Cytomolecular diversity among Vigna Savi (Leguminosae) subgenera
Jazyk angličtina Země Rakousko Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
313527/2017-2
Conselho Nacional de Desenvolvimento Científico e Tecnológico
421968/2018-4
Conselho Nacional de Desenvolvimento Científico e Tecnológico
433931/2018-3
Conselho Nacional de Desenvolvimento Científico e Tecnológico
442019/2019-0
Conselho Nacional de Desenvolvimento Científico e Tecnológico
313944/2020-2
Conselho Nacional de Desenvolvimento Científico e Tecnológico
APQ-0390-2.02/19
Fundação de Amparo à Ciência e Tecnologia do Estado de Pernambuco
PubMed
38467939
DOI
10.1007/s00709-024-01944-z
PII: 10.1007/s00709-024-01944-z
Knihovny.cz E-zdroje
- Klíčová slova
- Vigna, DNA content, FISH, Karyotype evolution, Molecular cytogenetics, rDNA sites,
- MeSH
- chromozomy rostlin genetika MeSH
- DNA rostlinná genetika MeSH
- Fabaceae genetika MeSH
- fylogeneze MeSH
- genetická variace MeSH
- karyotyp MeSH
- ribozomální DNA genetika MeSH
- vigna * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA rostlinná MeSH
- ribozomální DNA MeSH
The genus Vigna (Leguminosae) comprises about 150 species grouped into five subgenera. The present study aimed to improve the understanding of karyotype diversity and evolution in Vigna, using new and previously published data through different cytogenetic and DNA content approaches. In the Vigna subgenera, we observed a random distribution of rDNA patterns. The 35S rDNA varied in position, from terminal to proximal, and in number, ranging from one (V. aconitifolia, V. subg. Ceratotropis) to seven pairs (V. unguiculata subsp. unguiculata, V. subg. Vigna). On the other hand, the number of 5S rDNA was conserved (one or two pairs), except for V. radiata (V. subg. Ceratotropis), which had three pairs. Genome size was relatively conserved within the genus, ranging from 1C = 0.43 to 0.70 pg in V. oblongifolia and V. unguiculata subsp. unguiculata, respectively, both belonging to V. subg. Vigna. However, we observed a positive correlation between DNA content and the number of 35S rDNA sites. In addition, data from chromosome-specific BAC-FISH suggest that the ancestral 35S rDNA locus is conserved on chromosome 6 within Vigna. Considering the rapid diversification in the number and position of rDNA sites, such conservation is surprising and suggests that additional sites may have spread out from this ancestral locus.
Campus Amilcar Ferreira Sobral Universidade Federal Do Piauí Floriano PI Brazil
Departamento de Botânica Centro de Biociências Universidade Federal de Pernambuco Recife PE Brazil
Departamento de Genética Centro de Biociências Universidade Federal de Pernambuco Recife PE Brazil
Department of Biology McMaster University 1280 Main Street West Hamilton ON L8S4K1 Canada
Instituto Agronômico de Pernambuco Recife PE Brazil
Instituto Tecnológico Vale Belém PA Brazil
Laboratório de Imunopatologia Keizo Asami Universidade Federal de Pernambuco Recife PE Brazil
Universidade Do Estado de Minas Gerais Unidade Divinópolis Divinópolis MG Brazil
Zobrazit více v PubMed
Almeida CCS, Pedrosa-Harand A (2011) Contrasting rDNA evolution in lima bean (Phaseolus lunatus L.) and common bean (P. vulgaris L., Fabaceae). Cytogenet Genome Res 132:212–217. https://doi.org/10.1007/10.1159/000321677 PubMed DOI
Almeida CCS, Pedrosa-Harand A (2013) High macro-collinearity between lima bean (Phaseolus lunatus L.) and the common bean (P. vulgaris L.) as revealed by comparative cytogenetic mapping. Theor Appl Genet 126:1909–1916. https://doi.org/10.1007/s00122-013-2106-9 PubMed DOI
Almeida CCS, Fonsêca A, dos Santos KG, Mosiolek M, Pedrosa-Harand A (2012) Contrasting evolution of a satellite DNA and its ancestral IGS rDNA in Phaseolus (Fabaceae). Genome 55:1–7. https://doi.org/10.1139/g2012-059 DOI
Bennett MD, Smith JB (1976) Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond B Biol Sci 274:227–274. https://doi.org/10.1098/rstb.1976.0044 PubMed DOI
Bennett MD, Leitch IJ (1995) Nuclear DNA amounts in angiosperms. Ann Bot 76:113–176. https://doi.org/10.1006/anbo.1995.1085 DOI
Bennett MD, Smith JB, Heslop-Harrison JS (1982) Nuclear DNA amounts in angiosperms. Proc Royal Soc Lond B Biol Sci 216:179–199. https://doi.org/10.1098/rspb.1982.0069 DOI
Bonifácio EM, Fonsêca A, Almeida C, Santos KGB, Pedrosa-Harand A (2012) Comparative cytogenetic mapping between the lima bean (Phaseolus lunatus L.) and the common bean (P. vulgaris L.). Theor Appl Genet 24:1513–1520. https://doi.org/10.1007/s00122-012-1806-x DOI
Bortoleti KCA, Benko-Iseppon AM, de Melo NF, Brasileiro-Vidal AC (2012) Chromatin differentiation between Vigna radiata (L.) R. Wilczek and V. unguiculata (L.) Walp. (Fabaceae). Plant Syst Evol 298:689–693. https://doi.org/10.1007/s00606-011-0551-y DOI
Chester M, Sykorova E, Fajkus J, Leitch AR (2010) Single integration and spread of a copia-like sequence nested in rDNA intergenic spacers of Allium cernuum (Alliaceae). Cytogenet Genome Res 129:35–46. https://doi.org/10.1159/000312959 PubMed DOI
Choi HW, Kim MY, Lee SH, Sultana S, Bang JW (2013) Molecular cytogenetic analysis of the Vigna species distributed in Korea. Genes Genom 35:257–264. https://doi.org/10.1007/s13258-013-0089-1 DOI
De Carvalho CR, Saraiva LS (1993) An air drying technique for maize chromosomes without enzymatic maceration. Biotech Histochem 68:142–145. https://doi.org/10.3109/10520299309104684 PubMed DOI
De Oliveira Bustamante F, do Nascimento TH, Montenegro C, Dias S, do Vale Martins L, Braz GT, Benko Iseppon AM, Jiang J, Pedrosa Harand A, Brasileiro Vidal AC (2021) Oligo-FISH barcode in beans: a new chromosome identification system. Theor Appl Genet 134:3675–3686. https://doi.org/10.1007/s00122-021-03921-z PubMed DOI
Delgado-Salinas A, Thulin M, Pasquet R, Weeden N, Lavin M (2011) Vigna (Leguminosae) sensu lato: the names and identities of the American segregate genera. Am J Bot 98:1694–1715. https://doi.org/10.3732/ajb.1100069 PubMed DOI
Do Vale Martins L, Bustamante FO, Oliveira ARS et al (2021) BAC- and oligo-FISH mapping reveals chromosome evolution among Vigna angularis, V. unguiculata, and Phaseolus vulgaris. Chromosoma 130:133–147. https://doi.org/10.1007/s00412-021-00758-9 PubMed DOI
Doleẑel J, Godhde W (1995) Sex determination in dioecious plants Melandrium album and M. rubrum using high-resolution flow cytometry. Cytometry 19:103–106. https://doi.org/10.1002/cyto.990190203 PubMed DOI
Dubcovsky J, Dvořák J (1995) Ribosomal RNA multigene loci: Nomads of the Triticeae genomes. Genetics 140:1367–1377. https://doi.org/10.1093/genetics/140.4.1367 PubMed DOI PMC
Fonsêca AFA, Pedrosa-Harand A (2013) Karyotype stability in the genus Phaseolus evidenced by the comparative mapping of the wild species Phaseolus microcarpus. Genome 56:335–343. https://doi.org/10.1139/gen-2013-0025 PubMed DOI
Fonsêca AFA, Ferreira J, Santos TRB et al (2010) Cytogenetic map of common bean (Phaseolus vulgaris L.). Chromosom Res 18:487–502. https://doi.org/10.1007/s10577-010-9129-8 DOI
Fonsêca A, Ferraz ME, Pedrosa-Harand A (2016) Speeding up chromosome evolution in Phaseolus: multiple rearrangements associated with a one-step descending dysploidy. Chromosoma 125:413–421. https://doi.org/10.1007/s00412-015-0548-3 PubMed DOI
Fornaini NR, Bergelová B, Gvoždík V, Černohorská H, Krylov V, Kubíčková S, Fokam EB, Badjedjea G, Evans BJ, Knytl M (2023) Consequences of polyploidy and divergence as revealed by cytogenetic mapping of tandem repeats in African clawed frogs (Xenopus, Pipidae). Eur J Wildl Res 69:81. https://doi.org/10.1007/s10344-023-01709-8 PubMed DOI PMC
Galasso I, Pignone D, Perrino P (1993) Cytotaxonomic studies in Vigna. II. Heterochromatin characterization in Vigna unguiculata and three related wild species. Caryologia 46:275–282. https://doi.org/10.1080/00087114.1993.10797267 DOI
Galasso I, Schmidt T, Pignone D, Heslop-Harrison JS (1995) The molecular cytogenetics of Vigna unguiculata (L.) Walp: the physical organization and characterization of 18S–5,8S–25S rRNA genes, 5S rRNA genes, telomere-like sequences, and a family of centromeric repetitive DNA sequences. Theor Appl Genet 91:928–935. https://doi.org/10.1007/BF00223902 PubMed DOI
Galasso I, Saponetti LS, Pignone D (1996) Cytotaxonomic studies in Vigna. III. Chromosomal distribution and reacting properties of the heterochromatin in five wild species of the section Vigna. Caryologia 49:311–319. https://doi.org/10.1080/00087114.1996.10797375 DOI
Galasso I, Harrison GE, Pignone D, Brandes A, Heslop-Harrison JS (1997) The distribution and organization of Ty1-copia-like retrotransposable elements in the genome of Vigna unguiculata (L.) Walp. (Cowpea) and its relatives. Ann Bot 80:327–333. https://doi.org/10.1006/anbo.1997.0443 DOI
Galasso I, Saponetti LS, Pignone D (1998) Cytotaxonomic studies in Vigna. IV. Variation of the number of active and silent rDNA sites in Vigna unguiculata populations. Caryologia 51:95–104. https://doi.org/10.1080/00087114.1998.10589124 DOI
Ganley AR, Kobayashi T (2007) Highly efficient concerted evolution in the ribosomal DNA repeats: total rDNA repeat variation revealed by whole-genome shotgun sequence data. Genome Res 17:184–191. https://doi.org/10.1101/gr.5457707 PubMed DOI PMC
Guerra M, Kenton A, Bennett MD (1996) rDNA sites in mitotic and polytene chromosomes of Vigna unguiculata (L.) Walp. and Phaseolus coccineus L. revealed by in situ hybridization. Ann Bot 78:157–161. https://doi.org/10.1006/anbo.1996.0108 DOI
He J, Lin S, Yu Z, Song A, Guan Z, Fang W, Chen S, Zhang F, Jiang J, Chen F, Wang H (2021) Identification of 5S and 45S rDNA sites in Chrysanthemum species by using oligonucleotide fluorescence in situ hybridization (Oligo-FISH). Mol Bio Rep 48:21–21. https://doi.org/10.1007/s11033-020-06102-1 DOI
Heslop-Harrison JS, Schwarzacher T, Anamthawat-Jónsson K, Leitch AR, Shi M (1991) In situ hybridization with automated chromosome denaturation. Technique 3:109–115. https://doi.org/10.1016/0168-9525(92)90287-e DOI
Heslop-Harrison JS, Harrison GE, Leitch IJ (1992) Reprobing of DNA: DNA in situ hybridization preparations. Trends Genet 8:372–373. https://doi.org/10.1016/0168-9525(92)90287-e PubMed DOI
Huang J, Ma L, Yang F, Fei SZ, Li L (2008) 45S rDNA regions are chromosome fragile sites expressed as gaps in vitro on metaphase chromosomes of root-tip meristematic cells in Lolium spp. PLoS ONE 3:e2167. https://doi.org/10.1371/journal.pone.0002167 PubMed DOI PMC
Ignacimuthu S, Babu CR (1988) Nuclear DNA and RNA amounts in the wild and cultivated Urd and Mung beans and their M1 plants. Cytologia 53:535–541. https://doi.org/10.1508/CYTOLOGIA.53.535 DOI
Iwata-Otsubo A, Jer-Young L, Navdeep G, Jackson SA (2016) Highly distinct chromosomal structures in cowpea (Vigna unguiculata), as revealed by molecular cytogenetic analysis. Chromosom Res 24:197–216. https://doi.org/10.1007/s10577-015-9515-3 DOI
Jiang J (2019) Fluorescence in situ hybridization in plants: recent developments and future applications. Chromosom Res 27:153–165. https://doi.org/10.1007/s10577-019-09607-z DOI
Kalendar R, Tanskanen J, Chang W, Antonius K, Sela H, Peleg O, Schulman AH (2008) Cassandra retrotransposons carry independently transcribed 5S RNA. Proc Natl Acad Sci 105:5833–5838. https://doi.org/10.1073/pnas.0709698105 PubMed DOI PMC
Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780. https://doi.org/10.1093/molbev/mst010 PubMed DOI PMC
Khattak AB, Bibi N, Aurangzeb, (2007) Quality assessment and consumers acceptability studies of newly evolved mung bean genotypes (Vigna radiata L.). American J Food Tech 2:536–542. https://doi.org/10.3923/ajft.2007.536.542 DOI
Lan H, Chen CL, Miao Y, Yu CX, Guo WW, Xu Q, Deng XX (2016) Fragile sites of “Valencia” sweet orange (Citrus sinensis) chromosomes are related with active 45s rDNA. PLoS ONE 11:e0151512. https://doi.org/10.1371/journal.pone.0151512 PubMed DOI PMC
Lee Y-I, Chung M-C, Kuo H-C, Wang C-N, Lee Y-C, Lin C-Y, Jiang H, Yeh C-H (2017) The evolution of genome size and distinct distribution patterns of rDNA in Phalaenopsis (Orchidaceae). Bot J Linn Soc 185:65–80. https://doi.org/10.1093/botlinnean/box049 DOI
Lewis GP (2005) Tribe caesalpinieae. In: Lewis G, Schrire B,Mackinder B, Lock M (eds) Legumes of the world. Royal Botanic Gardens, Kew, Londres, p 577
Li H, Wang W, Lin L, Zhu X, Li J, Zhu X, Chen Z (2013) Diversification of the Phaseoloid legumes: effects of climate change, range expansion and habit shift. Front Plant Sci 4:386. https://doi.org/10.3389/fpls.2013.00386 PubMed DOI PMC
Loureiro J, Rodriguez E, Doleẑel J, Santos C (2007) Two nuclear isolation buffers for plant DNA flow cytometry: a test with 37 species. Ann Bot 100:875–888. https://doi.org/10.1093/aob/mcm152 PubMed DOI PMC
McCann J, Macas J, Novák P, Stuessy TF, Villaseñor JL, Weiss-Schneeweiss H (2020) Differential genome size and repetitive DNA evolution in diploid species of Melampodium sect. Melampodium (Asteraceae). Front Plant Sci 11:362. https://doi.org/10.3389/fpls.2020.00362 PubMed DOI PMC
Moscone EA, Klein F, Lambrou M, Fuchs J, Schweizer D (1999) Quantitative karyotyping and dual-color FISH mapping of 5S and 18S–25S rDNA probes in the cultivated Phaseolus species (Leguminosae). Genome 42(6):1224–1233. https://doi.org/10.1139/g99-070 PubMed DOI
Nguyen XV, Nguyen-Nhat NT, Nguyen XT, Dao VH, Liao LM, Papenbrock J (2021) Analysis of rDNA reveals a high genetic diversity of Halophila major in the Wallacea region. PLoS ONE 16:e0258956. https://doi.org/10.1371/journal.pone.0258956 PubMed DOI PMC
Novák P, Guignard MS, Neumann P et al (2020) Repeat-sequence turnover shifts fundamentally in species with large genomes. Nat Plants 6:1325–1329. https://doi.org/10.1038/s41477-020-00785-x PubMed DOI
Oliveira ARS, do Vale Martins L, Bustamante FO, Muñoz-Amatriaín M, Close T, Costa AF, Benko-Iseppon AM, Pedrosa-Harand A, Brasileiro-Vidal AC (2020) Breaks of macrosynteny and collinearity among moth bean (Vigna aconitifolia), cowpea (V. unguiculata), and common bean (Phaseolus vulgaris). Chromosom Res 28:293–306. https://doi.org/10.1007/s10577-020-09635-0 DOI
Parida A, Raina SN, Narayan RKJ (1990) Quantitative DNA variation between and within chromosome complements of Vigna species (Fabaceae). Genetica 82:125–133. https://doi.org/10.1007/BF00124642 DOI
Pedrosa A, Jantsch MF, Moscone EA, Ambros PF, Schweizer D (2001) Characterisation of pericentromericand sticky intercalary heterochromatin in Ornithogalum longibracteatum (Hyacinthaceae). Chromosoma 110:203–213. https://doi.org/10.1007/s004120000125 PubMed DOI
Pedrosa A, Sandal N, Stougaard J, Schweizer D, Bachmair A (2002) Chromosomal map of the model legume Lotus japonicus. Genetics 161:1661–1672. https://doi.org/10.1093/genetics/161.4.1661 PubMed DOI PMC
Pedrosa-Harand A, Almeida CCS, Moisolek M, Blair MW, Schweizer D, Guerra M (2006) Extensive ribosomal DNA amplification during Andean common bean (Phaseolus vulgaris L.) evolution. Theor Appl Genet 112:924–933. https://doi.org/10.1007/s00122-005-0196-8 PubMed DOI
Pedrosa-Harand A, Kami J, Gepts P, Geffroy V, Schweizer D (2009) Cytogenetic mapping of common bean chromosomes reveals a less compartmentalized small-genome plant species. Chromosom Res 17:405–417. https://doi.org/10.1007/s10577-009-9031-4 DOI
Pellicer J, Fernández P, Fay MF, Michálková E, Leitch IJ (2021) Genome size doubling arises from the differential repetitive DNA dynamics in the genus Heloniopsis (Melanthiaceae). Front genet 12:726211. https://doi.org/10.3389/fgene.2021.799661 PubMed DOI PMC
Pignone D, Galasso I, Venora G (1995) Karyomorphological and heterochromatin similarities among four Vigna species. Genet Resour Crop Evol 42:57–60. https://doi.org/10.1007/BF02310684 DOI
Prokopowich CD, Gregory TR, Crease TJ (2002) The correlation between rDNA copy number and genome size in eukaryotes. Genome 46:48–50. https://doi.org/10.1139/g02-103 DOI
Querino BC, Ferraz ME, Mata-Sucre Y, Souza G, Felix LP (2020) Cytomolecular diversity of the subtribe Laeliinae (Epidendroidae, Orchidaceae) suggests no relationship between genome size and heterochromatin abundance. Plant Syst Evol 306:1–15. https://doi.org/10.1007/s00606-020-01650-2 DOI
Raskina O, Belyayev A, Nevo E (2004) Quantum speciation in Aegilops: Molecular cytogenetic evidence from rDNA cluster variability in natural populations. Proc Natl Acad Sci 101:14818–14823. https://doi.org/10.1073/pnas.0405817101 PubMed DOI PMC
Raskina O, Belyayev A, Nevo E (2004) Activity of the En/Spm-like transposons in meiosis as a base for chromosome repatterning in a small, isolated, peripheral population of Aegilops speltoides Tausch. Chromosom Res 12:153–161. https://doi.org/10.1023/b:chro.0000013168.61359.43 DOI
Reeves A (2011) MicroMeasure: A new computer program for the collection and analysis of cytogenetic data. Genome 44:439–443. https://doi.org/10.1139/g01-037 DOI
Roa F, Guerra M (2012) Distribution of 45S rDNA sites in chromosomes of plants: Structural and evolutionary implications. BMC Evol Biol 12:225–238. https://doi.org/10.1186/1471-2148-12-225 PubMed DOI PMC
Roa F, Guerra M (2015) Non-Random Distribution of 5S rDNA sites and its association with 45S rDNA in plant chromosomes. Cytogenet Genome Res 146:243–249. https://doi.org/10.1159/000440930 PubMed DOI
Ronquist F, Teslenko M, van der Mark P (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542. https://doi.org/10.1093/sysbio/sys029 PubMed DOI PMC
Rosato M, Alvarez I, Feliner GN, Rosselló JÁ (2017) High and uneven levels of 45S rDNA site number variation across wild populations of a diploid plant genus (Anacyclus, Asteraceae). PLoS ONE 12:e0187131. https://doi.org/10.1371/journal.pone.0187131 PubMed DOI PMC
Rosselló JA, Maravilla AJ, Rosato M (2022) The nuclear 35S rDNA world in plant systematics and evolution: A primer of cautions and common misconceptions in cytogenetic studies. Front Plant Sci 13:788911. https://doi.org/10.3389/fpls.2022.788911 PubMed DOI PMC
Sang T, Crawford DJ, Stuessy TF (1997) Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). Am J Bot 84:1120–1136 PubMed DOI
Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot 64:315–324. https://doi.org/10.1093/oxfordjournals.aob.a087847 DOI
Schweizer D, Ambros PF (1994) Chromosome banding. Stain combinations for specific regions. Methods Mol Biol 29:97–112. https://doi.org/10.1159/000131482 PubMed DOI
Senderowicz M, Nowak T, Weiss-Schneeweiss H, Papp L, Kolano B (2022) Molecular and cytogenetic analysis of rDNA evolution in Crepis sensu lato. Int J Mol Sci 23:3643. https://doi.org/10.3390/ijms23073643 PubMed DOI PMC
Shamurailatpam A, Madhavan L, Yadav SR, Bhat KV, Rao SR (2015) Heterochromatin characterization through differential fluorophore binding pattern in some species of Vigna Savi. Protoplasma 252:629–635. https://doi.org/10.1007/s00709-014-0708-y PubMed DOI
Shamurailatpam A, Madhavan L, Yadav SR, Bhat KV, Rao SR (2015) Heterochromatin distribution and comparative karyo-morphological studies in Vigna umbellata Thunberg, 1969 and V. aconitifolia Jacquin, 1969 (Fabaceae) accessions. Comp Cytogenet 9:119–132. https://doi.org/10.3897/CompCytogen.v9i1.9012 PubMed DOI PMC
She CW, Jiang XH (2015) Karyotype Analysis of Lablab purpureus (L.) Sweet Using Fluorochrome Banding and Fluorescence in situ Hybridization with rDNA Probes. Czech J Genet Plant Breed 51:110–116. https://doi.org/10.17221/32/2015-CJGPB DOI
She CW, Jiang XH, Ou LJ, Liu J, Long KL, Zhang LH, Duan WT, Zhao W, Hu JC (2015) Molecular cytogenetic characterization and phylogenetic analysis of the seven cultivated Vigna species (Fabaceae). Plant Biol 17:268–280. https://doi.org/10.1111/plb.12174 PubMed DOI
She CW, Mao Y, Jiang XH, He CP (2020) Comparative molecular cytogenetic characterization of five wild Vigna species (Fabaceae). Comp Cytogenet 14:243–264. https://doi.org/10.3897/CompCytogen.v14i2.51154 PubMed DOI PMC
Singh M, Barman AS (2013) Chromosome breakages associated with 45S ribosomal DNA sequences in spotted snakehead fish Channa punctatus. Mol Biol Rep 40:723–729. https://doi.org/10.1007/s11033-012-2112-z PubMed DOI
Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033 PubMed DOI PMC
Su D, Chen L, Sun J, Zhang L, Gao R, Li Q, Han Y, Li Z (2020) Comparative Chromosomal localization of 45S and 5S rDNA sites in 76 purple-fleshed sweet potato cultivars. Plants 9:865. https://doi.org/10.3390/plants9070865 PubMed DOI PMC
Tchurikov NA, Fedoseeva DM, Sosin DV, Snezhkina AV, Melnikova NV, Kudryavtseva AV, Kravatsky YV, Kretova OV (2015) Hot spots of DNA double-strand breaks and genomic contacts of human rDNA units are involved in epigenetic regulation. J Mol Cell Biol 7:366–382. https://doi.org/10.1093/jmcb/mju038 PubMed DOI
Unfried K, Schiebel K, Hemleben V (1991) Subrepeats of rDNA intergenic spacer present as prominent independent satellite DNA in Vigna radiata but not in Vigna angularis. Gene 99:63–68. https://doi.org/10.1016/0378-1119(91)90034-9 PubMed DOI
Van-Lume B, Esposito T, Diniz-Filho JAF, Gagnon E, Lewis GP, Souza G (2017) Heterochromatic and cytomolecular diversification in the Caesalpinia group (Leguminosae): Relationships between phylogenetic and cytogeographical data. Perspectives Plant Ecol Evol Syst 29:51–63. https://doi.org/10.1016/j.ppees.2017.11.00 DOI
Vasconcelos EV, Fonsêca A, Pedrosa-Harand A, Bortoleti KCA, Benko-Iseppon AM, da Costa AF, Brasileiro-Vidal AC (2015) Intra- and interchromosomal rearrangements between cowpea [Vigna unguiculata (L.) Walp.] and common bean (Phaseolus vulgaris L.) revealed by BAC-FISH. Chromosom Res 23:253–266. https://doi.org/10.1007/s10577-014-9464-2 DOI
Vasconcelos S, Soares ML, Sakuragui CM, Croat TB, Oliveira G, Benko-Iseppon AM (2018) New insights on the phylogenetic relationships among the traditional Philodendron subgenera and the other groups of the Homalomena clade (Araceae). Mol Phylogenet Evol 127:168–178. https://doi.org/10.1016/j.ympev.2018.05.017 PubMed DOI
Wanzenböck EM, Schöfer C, Schweizer D, Bachmair A (1997) Ribosomal transcription units integrated via T-DNA transformation associate with the nucleolus and do not require upstream repeat sequences for activity in Arabidopsis thaliana. Plant J 11:1007–1016. https://doi.org/10.1046/j.1365-313x.1997.11051007.x PubMed DOI
Weising K, Nybom H, Wolff K, Kahl G (2005) Methodology. In: Weising K, Nybom H, Wolff K, Kahl G (eds) DNA Fingerprinting in plants, 2nd edn. CRC Press is an imprint of Taylor & Francis Group, Boca Raton, pp 02–107. https://doi.org/10.1093/aob/mcj057 DOI
Wendel JF, Schnabel A, Seelanan T (1995) Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc Natl Acad Sci 92:280–284. https://doi.org/10.1073/pnas.92.1.280 PubMed DOI PMC
White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ (eds) White TJ PCR Protocols: a guide to methods and applications. Academic Press, New York, pp 315–322. https://doi.org/10.1016/B978-0-12-372180-8.50042-1 DOI
Yucel G, Betekhtin A, Cabi E, Tuna M, Hasterok R, Kolano B (2022) The Chromosome number and rDNA loci evolution in Onobrychis (Fabaceae). Int J Mol Sci 23:103. https://doi.org/10.3390/ijms231911033 DOI
Zheng JY, Nakata M, Irifune K, Tanaka R, Morikawa H (1993) Fluorescent banding pattern analysis of eight taxa of Phaseolus and Vigna in relation to their phylogenetic relationships. Theor Appl Genet 87:38–43. https://doi.org/10.1007/BF00223741 PubMed DOI
Zheng J, Irifune K, Hirai K, Nakata M, Tanaka R, Morikawa H (1994) In situ hybridization to metaphase chromosomes in six species of Phaseolus and Vigna using ribosomal DNA as the probe. J Plant Res 107:365–369. https://doi.org/10.1007/BF02344058 DOI