Sex chromosome degeneration, turnover, and sex-biased expression of sex-linked transcripts in African clawed frogs (Xenopus)

. 2021 Aug 30 ; 376 (1832) : 20200095. [epub] 20210712

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34247503

The tempo of sex chromosome evolution-how quickly, in what order, why and how their particular characteristics emerge during evolution-remains poorly understood. To understand this further, we studied three closely related species of African clawed frog (genus Xenopus), that each has independently evolved sex chromosomes. We identified population polymorphism in the extent of sex chromosome differentiation in wild-caught Xenopus borealis that corresponds to a large, previously identified region of recombination suppression. This large sex-linked region of X. borealis has an extreme concentration of genes that encode transcripts with sex-biased expression, and we recovered similar findings in the smaller sex-linked regions of Xenopus laevis and Xenopus tropicalis. In two of these species, strong skews in expression (mostly female-biased in X. borealis, mostly male-biased in X. tropicalis) are consistent with expectations associated with recombination suppression, and in X. borealis, we hypothesize that a degenerate ancestral Y-chromosome transitioned into its contemporary Z-chromosome. These findings indicate that Xenopus species are tolerant of differences between the sexes in dosage of the products of multiple genes, and offer insights into how evolutionary transformations of ancestral sex chromosomes carry forward to affect the function of new sex chromosomes. This article is part of the theme issue 'Challenging the paradigm in sex chromosome evolution: empirical and theoretical insights with a focus on vertebrates (Part I)'.

Zobrazit více v PubMed

Charlesworth B. 2009. Effective population size and patterns of molecular evolution and variation. Nat. Rev. Gen. 10, 195-205. (10.1038/nrg2526) PubMed DOI

Vicoso B, Charlesworth B. 2009. Effective population size and the faster-X effect: an extended model. Evolution 63, 2413-2426. (10.1111/j.1558-5646.2009.00719.x) PubMed DOI

Charlesworth B, Charlesworth D. 2000. The degeneration of Y chromosomes. Phil. Trans. R. Soc. B 355, 1563-1572. (10.1098/rstb.2000.0717) PubMed DOI PMC

Charlesworth B, Coyne JA, Barton NH. 1987. The relative rates of evolution of sex chromosomes and autosomes. Am. Nat. 130, 113-146. (10.1086/284701) DOI

Rice WR. 1987. The accumulation of sexually antagonistic genes as a selective agent promoting the evolution of reduced recombination between primitive sex chromosomes. Evolution 41, 991-914. (10.1111/j.1558-5646.1987.tb05872.x) PubMed DOI

Spigler RB, Lewers KS, Main DS, Ashman T-L. 2008. Genetic mapping of sex determination in a wild strawberry, Fragaria virginiana, reveals earliest form of sex chromosome. Heredity 101, 507-517. (10.1038/hdy.2008.100) PubMed DOI

Charlesworth B. 1991. The evolution of sex chromosomes. Science 251, 1030-1033. (10.1126/science.1998119) PubMed DOI

Charlesworth B, Wall JD. 1999. Inbreeding, heterozygote advantage and the evolution of neo–X and neo–Y sex chromosomes. Proc. R. Soc. Lond. B 266, 51-56. (10.1098/rspb.1999.0603) DOI

Charlesworth D, Charlesworth B, Marais G. 2005. Steps in the evolution of heteromorphic sex chromosomes. Heredity 95, 118-128. (10.1038/sj.hdy.6800697) PubMed DOI

Lahn BT, Page DC. 1999. Four evolutionary strata on the human X chromosome. Science 286, 964-967. (10.1126/science.286.5441.964) PubMed DOI

Sun Y, Svedberg J, Hiltunen M, Corcoran P, Johannesson H. 2017. Large-scale suppression of recombination predates genomic rearrangements in Neurospora tetrasperma. Nat. Comm. 8, 1140. (10.1038/s41467-017-01317-6) PubMed DOI PMC

Brooks LD. 1988. The evolution of recombination rates. In The evolution of sex, pp. 87–105. Sunderland, MA: Sinauer Associates.

Hill WG, Robertson A. 1966. The effect of linkage on limits to artificial selection. Gen. Res. 8, 269-294. (10.1017/S0016672300010156) PubMed DOI

Skaletsky H, et al. 2003. The male-specific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 423, 825-837. (10.1038/nature01722) PubMed DOI

Masly JP, Presgraves DC. 2007. High-resolution genome-wide dissection of the two rules of speciation in Drosophila. PLoS Biol. 5, 1890-1898. (10.1371/journal.pbio.0050243) PubMed DOI PMC

Wallis MC, Waters PD, Delbridge ML, Kirby PJ, Pask AJ, Grützner F, Rens W, Ferguson-Smith MA, Graves JAM. 2007. Sex determination in platypus and echidna: autosomal location of SOX3 confirms the absence of SRY from monotremes. Chr. Res. 15, 949. (10.1007/s10577-007-1185-3) PubMed DOI

Vicoso B, Bachtrog D. 2015. Numerous transitions of sex chromosomes in Diptera. PLoS Biol. 13, e1002078. (10.1371/journal.pbio.1002078) PubMed DOI PMC

Darolti I, et al. 2019. Extreme heterogeneity in sex chromosome differentiation and dosage compensation in livebearers. Proc. Natl Acad. Sci. USA 116, 19 031-19 036. (10.1073/pnas.1905298116) PubMed DOI PMC

Adolfsson S, Ellegren H. 2013. Lack of dosage compensation accompanies the arrested stage of sex chromosome evolution in ostriches. Mol. Biol. Evol. 30, 806-810. (10.1093/molbev/mst009) PubMed DOI PMC

Saunders PA, Neuenschwander S, Perrin N. 2019. Impact of deleterious mutations, sexually antagonistic selection, and mode of recombination suppression on transitions between male and female heterogamety. Heredity 123, 419-428. (10.1038/s41437-019-0225-z) PubMed DOI PMC

Gu L, Walters JR. 2017. Evolution of sex chromosome dosage compensation in animals: a beautiful theory, undermined by facts and bedeviled by details. Genome Biol. Evol. 9, 2461-2476. (10.1093/gbe/evx154) PubMed DOI PMC

Bachtrog D, et al. 2014. Sex determination: why so many ways of doing it? PLoS Biol. 12, e1001899. (10.1371/journal.pbio.1001899) PubMed DOI PMC

Roco ÁS, Olmstead AW, Degitz SJ, Amano T, Zimmerman LB, Bullejos M. 2015. Coexistence of Y, W, and Z sex chromosomes in Xenopus tropicalis. Proc. Natl Acad. Sci. USA 112, E4752-E4761. (10.1073/pnas.1505291112) PubMed DOI PMC

Yoshimoto S, et al. 2008. A W-linked DM-domain gene, DM-W, participates in primary ovary development in Xenopus laevis. Proc. Natl Acad. Sci. USA 105, 2469-2474. (10.1073/pnas.0712244105) PubMed DOI PMC

Bewick AJ, Anderson DW, Evans BJ. 2011. Evolution of the closely related, sex-related genes DM-W and DMRT1 in African clawed frogs (Xenopus). Evolution 65, 698-712. (10.1111/j.1558-5646.2010.01163.x) PubMed DOI

Furman BLS, Evans BJ.. 2016. Sequential turnovers of sex chromosomes in African clawed frogs (Xenopus) suggest some genomic regions are good at sex determination. G3 6, 3625–3633. (10.1534/g3.116.033423) PubMed DOI PMC

Tymowska J. 1991. Polyploidy and cytogenetic variation in frogs of the genus Xenopus. In Amphibian cytogenetics and evolution (eds Green DM, Sessions SK), pp. 259-297. San Diego, CA: Academic Press.

Furman BLS, Cauret CM, Knytl M, Song, XY, Premachandra T, Ofori-Boateng C, Jordan DC, Horb ME, Evans BJ. 2020. A frog with three sex chromosomes that co-mingle together in nature: Xenopus tropicalis has a degenerate W- and a Y- that evolved from a Z-. PLoS. Gen. 16, e1009121. (10.1371/journal.pgen.1009121) PubMed DOI PMC

Furman BLS, Evans BJ. 2018. Divergent evolutionary trajectories of two young, homomorphic, and closely related sex chromosome systems. Genome Biol. Evol. 10, 742-755. (10.1093/gbe/evy045) PubMed DOI PMC

Evans BJ. 2008. Genome evolution and speciation genetics of clawed frogs (Xenopus and Silurana). Front Biosci. 13, 4687-4706. (10.2741/3033) PubMed DOI

Session AM, et al. 2016. Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538, 336-343. (10.1038/nature19840) PubMed DOI PMC

Evans BJ, et al. 2019. Xenopus fraseri: Mr. Fraser, where did your frog come from? PLoS ONE 14, e0220892. (10.1371/journal.pone.0220892) PubMed DOI PMC

Matsuda Y, Uno Y, Kondo M, Gilchrist MJ, Zorn AM, Rokhsar DS, Schmid M, Taira M. 2015. A new nomenclature of Xenopus laevis chromosomes based on the phylogenetic relationship to Silurana/Xenopus tropicalis. Cytogenet Genome Res. 145, 187-191. (10.1159/000381292) PubMed DOI

Khokha MK, et al. 2009. Rapid gynogenetic mapping of Xenopus tropicalis mutations to chromosomes. Dev. Dyn. 238, 1398-1346. (10.1002/dvdy.21965) PubMed DOI PMC

Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA. 2008. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3, e3376. (10.1371/journal.pone.0003376) PubMed DOI PMC

Karimi K, et al. 2018. Xenbase: a genomic, epigenomic and transcriptomic model organism database. Nucleic Acids Res. 46(D1), D861-D868. (10.1093/nar/gkx936) PubMed DOI PMC

Wu TD, Watanabe CK. 2005. GMAP: a genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics 21, 1859-1875. (10.1093/bioinformatics/bti310) PubMed DOI

Krumsiek J, Arnold R, Rattei T. 2007. Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics 23, 1026-1028. (10.1093/bioinformatics/btm039) PubMed DOI

Andrews S. 2019. re-DOT-able. Version: 1.1. See https://github.com/s-andrews/redotable.

Mitros T, et al. 2019. A chromosome-scale genome assembly and dense genetic map for Xenopus tropicalis. Dev. Biol. 452, 8-20. (10.1016/j.ydbio.2019.03.015) PubMed DOI

Furman BLS, Dang UJ, Evans BJ, Golding GB. 2018. Divergent subgenome evolution after allopolyploidization in African clawed frogs (Xenopus). J. Evol. Biol. 31, 1945-1958. (10.1111/jeb.13391) PubMed DOI

Bull JJ, Charnov EL. 1977. Changes in the heterogametic mechanism of sex determination. Heredity 39, 1. (10.1038/hdy.1977.38) PubMed DOI

Malcom JW, Kudra RS, Malone JH. 2014. The sex chromosomes of frogs: variability and tolerance offer clues to genome evolution and function. J. Genom. 2, 68. (10.7150/jgen.8044) PubMed DOI PMC

Orr HA, Kim Y. 1998. An adaptive hypothesis for the evolution of the Y chromosome. Genetics 150, 1693-1698. (10.1093/genetics/150.4.1693) PubMed DOI PMC

Rice WR. 1996. Evolution of the Y sex chromosome in animals. Bioscience 46, 331-343. (10.2307/1312947) DOI

Connallon T, Singh ND, Clark AG. 2012. Impact of genetic architecture on the relative rates of X versus autosomal adaptive substitution. Mol. Biol. Evol. 29, 1933-1942. (10.1093/molbev/mss057) PubMed DOI PMC

Meisel RP, Connallon T. 2013. The faster-X effect: integrating theory and data. Trends Gen. 29, 537-544. (10.1016/j.tig.2013.05.009) PubMed DOI PMC

Pischedda A, Friberg U, Stewart AD, Miller PM, Rice WR. 2015. Sexual selection has minimal impact on effective population sizes in species with high rates of random offspring mortality: an empirical demonstration using fitness distributions. Evolution 69, 2638-2647. (10.1111/evo.12764) PubMed DOI PMC

Wilson Sayres MA, Makova KD. 2011. Genome analyses substantiate male mutation bias in many species. Bioessays 33, 938-945. (10.1002/bies.201100091) PubMed DOI PMC

Llopart A. 2012. The rapid evolution of X-linked male-biased gene expression and the large-X effect in Drosophila yakuba, D. santomea, and their hybrids. Mol. Biol. Evol. 29, 3873-3886. (10.1093/molbev/mss190) PubMed DOI

Baines JF, Sawyer SA, Hartl DL, Parsch J. 2008. Effects of X-linkage and sex-biased gene expression on the rate of adaptive protein evolution in Drosophila. Mol. Biol. Evol. 25, 1639-1650. (10.1093/molbev/msn111) PubMed DOI PMC

Connallon T, Clark AG. 2011. Association between sex-biased gene expression and mutations with sex-specific phenotypic consequences in Drosophila. Genome Biol. Evol. 3, 151-155. (10.1093/gbe/evr004) PubMed DOI PMC

Grath S, Parsch J. 2012. Rate of amino acid substitution is influenced by the degree and conservation of male-biased transcription over 50 myr of Drosophila evolution. Genome Biol. Evol. 4, 346-359. (10.1093/gbe/evs012) PubMed DOI PMC

Müller L, Grath S, Von Heckel K, Parsch J. 2012. Inter-and intraspecific variation in Drosophila genes with sex-biased expression. Int. J. Evol. Biol. 2012, 963976. (10.1155/2012/963976) PubMed DOI PMC

Albritton SE, Kranz A-L, Rao P, Kramer M, Dieterich C, Ercan S. 2014. Sex-biased gene expression and evolution of the X chromosome in nematodes. Genetics 197, 865-883. (10.1534/genetics.114.163311) PubMed DOI PMC

Khil PP, Smirnova NA, Romanienko PJ, Camerini-Otero RD. 2004. The mouse X chromosome is enriched for sex-biased genes not subject to selection by meiotic sex chromosome inactivation. Nat. Gen. 36, 642-646. (10.1038/ng1368) PubMed DOI

Leder EH, Cano JM, Leinonen T, O'hara RB, Nikinmaa M, Primmer CR, Merilä J. 2010. Female-biased expression on the X chromosome as a key step in sex chromosome evolution in threespine sticklebacks. Mol. Biol. Evol. 27, 1495-1503. (10.1093/molbev/msq031) PubMed DOI

Ranz JM, Castillo-Davis CI, Meiklejohn CD, Hartl DL. 2003. Sex-dependent gene expression and evolution of the Drosophila transcriptome. Science 300, 1742-1745. (10.1126/science.1085881) PubMed DOI

Reinius B, Johansson MM, Radomska KJ, Morrow EH, Pandey GK, Kanduri C, Sandberg R, Williams RW, Jazin E. 2012. Abundance of female-biased and paucity of male-biased somatically expressed genes on the mouse X-chromosome. BMC Genomics 13, 607. (10.1186/1471-2164-13-607) PubMed DOI PMC

Kaiser VB, Ellegren H. 2006. Nonrandom distribution of genes with sex-biased expression in the chicken genome. Evolution 60, 1945-1951. (10.1111/j.0014-3820.2006.tb00537.x) PubMed DOI

Pucholt P, Wright AE, Conze LL, Mank JE, Berlin S. 2017. Recent sex chromosome divergence despite ancient dioecy in the willow Salix viminalis. Mol. Biol. Evol. 34, 1991-2001. (10.1093/molbev/msx144) PubMed DOI PMC

Orr HA, Betancourt AJ. 2001. Haldane's sieve and adaptation from the standing genetic variation. Genetics 157, 875-884. (10.1093/genetics/157.2.875) PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

FISH mapping in Xenopus pygmaeus refines understanding of genomic rearrangements and reveals jumping NORs in African clawed frogs

. 2025 Mar 01 ; () : . [epub] 20250301

Rapid Sex Chromosome Turnover in African Clawed Frogs (Xenopus) and the Origins of New Sex Chromosomes

. 2024 Dec 05 ; 41 (12) : .

A Detailed Karyological Investigation of three Endemic Cobitis Linnaeus, 1758 Species (Teleostei, Cobitidae) in Anatolia, Türkiye

. 2024 ; 164 (5-6) : 243-256. [epub] 20241202

Consequences of polyploidy and divergence as revealed by cytogenetic mapping of tandem repeats in African clawed frogs (Xenopus, Pipidae)

. 2023 ; 69 (4) : 81. [epub] 20230721

A Fish of Multiple Faces, Which Show Us Enigmatic and Incredible Phenomena in Nature: Biology and Cytogenetics of the Genus Carassius

. 2022 Jul 22 ; 23 (15) : . [epub] 20220722

Sex chromosomes in meiotic, hemiclonal, clonal and polyploid hybrid vertebrates: along the 'extended speciation continuum'

. 2021 Sep 13 ; 376 (1833) : 20200103. [epub] 20210726

Expanding the classical paradigm: what we have learnt from vertebrates about sex chromosome evolution

. 2021 Sep 13 ; 376 (1833) : 20200097. [epub] 20210726

Preface

. 2021 Aug 30 ; 376 (1832) : 20200088. [epub] 20210712

A frog with three sex chromosomes that co-mingle together in nature: Xenopus tropicalis has a degenerate W and a Y that evolved from a Z chromosome

. 2020 Nov ; 16 (11) : e1009121. [epub] 20201109

Zobrazit více v PubMed

figshare
10.6084/m9.figshare.c.5448713

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...