A Detailed Karyological Investigation of three Endemic Cobitis Linnaeus, 1758 Species (Teleostei, Cobitidae) in Anatolia, Türkiye

. 2024 ; 164 (5-6) : 243-256. [epub] 20241202

Jazyk angličtina Země Švýcarsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39622218

INTRODUCTION: Comparative cytogenetics is a vital approach for diagnosing chromosome abnormalities and identifying species-specific patterns. In this study, chromosomal analysis of three Anatolian endemic Cobitis species was performed: Cobitis bilseli, C. fahireae, and C. turcica. METHODS: Conventional cytogenetic techniques such as Giemsa staining, C-banding, and Ag-NOR staining were applied, followed by measurements of chromosome arm lengths including analysis of the measured data. RESULTS: The diploid chromosome number, 2n = 50, was determined for all three species. The karyotype formulas were as follows: four pairs of metacentric, 5 pairs of submetacentric, and 16 pairs of subtelo-telocentric chromosomes in C. bilseli; 11 pairs of metacentric, 7 pairs of submetacentric, and 7 pairs of subtelo-telocentric chromosomes in C. fahireae; and 4 pairs of metacentric, 4 pairs of submetacentric, and 17 pairs of subtelo-telocentric chromosomes in C. turcica. Dark C-bands were observed on the pericentromeres of nearly all chromosomes in C. bilseli and C. turcica, whereas light C-bands appeared on the pericentromeres of some chromosomes in C. fahireae. Silver-stained metaphases revealed signals on the short arm of a submetacentric chromosome pair in C. fahireae (each homologous chromosome carries one signal), while in C. bilseli and C. turcica, Ag-NOR signals were detected on the long arm of a single metacentric chromosome (only one homologous chromosome carries the signal, and the signal-carrying chromosome is the largest chromosome in the karyotype). CONCLUSION: This study provides new cytogenetic data consistent with the phylogenetic distances between the studied species, indicating that pericentric inversions and/or translocations govern the formation of Cobitis karyotypes. INTRODUCTION: Comparative cytogenetics is a vital approach for diagnosing chromosome abnormalities and identifying species-specific patterns. In this study, chromosomal analysis of three Anatolian endemic Cobitis species was performed: Cobitis bilseli, C. fahireae, and C. turcica. METHODS: Conventional cytogenetic techniques such as Giemsa staining, C-banding, and Ag-NOR staining were applied, followed by measurements of chromosome arm lengths including analysis of the measured data. RESULTS: The diploid chromosome number, 2n = 50, was determined for all three species. The karyotype formulas were as follows: four pairs of metacentric, 5 pairs of submetacentric, and 16 pairs of subtelo-telocentric chromosomes in C. bilseli; 11 pairs of metacentric, 7 pairs of submetacentric, and 7 pairs of subtelo-telocentric chromosomes in C. fahireae; and 4 pairs of metacentric, 4 pairs of submetacentric, and 17 pairs of subtelo-telocentric chromosomes in C. turcica. Dark C-bands were observed on the pericentromeres of nearly all chromosomes in C. bilseli and C. turcica, whereas light C-bands appeared on the pericentromeres of some chromosomes in C. fahireae. Silver-stained metaphases revealed signals on the short arm of a submetacentric chromosome pair in C. fahireae (each homologous chromosome carries one signal), while in C. bilseli and C. turcica, Ag-NOR signals were detected on the long arm of a single metacentric chromosome (only one homologous chromosome carries the signal, and the signal-carrying chromosome is the largest chromosome in the karyotype). CONCLUSION: This study provides new cytogenetic data consistent with the phylogenetic distances between the studied species, indicating that pericentric inversions and/or translocations govern the formation of Cobitis karyotypes.

Zobrazit více v PubMed

Vasil’eva ED, Solovyeva EN, Vasil’ev VP. Phylogenetic relationships, taxonomy and diagnostics of spined loaches (Cobitidae: Cobitis, Sabanejewia) of the Caspian Sea basin. Proceedings of the 9th National and 1st International Iranian Conference of Ichthyology. 2021. p. 79–90.

Freyhof J, BayÇelebİ E, Geiger M. Review of the genus Cobitis in the Middle East, with the description of eight new species (Teleostei: Cobitidae). Zootaxa. 2018;4535(1):1–75. PubMed

Majtánová Z, Choleva L, Symonová R, Ráb P, Kotusz J, Pekárik L, et al. . Asexual reproduction does not apparently increase the rate of chromosomal evolution: karyotype stability in diploid and triploid clonal hybrid fish (Cobitis, Cypriniformes, Teleostei). PLoS One. 2016;11(1):e0146872. PubMed PMC

Boroń A. Banded karyotype of spined loach Cobitis taenia and triploid Cobitis from Poland. Genetica. 1999;105(3):293–300. PubMed

Levan A, Fredga K, Sandberg AA. Nomenclature for centromeric position on chromosomes. Hereditas. 2009;52(2):201–20.

Rábová M, Ráb P, Ozouf-Costaz C. Extensive polymorphism and chromosomal characteristics of ribosomal DNA in a loach fish, Cobitis vardarensis (Ostariophysi, Cobitidae) detected by different banding techniques and fluorescence in situ hybridization (FISH). Genetica. 2001;111(1–3):413–22. PubMed

Fornaini NR, Černohorská H, do Vale Martins L, Knytl M. Cytogenetic analysis of the fish genus Carassius indicates divergence, fission and segmental duplication as drivers of tandem repeat and microchromosome evolution. Genome Biol Evol. 2024;16(3):1–13. PubMed PMC

Gvoždík V, Knytl M, Zassi-Boulou A-G, Fornaini NR, Bergelová B. Tetraploidy in the Boettger’s dwarf clawed frog (Pipidae: Hymenochirus boettgeri) from the Congo indicates non-conspecificity with the captive population. Zool J Linn Soc. 2024;200(4):1034–47.

Schubert I. What is behind “centromere repositioning”. Chromosoma. 2018;127(2):229–34. PubMed

Knytl M, Tlapakova T, Vankova T, Krylov V. Silurana chromosomal evolution: a new piece to the puzzle. Cytogenet Genome Res. 2018;156(4):223–8. PubMed

Knytl M, Forsythe A, Kalous L. A fish of multiple faces, which show us enigmatic and incredible phenomena in nature: biology and cytogenetics of the genus Carassius. Int J Mol Sci. 2022;23(15):8095. PubMed PMC

Song X-Y, Furman BLS, Premachandra T, Knytl M, Cauret CMS, Wasonga DV, et al. . Sex chromosome degeneration, turnover, and sex-biased expression of sex-linked transcripts in African clawed frogs (Xenopus). Philos Trans R Soc Lond B Biol Sci. 2021;376(1832):20200095. PubMed PMC

Evans BJ, Mudd AB, Bredeson JV, Furman BLS, Wasonga DV, Lyons JB, et al. . New insights into Xenopus sex chromosome genomics from the Marsabit clawed frog X. borealis. J Evol Biol. 2022;35(12):1777–90. PubMed PMC

Eagderi S, Secer B, Freyhof J. Cobitis indus, a new spined loach from the Dalaman River in the Eastern Aegean Sea basin (Teleostei: Cobitidae). Zootaxa. 2022;5162(4):410–20. PubMed

Değer D. The karyological investigations of some types from Cobitoidea from river system Tigris and Euphrates; 2011.

Ayata MK, Unal S, Gaffaroğlu M. Chromosomal analyses of Cobitis phrygica Battalgazi, 1944 and C. simplicispina Hanko, 1925 (Teleostei, Cobitidae). Cytologia. 2018;83(3):295–9.

Doori ASJ, Arslan A. Karyological analysis of endemic loach Cobitis bilseli Battalgil, 1942 (Cobitidae) in Turkey. Cytologia. 2024;89(1):47–51.

Bertollo LAC, Cioffi MB, Moreira-Filho O. Direct chromosome preparation from freshwater teleost fishes. In: Ozouf-Costaz C, Pisano E, Foresti F, de Almeida Toledo LF, eds. Fish cytogenetic techniques: ray-fin fishes and chondrichthyans. Boca Raton: CRC Press; 2015. p. 21–6.

Sumner AT. A simple technique for demonstrating centromeric heterochromatin. Exp Cell Res. 1972;75(1):304–6. PubMed

Howell WM, Black DA. Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia. 1980;36(8):1014–5. PubMed

Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–5. PubMed PMC

Knytl M, Fornaini NR. Measurement of chromosomal arms and FISH reveal complex genome architecture and standardized karyotype of model fish, genus Carassius. Cells. 2021;10(9):2343. PubMed PMC

Knytl M, Fornaini NR, Bergelová B, Gvoždík V, Černohorská H, Kubíčková S, et al. . Divergent subgenome evolution in the allotetraploid frog Xenopus calcaratus. Gene. 2023;851:146974. PubMed

R Core Team . R: a Language and environment for statistical computing; 2020. Available from: https://www.r-project.org/

Sember A, Bohlen J, Šlechtová V, Altmanová M, Pelikánová Š, Ráb P. Dynamics of tandemly repeated DNA sequences during evolution of diploid and tetraploid botiid loaches (Teleostei: Cobitoidea: Botiidae). PLoS One. 2018;13(3):e0195054. PubMed PMC

Sember A, Pelikánová Š, de Bello Cioffi M, Šlechtová V, Hatanaka T, Do Doan H, et al. . Taxonomic diversity not associated with gross karyotype differentiation: the case of bighead carps, genus Hypophthalmichthys (Teleostei, Cypriniformes, Xenocyprididae). Genes. 2020;11(5):479. PubMed PMC

Krysanov EY, Nagy B, Watters BR, Sember A, Simanovsky SA. Karyotype differentiation in the Nothobranchius ugandensis species group (Teleostei, Cyprinodontiformes), seasonal fishes from the east African inland plateau, in the context of phylogeny and biogeography. Comp Cytogenet. 2023;17(1):13–29. PubMed PMC

Ráb P, Hnátková E, Majtánová Z, Šlechtová VB, Bohlen J. Karyotype record for the morphologically derived, rarely collected, freshwater fish Ellopostoma mystax (Cypriniformes, Cobitoidea, Ellopostomatidae). Ichthyol Herpetol. 2021;109(4):998–1001.

Madeira JM, Collares-Pereira MJ, Elvira B. Cytotaxonomy of Iberian loaches with some remarks on the karyological evolution of both families (Pisces, Cobitidae, Homalopteridae). Caryologia. 1992;45(3–4):273–81.

Janko K, Vasil’ev VP, Ráb P, Rábová M, Šlechtová V, Vasil’eva ED. Genetic and morphological analyses of 50-chromosome spined loaches (Cobitis, Cobitidae, Pisces) from the Black Sea basin that are morphologically similar to C. taenia, with the description of a new species. Folia Zool Brno. 2005;54(4):405–20.

Vasil’ev VP, Vasil’eva ED. Comparative karyological analysis of mud loach and spined loach species (genera Misgurnus and Cobitis) from the far east region of Russia. Folia Zool Brno. 2008;57(1–2):51–9.

Esmaeili HR, Pirvar Z, Ebrahimi M, F Geiger M. Karyological and molecular analysis of three endemic loaches (Actinopterygii: cobitoidea) from Kor River basin, Iran. Mol Biol Res Commun. 2015;4(1):1–13. PubMed PMC

Hnátková E, Triantaphyllidis C, Ozouf-Costaz C, Choleva L, Majtánová Z, Bohlen J, et al. . Karyotype and chromosomal characteristics of rDNA of Cobitis strumicae Karaman, 1955 (Teleostei, Cobitidae) from Lake Volvi, Greece. Comp Cytogenet. 2018;12(4):483–91. PubMed PMC

Vasil’eva ED, Solovyeva EN, Levin BA, Vasil’ev VP. Cobitis derzhavini sp. nova—a new spined loach species (Teleostei: Cobitidae) discovered in the Transcaucasia. J Ichthyol. 2020;60(2):135–53.

Marta A, Dedukh D, Bartoš O, Majtánová Z, Janko K. Cytogenetic characterization of seven novel satDNA markers in two species of spined loaches (Cobitis) and their clonal hybrids. Genes. 2020;11(6):617. PubMed PMC

Knytl M, Kalous L, Rylková K, Choleva L, Merilä J, Ráb P. Morphologically indistinguishable hybrid Carassius female with 156 chromosomes: a threat for the threatened crucian carp, C. carassius, L. PLoS One. 2018;13(1):e0190924. PubMed PMC

Symonová R, Howell WM. Vertebrate genome evolution in the light of fish cytogenomics and rDNAomics. Genes. 2018;9(2):96–27. PubMed PMC

Perdices A, Ozeren CS, Erkakan F, Freyhof J. Diversity of spined loaches from Asia Minor in a phylogenetic context (Teleostei: Cobitidae). PLoS One. 2018;13(10):e0205678. PubMed PMC

Schmid M. Chromosome banding in Amphibia. Chromosoma. 1982;87(3):327–44.

Dias S, Souza RC, Vasconcelos EV, Vasconcelos S, da Silva Oliveira AR, do Vale Martins L, et al. . Cytomolecular diversity among Vigna Savi (Leguminosae) subgenera. Protoplasma. 2024;261(5):859–75. PubMed

Dobigny G, Ozouf-Costaz C, Bonillo C, Volobouev V. “Ag-NORs” are not always true NORs: new evidence in mammals. Cytogenet Genome Res. 2002;98(1):75–7. PubMed

Knytl M, Kalous L, Rab P. Karyotype and chromosome banding of endangered crucian carp, Carassius carassius (Linnaeus, 1758)(Teleostei, Cyprinidae). Comp Cytogenet. 2013;7(3):205–15. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace