Sex chromosome degeneration, turnover, and sex-biased expression of sex-linked transcripts in African clawed frogs (Xenopus)
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34247503
PubMed Central
PMC8273505
DOI
10.1098/rstb.2020.0095
Knihovny.cz E-zdroje
- Klíčová slova
- comparative transcriptomics, dosage tolerance, heterogamy, recombination suppression,
- MeSH
- genetická transkripce * MeSH
- pohlavní chromozomy genetika MeSH
- pohlavní dimorfismus MeSH
- procesy určující pohlaví * MeSH
- Xenopus genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The tempo of sex chromosome evolution-how quickly, in what order, why and how their particular characteristics emerge during evolution-remains poorly understood. To understand this further, we studied three closely related species of African clawed frog (genus Xenopus), that each has independently evolved sex chromosomes. We identified population polymorphism in the extent of sex chromosome differentiation in wild-caught Xenopus borealis that corresponds to a large, previously identified region of recombination suppression. This large sex-linked region of X. borealis has an extreme concentration of genes that encode transcripts with sex-biased expression, and we recovered similar findings in the smaller sex-linked regions of Xenopus laevis and Xenopus tropicalis. In two of these species, strong skews in expression (mostly female-biased in X. borealis, mostly male-biased in X. tropicalis) are consistent with expectations associated with recombination suppression, and in X. borealis, we hypothesize that a degenerate ancestral Y-chromosome transitioned into its contemporary Z-chromosome. These findings indicate that Xenopus species are tolerant of differences between the sexes in dosage of the products of multiple genes, and offer insights into how evolutionary transformations of ancestral sex chromosomes carry forward to affect the function of new sex chromosomes. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.
Department of Biology McMaster University 1280 Main Street West Hamilton Ontario Canada L8S 4K1
Department of Cell Biology Charles University 7 Vinicna Street Prague 12843 Czech Republic
National Museums of Kenya PO Box 40658 GPO 00100 Nairobi Kenya
Zobrazit více v PubMed
Charlesworth B. 2009. Effective population size and patterns of molecular evolution and variation. Nat. Rev. Gen. 10, 195-205. (10.1038/nrg2526) PubMed DOI
Vicoso B, Charlesworth B. 2009. Effective population size and the faster-X effect: an extended model. Evolution 63, 2413-2426. (10.1111/j.1558-5646.2009.00719.x) PubMed DOI
Charlesworth B, Charlesworth D. 2000. The degeneration of Y chromosomes. Phil. Trans. R. Soc. B 355, 1563-1572. (10.1098/rstb.2000.0717) PubMed DOI PMC
Charlesworth B, Coyne JA, Barton NH. 1987. The relative rates of evolution of sex chromosomes and autosomes. Am. Nat. 130, 113-146. (10.1086/284701) DOI
Rice WR. 1987. The accumulation of sexually antagonistic genes as a selective agent promoting the evolution of reduced recombination between primitive sex chromosomes. Evolution 41, 991-914. (10.1111/j.1558-5646.1987.tb05872.x) PubMed DOI
Spigler RB, Lewers KS, Main DS, Ashman T-L. 2008. Genetic mapping of sex determination in a wild strawberry, Fragaria virginiana, reveals earliest form of sex chromosome. Heredity 101, 507-517. (10.1038/hdy.2008.100) PubMed DOI
Charlesworth B. 1991. The evolution of sex chromosomes. Science 251, 1030-1033. (10.1126/science.1998119) PubMed DOI
Charlesworth B, Wall JD. 1999. Inbreeding, heterozygote advantage and the evolution of neo–X and neo–Y sex chromosomes. Proc. R. Soc. Lond. B 266, 51-56. (10.1098/rspb.1999.0603) DOI
Charlesworth D, Charlesworth B, Marais G. 2005. Steps in the evolution of heteromorphic sex chromosomes. Heredity 95, 118-128. (10.1038/sj.hdy.6800697) PubMed DOI
Lahn BT, Page DC. 1999. Four evolutionary strata on the human X chromosome. Science 286, 964-967. (10.1126/science.286.5441.964) PubMed DOI
Sun Y, Svedberg J, Hiltunen M, Corcoran P, Johannesson H. 2017. Large-scale suppression of recombination predates genomic rearrangements in Neurospora tetrasperma. Nat. Comm. 8, 1140. (10.1038/s41467-017-01317-6) PubMed DOI PMC
Brooks LD. 1988. The evolution of recombination rates. In The evolution of sex, pp. 87–105. Sunderland, MA: Sinauer Associates.
Hill WG, Robertson A. 1966. The effect of linkage on limits to artificial selection. Gen. Res. 8, 269-294. (10.1017/S0016672300010156) PubMed DOI
Skaletsky H, et al. 2003. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423, 825-837. (10.1038/nature01722) PubMed DOI
Masly JP, Presgraves DC. 2007. High-resolution genome-wide dissection of the two rules of speciation in Drosophila. PLoS Biol. 5, 1890-1898. (10.1371/journal.pbio.0050243) PubMed DOI PMC
Wallis MC, Waters PD, Delbridge ML, Kirby PJ, Pask AJ, Grützner F, Rens W, Ferguson-Smith MA, Graves JAM. 2007. Sex determination in platypus and echidna: autosomal location of SOX3 confirms the absence of SRY from monotremes. Chr. Res. 15, 949. (10.1007/s10577-007-1185-3) PubMed DOI
Vicoso B, Bachtrog D. 2015. Numerous transitions of sex chromosomes in Diptera. PLoS Biol. 13, e1002078. (10.1371/journal.pbio.1002078) PubMed DOI PMC
Darolti I, et al. 2019. Extreme heterogeneity in sex chromosome differentiation and dosage compensation in livebearers. Proc. Natl Acad. Sci. USA 116, 19 031-19 036. (10.1073/pnas.1905298116) PubMed DOI PMC
Adolfsson S, Ellegren H. 2013. Lack of dosage compensation accompanies the arrested stage of sex chromosome evolution in ostriches. Mol. Biol. Evol. 30, 806-810. (10.1093/molbev/mst009) PubMed DOI PMC
Saunders PA, Neuenschwander S, Perrin N. 2019. Impact of deleterious mutations, sexually antagonistic selection, and mode of recombination suppression on transitions between male and female heterogamety. Heredity 123, 419-428. (10.1038/s41437-019-0225-z) PubMed DOI PMC
Gu L, Walters JR. 2017. Evolution of sex chromosome dosage compensation in animals: a beautiful theory, undermined by facts and bedeviled by details. Genome Biol. Evol. 9, 2461-2476. (10.1093/gbe/evx154) PubMed DOI PMC
Bachtrog D, et al. 2014. Sex determination: why so many ways of doing it? PLoS Biol. 12, e1001899. (10.1371/journal.pbio.1001899) PubMed DOI PMC
Roco ÁS, Olmstead AW, Degitz SJ, Amano T, Zimmerman LB, Bullejos M. 2015. Coexistence of Y, W, and Z sex chromosomes in Xenopus tropicalis. Proc. Natl Acad. Sci. USA 112, E4752-E4761. (10.1073/pnas.1505291112) PubMed DOI PMC
Yoshimoto S, et al. 2008. A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. Proc. Natl Acad. Sci. USA 105, 2469-2474. (10.1073/pnas.0712244105) PubMed DOI PMC
Bewick AJ, Anderson DW, Evans BJ. 2011. Evolution of the closely related, sex-related genes DM-W and DMRT1 in African clawed frogs (Xenopus). Evolution 65, 698-712. (10.1111/j.1558-5646.2010.01163.x) PubMed DOI
Furman BLS, Evans BJ.. 2016. Sequential turnovers of sex chromosomes in African clawed frogs (Xenopus) suggest some genomic regions are good at sex determination. G3 6, 3625–3633. (10.1534/g3.116.033423) PubMed DOI PMC
Tymowska J. 1991. Polyploidy and cytogenetic variation in frogs of the genus Xenopus. In Amphibian cytogenetics and evolution (eds Green DM, Sessions SK), pp. 259-297. San Diego, CA: Academic Press.
Furman BLS, Cauret CM, Knytl M, Song, XY, Premachandra T, Ofori-Boateng C, Jordan DC, Horb ME, Evans BJ. 2020. A frog with three sex chromosomes that co-mingle together in nature: Xenopus tropicalis has a degenerate W- and a Y- that evolved from a Z-. PLoS. Gen. 16, e1009121. (10.1371/journal.pgen.1009121) PubMed DOI PMC
Furman BLS, Evans BJ. 2018. Divergent evolutionary trajectories of two young, homomorphic, and closely related sex chromosome systems. Genome Biol. Evol. 10, 742-755. (10.1093/gbe/evy045) PubMed DOI PMC
Evans BJ. 2008. Genome evolution and speciation genetics of clawed frogs (Xenopus and Silurana). Front Biosci. 13, 4687-4706. (10.2741/3033) PubMed DOI
Session AM, et al. 2016. Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538, 336-343. (10.1038/nature19840) PubMed DOI PMC
Evans BJ, et al. 2019. Xenopus fraseri: Mr. Fraser, where did your frog come from? PLoS ONE 14, e0220892. (10.1371/journal.pone.0220892) PubMed DOI PMC
Matsuda Y, Uno Y, Kondo M, Gilchrist MJ, Zorn AM, Rokhsar DS, Schmid M, Taira M. 2015. A new nomenclature of Xenopus laevis chromosomes based on the phylogenetic relationship to Silurana/Xenopus tropicalis. Cytogenet Genome Res. 145, 187-191. (10.1159/000381292) PubMed DOI
Khokha MK, et al. 2009. Rapid gynogenetic mapping of Xenopus tropicalis mutations to chromosomes. Dev. Dyn. 238, 1398-1346. (10.1002/dvdy.21965) PubMed DOI PMC
Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA. 2008. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3, e3376. (10.1371/journal.pone.0003376) PubMed DOI PMC
Karimi K, et al. 2018. Xenbase: a genomic, epigenomic and transcriptomic model organism database. Nucleic Acids Res. 46(D1), D861-D868. (10.1093/nar/gkx936) PubMed DOI PMC
Wu TD, Watanabe CK. 2005. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21, 1859-1875. (10.1093/bioinformatics/bti310) PubMed DOI
Krumsiek J, Arnold R, Rattei T. 2007. Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics 23, 1026-1028. (10.1093/bioinformatics/btm039) PubMed DOI
Andrews S. 2019. re-DOT-able. Version: 1.1. See https://github.com/s-andrews/redotable.
Mitros T, et al. 2019. A chromosome-scale genome assembly and dense genetic map for Xenopus tropicalis. Dev. Biol. 452, 8-20. (10.1016/j.ydbio.2019.03.015) PubMed DOI
Furman BLS, Dang UJ, Evans BJ, Golding GB. 2018. Divergent subgenome evolution after allopolyploidization in African clawed frogs (Xenopus). J. Evol. Biol. 31, 1945-1958. (10.1111/jeb.13391) PubMed DOI
Bull JJ, Charnov EL. 1977. Changes in the heterogametic mechanism of sex determination. Heredity 39, 1. (10.1038/hdy.1977.38) PubMed DOI
Malcom JW, Kudra RS, Malone JH. 2014. The sex chromosomes of frogs: variability and tolerance offer clues to genome evolution and function. J. Genom. 2, 68. (10.7150/jgen.8044) PubMed DOI PMC
Orr HA, Kim Y. 1998. An adaptive hypothesis for the evolution of the Y chromosome. Genetics 150, 1693-1698. (10.1093/genetics/150.4.1693) PubMed DOI PMC
Rice WR. 1996. Evolution of the Y sex chromosome in animals. Bioscience 46, 331-343. (10.2307/1312947) DOI
Connallon T, Singh ND, Clark AG. 2012. Impact of genetic architecture on the relative rates of X versus autosomal adaptive substitution. Mol. Biol. Evol. 29, 1933-1942. (10.1093/molbev/mss057) PubMed DOI PMC
Meisel RP, Connallon T. 2013. The faster-X effect: integrating theory and data. Trends Gen. 29, 537-544. (10.1016/j.tig.2013.05.009) PubMed DOI PMC
Pischedda A, Friberg U, Stewart AD, Miller PM, Rice WR. 2015. Sexual selection has minimal impact on effective population sizes in species with high rates of random offspring mortality: an empirical demonstration using fitness distributions. Evolution 69, 2638-2647. (10.1111/evo.12764) PubMed DOI PMC
Wilson Sayres MA, Makova KD. 2011. Genome analyses substantiate male mutation bias in many species. Bioessays 33, 938-945. (10.1002/bies.201100091) PubMed DOI PMC
Llopart A. 2012. The rapid evolution of X-linked male-biased gene expression and the large-X effect in Drosophila yakuba, D. santomea, and their hybrids. Mol. Biol. Evol. 29, 3873-3886. (10.1093/molbev/mss190) PubMed DOI
Baines JF, Sawyer SA, Hartl DL, Parsch J. 2008. Effects of X-linkage and sex-biased gene expression on the rate of adaptive protein evolution in Drosophila. Mol. Biol. Evol. 25, 1639-1650. (10.1093/molbev/msn111) PubMed DOI PMC
Connallon T, Clark AG. 2011. Association between sex-biased gene expression and mutations with sex-specific phenotypic consequences in Drosophila. Genome Biol. Evol. 3, 151-155. (10.1093/gbe/evr004) PubMed DOI PMC
Grath S, Parsch J. 2012. Rate of amino acid substitution is influenced by the degree and conservation of male-biased transcription over 50 myr of Drosophila evolution. Genome Biol. Evol. 4, 346-359. (10.1093/gbe/evs012) PubMed DOI PMC
Müller L, Grath S, Von Heckel K, Parsch J. 2012. Inter-and intraspecific variation in Drosophila genes with sex-biased expression. Int. J. Evol. Biol. 2012, 963976. (10.1155/2012/963976) PubMed DOI PMC
Albritton SE, Kranz A-L, Rao P, Kramer M, Dieterich C, Ercan S. 2014. Sex-biased gene expression and evolution of the X chromosome in nematodes. Genetics 197, 865-883. (10.1534/genetics.114.163311) PubMed DOI PMC
Khil PP, Smirnova NA, Romanienko PJ, Camerini-Otero RD. 2004. The mouse X chromosome is enriched for sex-biased genes not subject to selection by meiotic sex chromosome inactivation. Nat. Gen. 36, 642-646. (10.1038/ng1368) PubMed DOI
Leder EH, Cano JM, Leinonen T, O'hara RB, Nikinmaa M, Primmer CR, Merilä J. 2010. Female-biased expression on the X chromosome as a key step in sex chromosome evolution in threespine sticklebacks. Mol. Biol. Evol. 27, 1495-1503. (10.1093/molbev/msq031) PubMed DOI
Ranz JM, Castillo-Davis CI, Meiklejohn CD, Hartl DL. 2003. Sex-dependent gene expression and evolution of the Drosophila transcriptome. Science 300, 1742-1745. (10.1126/science.1085881) PubMed DOI
Reinius B, Johansson MM, Radomska KJ, Morrow EH, Pandey GK, Kanduri C, Sandberg R, Williams RW, Jazin E. 2012. Abundance of female-biased and paucity of male-biased somatically expressed genes on the mouse X-chromosome. BMC Genomics 13, 607. (10.1186/1471-2164-13-607) PubMed DOI PMC
Kaiser VB, Ellegren H. 2006. Nonrandom distribution of genes with sex-biased expression in the chicken genome. Evolution 60, 1945-1951. (10.1111/j.0014-3820.2006.tb00537.x) PubMed DOI
Pucholt P, Wright AE, Conze LL, Mank JE, Berlin S. 2017. Recent sex chromosome divergence despite ancient dioecy in the willow Salix viminalis. Mol. Biol. Evol. 34, 1991-2001. (10.1093/molbev/msx144) PubMed DOI PMC
Orr HA, Betancourt AJ. 2001. Haldane's sieve and adaptation from the standing genetic variation. Genetics 157, 875-884. (10.1093/genetics/157.2.875) PubMed DOI PMC
figshare
10.6084/m9.figshare.c.5448713