Consequences of polyploidy and divergence as revealed by cytogenetic mapping of tandem repeats in African clawed frogs (Xenopus, Pipidae)

. 2023 ; 69 (4) : 81. [epub] 20230721

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37483536

Repetitive elements have been identified in several amphibian genomes using whole genome sequencing, but few studies have used cytogenetic mapping to visualize these elements in this vertebrate group. Here, we used fluorescence in situ hybridization and genomic data to map the U1 and U2 small nuclear RNAs and histone H3 in six species of African clawed frog (genus Xenopus), including, from subgenus Silurana, the diploid Xenopus tropicalis and its close allotetraploid relative X. calcaratus and, from subgenus Xenopus, the allotetraploid species X. pygmaeus, X. allofraseri, X. laevis, and X. muelleri. Results allowed us to qualitatively evaluate the relative roles of polyploidization and divergence in the evolution of repetitive elements because our focal species include allotetraploid species derived from two independent polyploidization events - one that is relatively young that gave rise to X. calcaratus and another that is older that gave rise to the other (older) allotetraploids. Our results demonstrated conserved loci number and position of signals in the species from subgenus Silurana; allotetraploid X. calcaratus has twice as many signals as diploid X. tropicalis. However, the content of repeats varied among the other allotetraploid species. We detected almost same number of signals in X. muelleri as in X. calcaratus and same number of signals in X. pygmaeus, X. allofraseri, X. laevis as in the diploid X. tropicalis. Overall, these results are consistent with the proposal that allopolyploidization duplicated these tandem repeats and that variation in their copy number was accumulated over time through reduction and expansion in a subset of the older allopolyploids.

Zobrazit více v PubMed

Altmanová M, Doležálková-Kaštánková M, Jablonski D, Strachinis I, Vergilov V, Vacheva E et al (2022) Karyotype stasis but species-specific repetitive DNA patterns in Anguis lizards (Anguidae), in the evolutionary framework of Anguiformes, PREPRINT (Version 1) available at Research Square. 10.21203/rs.3.rs-2413537/v1

Bishani A, Prokopov DY, Romanenko SA, Molodtseva AS, Perelman PL, Interesova EA, et al. Evolution of tandemly arranged repetitive DNAs in three species of Cyprinoidei with different ploidy levels. Cytogenet Genome Res. 2021;161(1–2):32–42. doi: 10.1159/000513274. PubMed DOI

Bruschi DP, Rivera M, Lima AP, Zúñiga AB, Recco-Pimentel SM. Interstitial telomeric sequences (ITS) and major rDNA mapping reveal insights into the karyotypical evolution of Neotropical leaf frogs species (Phyllomedusa, Hylidae, Anura) Mol Cytogenet. 2014;7(1):1–12. doi: 10.1186/1755-8166-7-22. PubMed DOI PMC

Bueno D, Palacios-Gimenez OM, Cabral-de-Mello DC (2013) Chromosomal mapping of repetitive DNAs in the grasshopper Abracris flavolineata reveal possible ancestry of the B chromosome and H3 histone spreading. PLoS One 8(6). 10.1371/journal.pone.0066532 PubMed PMC

Canapa A, Barucca M, Biscotti MA, Forconi M, Olmo E. Transposons, genome size, and evolutionary insights in animals. Cytogenet Genome Res. 2016;147(4):217–239. doi: 10.1159/000444429. PubMed DOI

Chalopin D, Naville M, Plard F, Galiana D, Volff JN. Comparative analysis of transposable elements highlights mobilome diversity and evolution in vertebrates. Genome Biol Evol. 2015;7(2):567–580. doi: 10.1093/gbe/evv005. PubMed DOI PMC

Chen S, Zhang G, Shao C, Huang Q, Liu G, Zhang P, et al. Whole-genome sequence of a flatfish provides insights into ZW sex chromosome evolution and adaptation to a benthic lifestyle. Nat Genet. 2014;46:253–260. doi: 10.1038/ng.2890. PubMed DOI

Cholak LR, Haddad CFB, Parise-Maltempi PP (2020) Cytogenetic analysis of the genus Thoropa Cope, 1865 (Anura-Cycloramphidae) with evolutionary inferences based on repetitive sequences. Genet Mol Biol 43(3):e20190364. 10.1590/1678-4685-GMB-2019-0364 PubMed PMC

Clark DP, Pazdernik NJ, McGehee MR. Molecular biology. Academic Cell: Elsevier; 2019.

Colgan DJ, McLauchlan A, Wilson GDF, Livingston SP, Edgecombe GD, Macaranas J, et al. Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. Aust J Zool. 1998;46:419–437. doi: 10.1071/ZO98048. DOI

Courtet M, Flajnik M, Du Pasquier L. Major histocompatibility complex and immunoglobulin loci visualized by in situ hybridization on Xenopus chromosomes. Dev Comp Immunol. 2001;25(2):149–157. doi: 10.1016/S0145-305X(00)00045-8. PubMed DOI

Da Silva DS, Da Silva Filho HF, Cioffi MB, De Oliveira EHC, Gomes AJB. Comparative cytogenetics in four leptodactylus species (Amphibia, Anura, Leptodactylidae): evidence of inner chromosomal diversification in highly conserved karyotypes. Cytogenet Genome Res. 2021;161(1–2):52–62. doi: 10.1159/000515831. PubMed DOI

De Oliveira FI, Kretschmer R, Dos Santos MS, De Lima Carvalho CA, Gunski RJ, O’Brien PCM, et al. Chromosomal mapping of repetitive DNAs in Myiopsitta monachus and Amazona aestiva (Psittaciformes, Psittacidae) with emphasis on the sex chromosomes. Cytogenet Genome Res. 2017;151(3):151–160. doi: 10.1159/000464458. PubMed DOI

Dubois A, Ohler A, Pyron RA. New concepts and methods for phylogenetic taxonomy and nomenclature in zoology, exemplified by a new ranked cladonomy of recent amphibians (Lissamphibia) Megataxa. 2021;5(1):1–738. doi: 10.1159/000464458. DOI

Elder JF, Turner BJ. Concerted evolution of repetitive DNA sequences in eukaryotes. Q Rev Biol. 1995;70(3):297–320. doi: 10.1086/419073. PubMed DOI

Evans BJ. Ancestry influences the fate of duplicated genes millions of years after polyploidization of clawed frogs (Xenopus) Genetics. 2007;176(2):1119–1130. doi: 10.1534/genetics.106.069690. PubMed DOI PMC

Evans BJ, Carter TF, Greenbaum E, Gvoždík V, Kelley DB, McLaughlin PJ et al (2015) Genetics, morphology, advertisement calls, and historical records distinguish six new polyploid species of African clawed frog (Xenopus, Pipidae) from West and Central Africa. PLoS One 10(12):e0142823. 10.1371/journal.pone.0142823 PubMed PMC

Feng YJ, Blackburn DC, Liang D, Hillis DM, Wake DB, Cannatella DC, et al. Phylogenomics reveals rapid, simultaneous diversification of three major clades of Gondwanan frogs at the Cretaceous-Paleogene boundary. Proc Natl Acad Sci USA. 2017;114(29):E5864–E5870. doi: 10.1073/pnas.1704632114. PubMed DOI PMC

Force A, Lynch M, Pickett FB, Amores A, Yan YL, Postlethwait J. Preservation of duplicate genes by complementary, degenerative mutations. Genetics. 1999;151(4):1531–1545. doi: 10.1093/genetics/151.4.1531. PubMed DOI PMC

Fu J, Zhang H, Guo F, Ma L, Wu J, Yue M, et al. Identification and characterization of abundant repetitive sequences in Allium cepa. Sci Rep. 2019;9(1):1–7. doi: 10.1038/s41598-019-52995-9. PubMed DOI PMC

Gama JM, Ludwig A, Gazolla AB, Guizelini D, Recco-Pimentel SM, Bruschi DP (2022) A genomic survey of LINE elements in Pipidae aquatic frogs shed light on Rex-elements evolution in these genomes. Mol Phylogenet Evol 168:107393. 10.1016/j.ympev.2022.107393 PubMed

Gazoni T, Dorigon NS, Da Silva MJ, Cholak LR, Haddad CFB, Parise-Maltempi PP. Chromosome mapping of U2 snDNA in species of Leptodactylus (Anura, Leptodactylidae) Cytogenet Genome Res. 2021;161(1–2):63–69. doi: 10.1159/000515047. PubMed DOI

Gerbault-Seureau M, Cacheux L, Dutrillaux B. The relationship between the (in-)stability of NORs and their chromosomal location: the example of cercopithecidae and a short review of other primates. Cytogenet Genome Res. 2018;153(3):138–146. doi: 10.1159/000486441. PubMed DOI

Guzmán K, Roco ÁS, Stöck M, Ruiz-García A, García-Muñoz E, Bullejos M (2022) Identification and characterization of a new family of long satellite DNA, specific of true toads (Anura, Amphibia, Bufonidae). Sci Rep 12(1). 10.1038/s41598-022-18051-9 PubMed PMC

Hellsten U, Harland RM, Gilchrist MJ, Hendrix D, Jurka J, Kapitonov V et al (2010) The genome of the Western clawed frog Xenopus tropicalis. Science (80- ) 328(5978):633–6. 10.1126/science.1183670 PubMed PMC

Hime PM, Lemmon AR, Lemmon ECM, Prendini E, Brown JM, Thomson RC, et al. Phylogenomics reveals ancient gene tree discordance in the Amphibian Tree of Life. Syst Biol. 2021;70:49–66. doi: 10.1093/sysbio/syaa034. PubMed DOI PMC

Karimi K, Vize PD (2014) The Virtual Xenbase: transitioning an online bioinformatics resource to a private cloud. Database (Oxford) 2014:bau108. 10.1093/database/bau108 PubMed PMC

Knytl M, Fornaini NR. Measurement of chromosomal arms and FISH reveal complex Genome architecture and standardized karyotype of model fish, genus Carassius. Cells. 2021;10(9):2343. doi: 10.3390/cells10092343. PubMed DOI PMC

Knytl M, Smolík O, Kubíčková S, Tlapáková T, Evans BJ, Krylov V (2017) Chromosome divergence during evolution of the tetraploid clawed frogs, Xenopus mellotropicalis and Xenopus epitropicalis as revealed by Zoo-FISH. PLoS One 12(5):e0177087. 10.1371/journal.pone.0177087 PubMed PMC

Knytl M, Kalous L, Rylková K, Choleva L, Merilä J, Ráb P (2018a) Morphologically indistinguishable hybrid Carassius female with 156 chromosomes: a threat for the threatened crucian carp, C. carassius, L. PLoS One 13(1):e0190924. 10.1371/journal.pone.0190924 PubMed PMC

Knytl M, Tlapakova T, Vankova T, Krylov V. Silurana chromosomal evolution: a new piece to the puzzle. Cytogenet Genome Res. 2018;156(4):223–228. doi: 10.1159/000494708. PubMed DOI

Knytl M, Forsythe A, Kalous L. A fish of multiple faces, which show us enigmatic and incredible phenomena in nature: biology and cytogenetics of the genus Carassius. Int J Mol Sci. 2022;23(15):8095. doi: 10.3390/ijms23158095. PubMed DOI PMC

Knytl M, Fornaini NR, Bergelová B, Gvoždík V, Černohorská H, Kubíčková S et al (2023) Divergent subgenome evolution in the allotetraploid frog Xenopus calcaratus. Gene 851:146974. 10.1016/j.gene.2022.146974 PubMed

Kretschmer R, Rodrigues BS, Barcellos SA, Costa AL, de Cioffi M, B, Garnero ADV, , et al. Karyotype evolution and genomic organization of repetitive DNAs in the saffron finch, sicalis flaveola (Passeriformes, aves) Animals. 2021;11(5):1456. doi: 10.3390/ani11051456. PubMed DOI PMC

Krylov V, Kubickova S, Rubes J, Macha J, Tlapakova T, Seifertova E et al (2010) Preparation of Xenopus tropicalis whole chromosome painting probes using laser microdissection and reconstruction of X. laevis tetraploid karyotype by Zoo-FISH. Chromosom Res 18(4):431–439. 10.1007/s10577-010-9127-x PubMed

Liao D. Concerted evolution: molecular mechanism and biological implications. Am J Hum Genet. 1999;64(1):24–30. doi: 10.1086/302221. PubMed DOI PMC

Liu Y, Song M, Luo W, Xia Y, Zeng X. Chromosomal evolution in the Amolops mantzorum species group (Ranidae; Anura) narrated by repetitive DNAs. Cytogenet Genome Res. 2019;157(3):172–178. doi: 10.1159/000499416. PubMed DOI

Lynch M, O'Hely M, Walsh B, Force A. The probability of preservation of a newly arisen gene duplicate. Genetics. 2001;159(4):1789–1804. doi: 10.1093/genetics/159.4.1789. PubMed DOI PMC

Matsuda Y, Uno Y, Kondo M, Gilchrist MJ, Zorn AM, Rokhsar DS, et al. A new nomenclature of Xenopus laevis chromosomes based on the phylogenetic relationship to Silurana/Xenopus tropicalis. Cytogenet Genome Res. 2015;145(3–4):187–191. doi: 10.1159/000381292. PubMed DOI

Milioto V, Vlah S, Mazzoleni S, Rovatsos M, Dumas F. Chromosomal localization of 18S–28S rDNA and (TTAGGG)n sequences in wo South African dormice of the genus Graphiurus (Rodentia: Gliridae) Cytogenet Genome Res. 2019;158(3):145–151. doi: 10.1159/000500985. PubMed DOI

Myers PZ (2007) Tandem repeats and morphological variation. Nat Educ 1(1):1. https://www.nature.com/scitable/topicpage/tandem-repeats-and-morphological-variation-40690/

Oliveira VCS, Altmanová M, Viana PF, Ezaz T, Bertollo LAC, Ráb P, et al. Revisiting the karyotypes of alligators and caimans (Crocodylia, Alligatoridae) after a half-century delay: bridging the gap in the chromosomal evolution of reptiles. Cells. 2021;10(6):1397. doi: 10.1186/1755-8166-4-24. PubMed DOI PMC

Oliveira NL, Cabral-de-Mello DC, Rocha MF, Loreto V, Martins C, Moura RC. Chromosomal mapping of rDNAs and H3 histone sequences in the grasshopper rhammatocerus brasiliensis (acrididae, gomphocerinae): extensive chromosomal dispersion and co-localization of 5S rDNA/H3 histone clusters in the A complement and B chromosome. Mol Cytogenet. 2011;4:24. doi: 10.1186/1755-8166-4-24. PubMed DOI PMC

Phimphan S, Aiumsumang S, Tanomtong A. Characterization of chromosomal and repetitive elements in the genome of “Rana nigrovittata” (Anura, Ranidae): revealed by classical and molecular techniques. Cytol Genet. 2021;55(6):583–589. doi: 10.3103/S0095452721060104. DOI

Roco ÁS, Liehr T, Ruiz-García A, Guzmán K, Bullejos M. Comparative distribution of repetitive sequences in the karyotypes of Xenopus tropicalis and Xenopus laevis (Anura, Pipidae) Genes (basel) 2021;12(5):617. doi: 10.3390/genes12050617. PubMed DOI PMC

Schmid M, Steinlein C. Chromosome banding in Amphibia. XXXII. The genus Xenopus (Anura, Pipidae) Cytogenet Genome Res. 2015;145:201–217. doi: 10.1159/000433481. PubMed DOI

Schott SCQ, Glugoski L, Azambuja M, Moreira-Filho O, Vicari MR, Nogaroto V. Comparative cytogenetic and sequence analysis of U small nuclear RNA genes in three Ancistrus species (Siluriformes: Loricariidae) Zebrafish. 2022;19(5):200–209. doi: 10.1089/zeb.2022.0040. PubMed DOI

Sember A, Pelikánová Š, de Bello CM, Šlechtová V, Hatanaka T, Do Doan H, et al. Taxonomic diversity not associated with gross karyotype differentiation: the case of bighead carps, genus Hypophthalmichthys (Teleostei, Cypriniformes, Xenocyprididae) Genes (basel) 2020;11(5):479. doi: 10.3390/genes11050479. PubMed DOI PMC

Sémon M, Wolfe KH. Consequences of genome duplication. Curr Opin Genet Dev. 2007;17(6):505–512. doi: 10.1016/j.gde.2007.09.007. PubMed DOI

Seroussi E, Knytl M, Pitel F, Elleder D, Krylov V, Leroux S, et al. Avian expression patterns and genomic mapping implicate leptin in digestion and TNF in immunity, suggesting that their interacting adipokine role has been acquired only in mammals. Int J Mol Sci. 2019;20(18):4489. doi: 10.3390/ijms20184489. PubMed DOI PMC

Session AM, Uno Y, Kwon T, Chapman JA, Toyoda A, Takahashi S, et al. Genome evolution in the allotetraploid frog Xenopus laevis. Nature. 2016;538(7625):336–343. doi: 10.1038/nature19840. PubMed DOI PMC

Silva DMZA, Utsunomia R, Pansonato-Alves JC, Oliveira C, Foresti F. Chromosomal mapping of repetitive DNA sequences in five species of astyanax (Characiformes, Characidae) reveals independent location of U1 and U2 snRNA sites and association of U1 snRNA and 5S rDNA. Cytogenet Genome Res. 2015;146(2):144–152. doi: 10.1159/000438813. PubMed DOI

Sinzelle L, Thuret R, Hwang H-Y, Herszberg B, Paillard E, Bronchain OJ, et al. Characterization of a novel Xenopus tropicalis cell line as a model for in vitro studies. Genesis. 2012;50(3):316–324. doi: 10.1002/dvg.20822. PubMed DOI PMC

Song XY, Furman BLS, Premachandra T, Knytl M, Cauret CMS, Wasonga DV, et al. Sex chromosome degeneration, turnover, and sex-biased expression of sex-linked transcripts in African clawed frogs (Xenopus) Philos Trans R Soc Lond B Biol Sci. 2021;376(1832):20200095. doi: 10.1098/rstb.2020.0095. PubMed DOI PMC

Symonová R, Havelka M, Amemiya CT, Howell WM, Kořínková T, Flajšhans M, et al. Molecular cytogenetic differentiation of paralogs of Hox paralogs in duplicated and re-diploidized genome of the North American paddlefish (Polyodon spathula) BMC Genet. 2017;18(1):19. doi: 10.1186/s12863-017-0484-8. PubMed DOI PMC

Symonová R, Ocalewicz K, Kirtiklis L, Delmastro GB, Pelikánová Š, Garcia S et al (2017b) Higher-order organisation of extremely amplified, potentially functional and massively methylated 5S rDNA in European pikes (Esox sp.). BMC Genomics 18(1):391. 10.1186/s12864-017-3774-7 PubMed PMC

Tymowska J (1991) Polyploidy and cytogenetic variation in frogs of the genus Xenopus. In: Green DM, Sessions SK (eds) Amphibian cytogenetics and evolution. Academic Press, San Diego, pp 259–297

Valadkhan S. snRNAs as the catalysts of pre-mRNA splicing. Curr Opin Chem Biol. 2005;9(6):603–608. doi: 10.1016/j.cbpa.2005.10.008. PubMed DOI

Valente GT, Mazzuchelli J, Ferreira IA, Poletto AB, Fantinatti BEA, Martins C. Cytogenetic mapping of the retroelements Rex1, Rex3 and Rex6 among cichlid Fish: new insights on the chromosomal distribution of transposable elements. Cytogenet Genome Res. 2011;133(1):34–42. doi: 10.1159/000322888. PubMed DOI

Vicari MR, Artoni RF, Moreira-Filho O, Bertollo LAC (2008) Colocalization of repetitive DNAs and silencing of major rRNA genes. A case report of the fish Astyanax janeiroensis. Cytogenet Genome Res 122(1):67–72. 10.1159/000151318 PubMed

Yampolsky LY (2016) Mutation and genome evolution. Encyclop Evol Biol 77–83.  Elsevier. 10.1016/B978-0-12-800049-6.00170-0

Zattera ML, Gazolla CB, de Soares A, A, Gazoni T, Pollet N, Recco-Pimentel SM,, et al. Evolutionary dynamics of the repetitive DNA in the karyotypes of Pipa carvalhoi and Xenopus tropicalis (Anura, Pipidae) Front Genet. 2020;11:1–10. doi: 10.3389/fgene.2020.00637. PubMed DOI PMC

Zhang G, Li B, Li C, Gilbert MTP, Jarvis ED, Wang J. Comparative genomic data of the Avian phylogenomics project. Gigascience. 2014;3(1):1–8. doi: 10.1186/2047-217X-3-26. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace