpetol. 18, 277-284. (10.2307/1564081) DOI
Moritz C. 1984. The origin and evolution of parthenogenesis in Heteronotia binoei (Gekkonidae) I. Chromosome banding studies. Chromosoma 89, 151-162. (10.1007/BF00292899) DOI
Zug GR. 2010. Speciation and dispersal in a low diversity taxon: the slender geckos Hemiphyllodactylus (Reptilia, Gekkonidae). Smithson. Contrib. Zool. 631, 1-70. (10.5479/si.00810282.631) DOI
Moritz C. 1987. Parthenogenesis in the tropical gekkonid lizard, Nactus arnouxii (Sauria, Gekkonidae). Evolution 41, 1252-1266. (10.1111/j.1558-5646.1987.tb02464.x) PubMed DOI
Pyron RA, Burbrink FT, Wiens JJ. 2013. A phylogeny and revised classification of Squamata, including 4161 species of lizards and snakes. BMC Evol. Biol. 13, 93. (10.1186/1471-2148-13-93) PubMed DOI PMC
Gamble T, Coryell J, Ezaz T, Lynch J, Scantlebury DP, Zarkower D. 2015. Restriction site-associated DNA sequencing (RAD-seq) reveals an extraordinary number of transitions among gecko sex-determining systems. Mol. Biol. Evol. 32, 1296-1309. (10.1093/molbev/msv023) PubMed DOI
Rovatsos M, Farkačová K, Altmanová M, Johnson Pokorná M, Kratochvíl L. 2019. The rise and fall of differentiated sex chromosomes in geckos. Mol. Ecol. 28, 3042-3052. (10.1111/mec.15126) PubMed DOI
Volobouev V, Pasteur G. 1988. Presumptive sex chromosomes of a unisexual homomorphic species of lizards, Lepidodactylus lugubris. Heredity 60, 463-467. (10.1038/hdy.1988.65) PubMed DOI
Röll B, von Düring MUG. 2008. Sexual characteristics and spermatogenesis in males of the parthenogenetic gecko Lepidodactylus lugubris (Reptilia, Gekkonidae). Zoology 111, 385-400. (10.1016/j.zool.2007.09.004) PubMed DOI
Gamble T. 2010. A review of sex determining mechanisms in geckos (Gekkota: Squamata). Sex. Dev. 4, 88-103. (10.1159/000289578) PubMed DOI PMC
Kearney M, Moussalli A, Strasburg JL, Lindenmayer D, Moritz C. 2003. Geographic parthenogenesis in the Australian arid zone: I. A climatic analysis of the Heteronotia binoei complex (Gekkonidae). Evol. Ecol. Res. 5, 953-976.
Strasburg JL, Kearney M. 2005. Phylogeography of sexual Heteronotia binoei (Gekkonidae) in the Australian arid zone: climatic cycling and repetitive hybridization. Mol. Ecol. 14, 2755-2772. (10.1111/j.1365-294X.2005.02627.x) PubMed DOI
Stöck M, et al. 2021. A brief review of vertebrate sex evolution with a pledge for integrative research - towards ‘sexomics’. Phil. Trans. R. Soc. B. 376, 20200426. (10.1098/rstb.2020.0426). PubMed DOI PMC
Stöck M, Dedukh D, Reifová R, Lamatsch DK, Starostová Z, Janko K. 2021. Sex chromosomes in meiotic, hemiclonal, clonal and polyploid hybrid vertebrates: along the ‘extended speciation continuum’. Figshare. PubMed PMC
Inheritance patterns of male asexuality in hybrid males of a water frog Pelophylax esculentus
A cyclical switch of gametogenic pathways in hybrids depends on the ploidy level
Genetic and karyotype divergence between parents affect clonality and sterility in hybrids
Sperm-dependent asexual species and their role in ecology and evolution
Achiasmatic meiosis in the unisexual Amazon molly, Poecilia formosa
The high diversity of gametogenic pathways in amphispermic water frog hybrids from Eastern Ukraine
figshare
10.6084/m9.figshare.c.5462630