Karyotype differentiation in the Nothobranchiusugandensis species group (Teleostei, Cyprinodontiformes), seasonal fishes from the east African inland plateau, in the context of phylogeny and biogeography
Status PubMed-not-MEDLINE Jazyk angličtina Země Bulharsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
37305809
PubMed Central
PMC10252138
DOI
10.3897/compcytogen.v7.i1.97165
PII: 97165
Knihovny.cz E-zdroje
- Klíčová slova
- 2n uniformity, chromosome evolution, chromosome inversion, chromosomes, cytogenetics, karyotype variability,
- Publikační typ
- časopisecké články MeSH
The karyotype differentiation of the twelve known members of the Nothobranchiusugandensis Wildekamp, 1994 species group is reviewed and the karyotype composition of seven of its species is described herein for the first time using a conventional cytogenetic protocol. Changes in the architecture of eukaryotic genomes often have a major impact on processes underlying reproductive isolation, adaptation and diversification. African annual killifishes of the genus Nothobranchius Peters, 1868 (Teleostei: Nothobranchiidae), which are adapted to an extreme environment of ephemeral wetland pools in African savannahs, feature extensive karyotype evolution in small, isolated populations and thus are suitable models for studying the interplay between karyotype change and species evolution. The present investigation reveals a highly conserved diploid chromosome number (2n = 36) but a variable number of chromosomal arms (46-64) among members of the N.ugandensis species group, implying a significant role of pericentric inversions and/or other types of centromeric shift in the karyotype evolution of the group. When superimposed onto a phylogenetic tree based on molecular analyses of two mitochondrial genes the cytogenetic characteristics did not show any correlation with the phylogenetic relationships within the lineage. While karyotypes of many other Nothobranchius spp. studied to date diversified mainly via chromosome fusions and fissions, the N.ugandensis species group maintains stable 2n and the karyotype differentiation seems to be constrained to intrachromosomal rearrangements. Possible reasons for this difference in the trajectory of karyotype differentiation are discussed. While genetic drift seems to be a major factor in the fixation of chromosome rearrangements in Nothobranchius, future studies are needed to assess the impact of predicted multiple inversions on the genome evolution and species diversification within the N.ugandensis species group.
Parkwood Drive Nanaimo British Columbia V9T 6A2 Nanaimo Canada Unaffiliated Nanaimo Canada
voie de la Liberté 77870 Vulaines sur Seine France Unaffiliated Vulaines sur Seine France
Zobrazit více v PubMed
Arai R. (2011) Fish karyotypes – a Check List. Springer, 340 pp. 10.1007/978-4-431-53877-6 DOI
Arostegui MC, Quinn TP, Seeb LW, Seeb JE, McKinney GJ. (2019) Retention of a chromosomal inversion from an anadromous ancestor provides the genetic basis for alternative freshwater ecotypes in rainbow trout. Molecular Ecology 28: 1412–1427. 10.1111/mec.15037 PubMed DOI
Bartáková V, Reichard M, Janko K, Polačik M, Blažek R, Reichwald K, Cellerino A, Bryja J. (2013) Strong population genetic structuring in an annual fish, Nothobranchiusfurzeri, suggests multiple savannah refugia in southern Mozambique. BMC Ecology and Evolution 13: e196. 10.1186/1471-2148-13-196 PubMed DOI PMC
Bartáková V, Reichard M, Blažek R, Polačik M, Bryja J. (2015) Terrestrial fishes: rivers are barriers to gene flow in annual fishes from the African savanna. Journal of Biogeography 42: 1832–1844. 10.1111/jbi.12567 DOI
Brown RE, Freudenreich CH. (2021) Structure-forming repeats and their impact on genome stability. Current Opinion in Genetics & Development 67: 41–51. 10.1016/j.gde.2020.10.006 PubMed DOI PMC
Cellerino A, Valenzano DR, Reichard M. (2016) From the bush to the bench: the annual Nothobranchius fishes as a new model system in biology. Biological Reviews 91: 511–533. 10.1111/brv.12183 PubMed DOI
Connallon T, Olito C, Dutoit L, Papoli H, Ruzicka F, Yong L. (2018) Local adaptation and the evolution of inversions on sex chromosomes and autosomes. Philosophical Transactions of the Royal Society B 373: e20170423. 10.1098/rstb.2017.0423 PubMed DOI PMC
Cui R, Medeiros T, Willemsen D, Iasi LNM, Collier GE, Graef M, Reichard M, Valenzano DR. (2019) Relaxed selection limits lifespan by increasing mutation load. Cell 178: 385–399.[e20] 10.1016/j.cell.2019.06.004 PubMed DOI
Dorn A, Musilova Z, Platzer M, Reichwald K, Cellerino A. (2014) The strange case of East African annual fish: aridification correlates with diversification for a savannah aquatic group? BMC Evolutionary Biology 14: e210. 10.1186/s12862-014-0210-3 PubMed DOI PMC
Ewulonu UV, Haas R, Turner BJ. (1985) A multiple sex chromosome system in the annual killifish, Nothobranchiusguentheri. Copeia 2: 503–508. 10.2307/1444868 DOI
Harrison T, Mbago ML. (1997) Introduction: paleontological and geological research in the Manonga Valley, Tanzania. In: Harrison T (Ed.) Neogene Paleontology of the Manonga Valley, Tanzania: a window into the evolutionary history of East Africa. Springer, Boston, 32 pp. 10.1007/978-1-4757-2683-1_1 DOI
Hoffmann AA, Rieseberg LH. (2008) Revisiting the impact of inversions in evolution: from population genetic markers to drivers of adaptive shifts and speciation? Annual Review of Ecology, Evolution, and Systematics 39: 21–42. 10.1146/annurev.ecolsys.39.110707.173532 PubMed DOI PMC
Jubb RA. (1981) Nothobranchius. T.F. H., Neptune City, 61 pp.
King M. (1993) Species Evolution: The Role of Chromosomal Change. Cambridge University Press, Cambridge.
Kirubakaran TG, Grove H, Kent MP, Sandve SR, Baranski M, Nome T, De Rosa MC, Righino B, Johansen T, Otterå H, Sonesson A, Lien S, Andersen Ø. (2016) Two adjacent inversions maintain genomic differentiation between migratory and stationary ecotypes of Atlantic cod. Molecular Ecology 25: 2130–2143. 10.1111/mec.13592 PubMed DOI
Kligerman AD, Bloom SE. (1977) Rapid chromosome preparations from solid tissues of fishes. Journal of the Fisheries Research Board of Canada 34: 266–269. 10.1139/f77-039 DOI
Krysanov (1992) Aneuploidy in postnatal ontogenesis of fishes. Acta Zoologica Fennica 191: 177–182.
Krysanov E, Demidova T. (2018) Extensive karyotype variability of African fish genus Nothobranchius (Cyprinodontiformes). Comparative Cytogenetics 12(3): 387–402. 10.3897/CompCytogen.v12i3.25092 PubMed DOI PMC
Krysanov E, Demidova T, Nagy B. (2016) Divergent karyotypes of the annual killifish genus Nothobranchius (Cyprinodontiformes, Nothobranchiidae). Comparative Cytogenetics 10(3): 439–445. 10.3897/CompCytogen.v10i3.9863 PubMed DOI PMC
Krysanov EYu, Ordzhonikidze KG, Simanovsky SA. (2018) Cytogenetic indicators in estimation of environmental state. Russian Journal of Developmental Biology 49: 36–41. 10.1134/S1062360418010034 DOI
Levan A, Fredga K, Sandberg A. (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52: 201–220. 10.1111/j.1601-5223.1964.tb01953.x DOI
Li S-F, Su T, Cheng G-Q, Wang B-X, Li X, Deng C-L, Gao W-J. (2017) Chromosome evolution in connection with repetitive sequences and epigenetics in plants. Genes 8: e290. 10.3390/genes8100290 PubMed DOI PMC
Lu M, He X. (2019) Centromere repositioning causes inversion of meiosis and generates a reproductive barrier. Proceedings of the National Academy of Sciences 116(43): 21580–21591. 10.1073/pnas.1911745116 PubMed DOI PMC
Motta-Neto CCd, Cioffi MdB, Costa GWWFd, Amorim KDJ, Bertollo LAC, Artoni RF, Molina WF. (2019) Overview on karyotype stasis in Atlantic grunts (Eupercaria, Haemulidae) and the evolutionary extensions for other marine fish groups. Frontiers in Marine Science 6: e628. 10.3389/fmars.2019.00628 DOI
Nagy B. (2015) Life history and reproduction of Nothobranchius fishes. Journal of the American Killifish Association 47(4–6): 182–192. 10.5281/zenodo.4393325 DOI
Nagy B. (2018) Nothobranchiusditte, a new species of annual killifish from the Lake Mweru basin in the Democratic Republic of the Congo (Teleostei: Nothobranchiidae). Ichthyological Exploration of Freshwaters 28(2): 115–134.
Nagy B, Cotterill FPD, Bellstedt DU. (2016) Nothobranchiussainthousei, a new species of annual killifish from the Luapula River drainage in northern Zambia (Teleostei: Cyprinodontiformes). Ichthyological Exploration of Freshwaters 27(3): 233–254. 10.2989/16085914.2017.1372270 DOI
Nagy B, Watters BR. (2021) A review of the conservation status of seasonal Nothobranchius fishes (Teleostei: Cyprinodontiformes), a genus with a high level of threat, inhabiting ephemeral wetland habitats in Africa. Aquatic Conservation: Marine and Freshwater Ecosystems 32(1): 199–216. 10.1002/aqc.3741 DOI
Nagy B, Watters BR, van der Merwe PDW, Cotterill FPD, Bellstedt DU. (2017) Nothobranchiuscooperi (Teleostei: Cyprinodontiformes): a new species of annual killifish from the Luapula River drainage, northern Zambia. African Journal of Aquatic Science 42(3): 201–218. 10.2989/16085914.2017.1372270 DOI
Nagy B, Watters BR, van der Merwe PDW, Cotterill FPD, Bellstedt DU. (2020) Review of the Nothobranchiusugandensis species group from the inland plateau of eastern Africa with descriptions of six new species (Teleostei: Nothobranchiidae). Ichthyological Exploration of Freshwaters, 30(1): 21–73. 10.23788/IEF-1129 DOI
Pearse DE, Barson NJ, Nome T, Gao G, Campbell MA, Abadía-Cardoso A, Anderson EC, Rundio DE, Williams TH, Naish KN, Moen T, Liu S, Kent M, Moser M, Minkley DR, Rondeau EB, Brieuc MSO, Sandve SR, Miller MR, Cedillo L, Baruch K, Hernandez AG, Ben-Zvi G, Shem-Tov D, Barad O, Kuzishchin K, Garza JC, Lindley ST, Koop BF, Thorgaard GH, Palti Y. (2019) Sex-dependent dominance maintains migration supergene in rainbow trout. Nature Ecology & Evolution 3: 1731–1742. 10.1038/s41559-019-1044-6 PubMed DOI
Petrou EL, Fuentes-Pardo AP, Rogers LA, Orobko M, Tarpey C, Jiménez-Hidalgo I, Moss ML, Yang D, Pitcher TJ, Sandell T, Lowry D, Ruzzante DE, Hauser L. (2021) Functional genetic diversity in an exploited marine species and its relevance to fisheries management. Proceedings of the Royal Society B: Biological Sciences 288: e20202398. 10.1098/rspb.2020.2398 PubMed DOI PMC
Rambaut A, Drummond AJ. (2012) FigTree version 1.4. https://github.com/rambaut/figtree
Redi CA, Garagna S, Della Valle G, Bottiroli G, Dell´Orto P, Viale G, Peverali FA, Raimondi E, Forejt J. (1990) Differences in the organization and chromosomal allocation of satellite DNA between the European long-tailed house mice Musdomesticus and Musmusculus. Chromosoma 99: 11–17. 10.1007/BF01737284 PubMed DOI
Reichwald K, Lauber C, Nanda I, Kirschner J, Hartmann N, Schories S, Gausmann U, Taudien S, Schilhabel MB, Szafranski K, Glöckner G, Schmid M, Cellerino A, Schartl M, Englert C, Platzer M. (2009) High tandem repeat content in the genome of the short-lived annual fish Nothobranchiusfurzeri: a new vertebrate model for aging research. Genome Biology 10: R16. 10.1186/gb-2009-10-2-r16 PubMed DOI PMC
Reichwald K, Petzold A, Koch P, Downie BR, Hartmann N, Pietsch S, Baumgart M, Chalopin D, Felder M, Bens M, Sahm A, Szafranski K, Taudien S, Groth M, Arisi I, Weise A, Bhatt SS, Sharma V, Kraus JM, Schmid F, Priebe S, Liehr T, Görlach M, Than ME, Hiller M, Kestler HA, Volff JN, Schartl M, Cellerino A, Englert C, Platzer M. (2015) Insights into sex chromosome evolution and aging from the genome of a short-lived fish. Cell 163: 1527–1538. 10.1016/j.cell.2015.10.071 PubMed DOI
Ronquist F, Huelsenbeck JP. (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12): 1572–1574. 10.1093/bioinformatics/btg180 PubMed DOI
Said I, Byrne A, Serrano V, Cardeno C, Vollmers C, Corbett-Detig R. (2018) Linked genetic variation and not genome structure causes widespread differential expression associated with chromosomal inversions. Proceedings of the National Academy of Sciences 115(21): 5492–5497. 10.1073/pnas.1721275115 PubMed DOI PMC
Scheel JJ. (1990) Atlas of killifishes of the Old World. T.F.H. Publications, Neptune, 448 pp.
Schubert I. (2018) What is behind “centromere repositioning”? Chromosoma 127: 229–234. 10.1007/s00412-018-0672-y PubMed DOI
Sidiropoulos N, Mardin BR, Rodríguez-González FG, Bochkov ID, Garg S, Stütz AM, Korbel JO, Aiden EL, Weischenfeldt J. (2022) Somatic structural variant formation is guided by and influences genome architecture. Genome Research 32(4): 643–655. 10.1101/gr.275790.121 PubMed DOI PMC
Sievers F, Wilm A, Dineen DG, Gibson TJ, Karplus K, Li W, Lopez R, McWilliam H, Remmert M, Söding J, Thompson JD, Higgins DG. (2011) Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology 7: e539. 10.1038/msb.2011.75 PubMed DOI PMC
Simanovsky SA, Demidova TB, Spangenberg VE, Matveevsky SN, Ordzhonikidze KG, Kolomiets OL, Krysanov EY. (2019) Multiple sex chromosome system X1X2Y in African killifish genera Nothobranchius and Fundulosoma (Cyprinodontiformes). Frontiers in Marine Science. Conference Abstract: XVI European Congress of Ichthyology. 10.3389/conf.fmars.2019.07.00158 DOI
Stevison LS, Hoehn KB, Noor MAF. (2011) Effects of inversions on within- and between-species recombination and divergence. Genome Biology and Evolution 3: 830–841. 10.1093/gbe/evr081 PubMed DOI PMC
Štundlová J, Hospodářská M, Lukšíková K, Voleníková A, Pavlica T, Altmanová M, Richter A, Reichard M, Dalíková M, Pelikánová Š, Marta A, Simanovsky SA, Hiřman M, Jankásek M, Dvořák T, Bohlen J, Ráb P, Englert C, Nguyen P, Sember A. (2022) Sex chromosome differentiation via changes in the Y chromosome repeat landscape in African annual killifishes Nothobranchiusfurzeri and N.kadleci. Chromosome Research 30: 309–333. 10.1007/s10577-022-09707-3 PubMed DOI
Sturtevant AH, Beadle GW. (1936) The relations of inversions in the X chromosome of Drosophilamelanogaster to crossing over and disjunction. Genetics 21: 554–604. 10.1093/genetics/21.5.554 PubMed DOI PMC
Van Damme D, Pickford M. (2003) The late Cenozoic Thiaridae (Mollusca, Gastropoda, Cerithioidea) of the Albertine Rift valley (Uganda-Congo) and their bearing on the origin and evolution of the Tanganyikan thalassoid malacofauna. Hydrobiologia 498: 1–83. 10.1023/A:1026298512117 DOI
van der Hoeven JC, Bruggeman IM, Alink GM, Koeman JH. (1982) The killifish Nothobranchiusrachowi, a new animal in genetic toxicology. Mutation Research 97: 35–42. ttps://10.1016/0165-1161(82)90017-6 PubMed DOI
van der Merwe PDW, Cotterill FPD, Kandziora M, Watters BR, Nagy B, Genade T, Flügel TJ, Svendsen DS, Bellstedt DU. (2021) Genomic fingerprints of palaeogeographic history: the tempo and mode of rift tectonics across tropical Africa has shaped the diversification of the killifish genus Nothobranchius (Teleostei: Cyprinodontiformes), Molecular Phylogenetics and Evolution 158: e106988. 10.1016/j.ympev.2020.106988 PubMed DOI
Vanderplank FL. (1940) A study of Nothobranchiustaeniopygus in its natural habitat. The Aquarist 10: 247–249.
Vara C, Paytuví-Gallart A, Cuartero Y, Álvarez-González L, Marín-Gual L, Garcia F, Florit-Sabater B, Capilla L, Sanchéz-Guillén RA, Sarrate Z, Aiese Cigliano R, Sanseverino W, Searle JB, Ventura J, Marti-Renom MA, Le Dily F, Ruiz-Herrera A. (2021) The impact of chromosomal fusions on 3D genome folding and recombination in the germ line. Nature Communications 12(1): 1–17. 10.1038/s41467-021-23270-1 PubMed DOI PMC
Villoutreix R, Ayala D, Joron M, Gompert Z, Feder JL, Nosil P. (2021) Inversion breakpoints and the evolution of supergenes. Molecular Ecology 30: 2738–2755. 10.1111/mec.15907 PubMed DOI PMC
Wang LB, Li ZK, Wang LY, Xu K, Ji TT, Mao YH, Ma SN, Liu T, Tu CF, Zhao Q, Fan XN, Liu C, Wang LY, Shu YJ, Yang N, Zhou Q, Li W. (2022) A sustainable mouse karyotype created by programmed chromosome fusion. Science 377(6609): 967–975. 10.1126/science.abm1964 PubMed DOI
Watters BR. (2009) The ecology and distribution of Nothobranchius fishes. Journal of the American Killifish Association 42(2): 37–76.
Watters BR, Nagy B, van der Merwe PDW, Cotterill FPD, Bellstedt DU. (2019) Review of the Nothobranchiustaeniopygus species group from central and western Tanzania with descriptions of five new species and redescription of Nothobranchiustaeniopygus (Teleostei: Nothobranchiidae). Ichthyological Exploration of Freshwaters 29(3): 239–278. 10.23788/IEF-1110 DOI
Watters BR, Nagy B, van der Merwe PDW, Cotterill FPD, Bellstedt DU. (2020) Redescription of the seasonal killifish species Nothobranchiusocellatus and description of a related new species Nothobranchiusmatanduensis, from eastern Tanzania (Teleostei: Nothobranchiidae). Ichthyological Exploration of Freshwaters 30(2): 151–178. 10.23788/IEF-1149 DOI
Wellenreuther M, Bernatchez L. (2018) Eco-evolutionary genomics of chromosomal inversions. Trends in Ecology and Evolution 33(6): 427–440. 10.1016/j.tree.2018.04.002 PubMed DOI
Wildekamp RH. (2004) A world of killies. Atlas of the oviparous cyprinodontiform fishes of the world (Vol. IV). American Killifish Association, Elyria, 398 pp.
Wildekamp RH, Watters BR, Shidlovskiy KM. (2014) Review of the Nothobranchiusneumanni species group with descriptions of three new species from Tanzania (Cyprinodontiformes: Nothobranchiidae). Journal of the American Killifish Association 47(1): 2–30.
Wilder AP, Palumbi SR, Conover DO, Therkildsen NO. (2020) Footprints of local adaptation span hundreds of linked genes in the Atlantic silverside genome. Evolution Letters 4: 430–443. 10.1002/evl3.189 PubMed DOI PMC
Cytogenetics of the Hybridogenetic Frog Pelophylax grafi and Its Parental Species Pelophylax perezi
Fast satellite DNA evolution in Nothobranchius annual killifishes