Cytogenetics of the Hybridogenetic Frog Pelophylax grafi and Its Parental Species Pelophylax perezi
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
University of Wrocław
67985904
Academy of Sciences of the Czech Republic
PubMed
38015654
PubMed Central
PMC10715190
DOI
10.1093/gbe/evad215
PII: 7453301
Knihovny.cz E-zdroje
- Klíčová slova
- Pelophylax grafi, Pelophylax perezi, comparative genomic hybridization, fluorescent in situ hybridization, hybridogenesis, karyotype,
- MeSH
- centromera * genetika MeSH
- hybridizace in situ fluorescenční MeSH
- karyotypizace MeSH
- Ranidae * genetika MeSH
- srovnávací genomová hybridizace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Hybrid taxa from the genus Pelophylax can propagate themselves in a modified way of sexual reproduction called hybridogenesis ensuring the formation of clonal gametes containing the genome of only one parental (host) species. Pelophylax grafi from South-Western Europe is a hybrid composed of P. ridibundus and P. perezi genomes and it lives with a host species P. perezi (P-G system). Yet it is unknown, whether non-Mendelian inheritance is fully maintained in such populations. In this study, we characterize P. perezi and P. grafi somatic karyotypes by using comparative genomic hybridization, genomic in situ hybridization, fluorescent in situ hybridization, and actinomycin D-DAPI. Here, we show the homeology of P. perezi and P. grafi somatic karyotypes to other Pelophylax taxa with 2n = 26 and equal contribution of ridibundus and perezi chromosomes in P. grafi which supports F1 hybrid genome constitution as well as a hemiclonal genome inheritance. We show that ridibundus chromosomes have larger regions of interstitial (TTAGGG)n repeats flanking the nucleolus organizing region on chromosome no. 10 and a high quantity of AT pairs in the centromeric regions. In P. perezi, we found species-specific sequences in metaphase chromosomes and marker structures in lampbrush chromosomes. Pericentromeric RrS1 repeat sequence was present in perezi and ridibundus chromosomes, but the blocks were stronger in ridibundus. Various cytogenetic techniques applied to the P-G system provide genome discrimination between ridibundus and perezi chromosomal sets. They could be used in studies of germ-line cells to explain patterns of clonal gametogenesis in P. grafi and broaden the knowledge about reproductive strategies in hybrid animals.
CEFE CNRS Univ Montpellier EPHE IRD Montpellier France
Department of Biology and Ecology Faculty of Science University of Ostrava Ostrava Czech Republic
Zobrazit více v PubMed
Akın Ç, et al. 2010. Phylogeographic patterns of genetic diversity in eastern Mediterranean water frogs were determined by geological processes and climate change in the Late Cenozoic. J Biogeogr. 37:2111–2124. PubMed PMC
Berger L. 1973. Systematics and hybridization in European Green Frogs of Rana esculenta complex. J Herpetol. 7:1–10.
Bi K, Bogart JP, Fu J. 2007. Two rare aneutriploids in the unisexual Ambystoma (Amphibia, Caudata) identified by GISH indicating two different types of meiotic errors. Cytogenet Genome Res. 119:127–130. PubMed
Bogart JP, Bi K. 2013. Genetic and genomic interactions of animals with different ploidy levels. Cytogenet Genome Res. 140:117–136. PubMed
Bogart JP, Bi K, Fu J, Noble DWA, Niedzwiecki J. 2007. Unisexual salamanders (genus Ambystoma) present a new reproductive mode for eukaryotes. Genome 50:119–136. PubMed
Bucci S, et al. 1990. Lampbrush and mitotic chromosomes of the hemiclonally reproducing hybrid Rana esculenta and its parental species. J Exp Zool. 56:37–56. PubMed
Callan HG. 1986. Lampbrush chromosomes. 1st ed. Berlin/Heidelberg, Germany: Springer.
Chiari Y, et al. 2004. New evidence for parallel evolution of colour patterns in Malagasy poison frogs (Mantella). Mol Ecol. 13:3763–3774. PubMed
Chmielewska M, et al. 2018. The programmed DNA elimination and formation of micronuclei in germ line cells of the natural hybridogenetic water frog Pelophylax esculentus. Sci Rep. 8:7870. PubMed PMC
Chmielewska M, et al. 2022. Genome elimination from the germline cells in diploid and triploid male water frogs Pelophylax esculentus. Front Cell Dev Biol. 10:1008506. PubMed PMC
Choleva L, et al. Formation of hemiclonal reproduction and hybridogenesis in Pelophylax water frogs studied with species-specific cytogenomic probes. BioRxiv. 10.1101/2023.10.29.564577, 1 November 2023, preprint: not peer reviewed. DOI
Crochet P-A, Dubois A, Ohler A, Tunner H. 1995. Rana (Pelophylax) ridibunda Pallas, 1771, Rana (Pelophylax) perezi Seoane, 1885 and their associated klepton (Amphibia, Anura): morphological diagnoses and description of a new taxon. Bulletin du Muséum national d’histoire naturelle. 17:11–30.
Cuevas A, Sourrouille P, Crochet P-A. 2022. A new PCR-RFLP method for the identification of parental and hybridogenetic Western European water frogs, including the Pelophylax perezi-grafi system. Salamandra 58(3):218–230.
Dedukh D, et al. 2013. Cytological maps of lampbrush chromosomes of European water frogs (Pelophylax esculentus complex) from the Eastern Ukraine. BMC Genet. 14:26. PubMed PMC
Dedukh D, et al. 2015. Optional endoreplication and selective elimination of parental genomes during oogenesis in diploid and triploid hybrid European water frogs. PLoS One. 10:e0123304. PubMed PMC
Dedukh D, et al. 2019. Variation in hybridogenetic hybrid emergence between populations of water frogs from the Pelophylax esculentus complex. PLoS One. 14:e0224759. PubMed PMC
Dedukh D, et al. 2020. Micronuclei in germ cells of hybrid frogs from Pelophylax esculentus complex contain gradually eliminated chromosomes. Sci Rep. 10:8720. PubMed PMC
Dedukh D, Litvinchuk S, Rosanov J, Shabanov D, Krasikova A. 2017. Mutual maintenance of di- and triploid Pelophylax esculentus hybrids in R-E systems: results from artificial crossings experiments. BMC Evol Biol. 17:220. PubMed PMC
Demay J, et al. 2023. Distribution des grenouilles vertes du système perezi-grafi et des autres espèces du genre Pelophylax (Amphibia : Ranidae) dans leur aire méditerranéenne française à l’ouest du Rhône. Bulletin de la Société Herpétologique de France. 182:1.
Doležálková-Kaštánková M, et al. 2021. Capture and return of sexual genomes by hybridogenetic frogs provides clonal genome enrichment in a sexual species. Sci Rep. 11:1633. PubMed PMC
Doležálková M, et al. 2016. Is premeiotic genome elimination an exclusive mechanism for hemiclonal reproduction in hybrid males of the genus Pelophylax? BMC Genet. 17:1–9. PubMed PMC
Dubey S, Dufresnes C. 2017. An extinct vertebrate preserved by its living hybridogenetic descendant. Sci Rep. 7:12768. PubMed PMC
Dufresnes C, Denoël M, Di Santo L, Dubey S. 2017. Multiple uprising invasions of Pelophylax water frogs, potentially inducing a new hybridogenetic complex. Sci Rep. 7:6506. PubMed PMC
Dufresnes C, Mazepa G. 2020. Hybridogenesis in water frogs. eLS. 1:718–726.
Ebendal T. 1977. Karyotype and serum protein pattern in a Swedish population of Rana lessonae (Amphibia, Anura). Hereditas 85:75–80.
Gall JG, Murphy C, Callan HG, Wu ZA. 1991. Lampbrush chromosomes. Methods Cell Biol. 36:149–166. PubMed
Graf J-D, Polls-Pelaz M. 1989. Evolutionary genetics of the Rana esculenta complex. In: Dawley RM, Bogart JP, editors. Evolution and ecology of unisexual vertebrates. Albany (NY): State Museum. p. 289–302.
Heppich S. 1978. Hybridogenesis in Rana esculenta: C-band karyotypes of Rana ridibunda, Rana lessonae and Rana esculenta. J Zool Syst Evol Res. 16:27–39.
Heppich S, Tunner HG, Greilhuber J. 1982. Premeiotic chromosome doubling after genome elimination during spermatogenesis of the species hybrid Rana esculenta. Theor Appl Genet. 61:101–104. PubMed
Hnátková E, Majtánová Z, Šlechtová VB, Bohlen J, Ráb P. 2023. Karyotype of Sabanejewia bulgarica (Drensky, 1928) (Teleostei, Cobitidae) from the Danube Delta, Romania. Comp Cytogenet. 17:157–162. PubMed PMC
Hoffmann A, et al. 2015. Genetic diversity and distribution patterns of diploid and polyploid hybrid water frog populations (Pelophylax esculentus complex) across Europe. Mol Ecol. 24:4371–4391. PubMed
Kolenda K, Pietras-Lebioda A, Hofman S, Ogielska M, Pabijan M. 2017. Preliminary genetic data suggest the occurrence of the Balkan water frog, Pelophylax kurtmuelleri, in southwestern Poland. Amphibia Reptilia. 38:187–196.
Koref-Santibáñez S, Günther R. 1980. Karyological and serological studies in Rana lessonae, R. ridibunda and in their hybrid R. esculenta (Amphibia, Anura). Genetica. 52:195–207.
Krysanov EY, Nagy B, Watters BR, Sember A, Simanovsky SA. 2023. Karyotype differentiation in the Nothobranchius ugandensis species group (Teleostei, Cyprinodontiformes), seasonal fishes from the east African inland plateau, in the context of phylogeny and biogeography. Comp Cytogenet. 17:13–29. PubMed PMC
Lin KW, Yan J. 2008. Endings in the middle: current knowledge of interstitial telomeric sequences. Mutat Res Rev Mutat Res. 658:95–110. PubMed
Lymberakis P, et al. 2007. Mitochondrial phylogeography of Rana (Pelophylax) populations in the Eastern Mediterranean region. Mol Phylogenet Evol. 44:115–125. PubMed
Majtánová Z, et al. 2016. Asexual reproduction does not apparently increase the rate of chromosomal evolution: karyotype stability in diploid and triploid clonal hybrid fish (Cobitis, Cypriniformes, Teleostei). PLoS One. 11:e0146872. PubMed PMC
Majtánová Z, et al. 2021. Uniparental genome elimination in Australian carp gudgeons. Genome Biol Evol. 13:evab030. PubMed PMC
Marracci S, et al. 2011. RrS1-like sequences of water frogs from Central Europe and around the Aegean Sea: chromosomal organization, evolution, possible function. J Mol Evol. 72:368–382. PubMed
Martirosian A, Stepanyan I. 2009. Features of the karyotypes of Pelophylax ridibundus Pallas, 1771 and Rana macrocnemis Boulenger, 1885 (Amphibia: Ranidae) from Armenia. Comp Cytogenet. 3:11–24.
Mondello C, Pirzio L, Azzalin CM, Giulotto E. 2000. Instability of interstitial telomeric sequences in the human genome. Genomics 68:111–117. PubMed
Neusser M. Karyotypevolution, Genomorganisation und Zellkernarchitektur der Neuweltaffen [doctoral dissertation]. Faculty of Biology at Ludwig Maximilian University of Munich; 2004.
Ogielska M. 1994. Nucleus-like bodies in gonial cells of Rana esculenta [Amphibia, Anura] tadpoles-A putative way of chromosome elimination. Zool Pol. 39:461–474.
Ogielska M. 2009. Development and reproduction of Amphibian species, hybrids, and polyploids. In: Ogielska M, editor. Reproduction of Amphibians. USA: Science Publisher. p. 343–410.
Ogielska M, Kierzkowski P, Rybacki M. 2004. DNA content and genome composition of diploid and triploid water frogs belonging to the Rana esculenta complex (Amphibia, Anura). Can J Zool. 82:1894–1901.
Papežík P, et al. 2021. Morphological differentiation of Pelophylax from the southwestern Balkans Morphological differentiation of endemic water frogs (Ranidae: Pelophylax) from the southwestern Balkans. Salamandra 57(1):105–123.
Plötner J. 2005. Beiheft Zeitschrift Für Feldherpetologie. Vol. 9. Germany: Laurenti-Verlag. p. 1–160.
Plötner J, et al. 2008. Widespread unidirectional transfer of mitochondrial DNA: a case in western Palaearctic water frogs. J Evol Biol. 21:668–681. PubMed PMC
Pustovalova E, Choleva L, Shabanov D, Dedukh D. 2022. The high diversity of gametogenic pathways in amphispermic water frog hybrids from Eastern Ukraine. PeerJ 10:e13957. PubMed PMC
Ragghianti M, et al. 1995. Molecular characterization of a centromeric satellite DNA in the hemiclonal hybrid frog Rana esculenta and its parental species. Chromosome Res. 3:497–506. PubMed
Ragghianti M, et al. 2007. Gametogenesis of intergroup hybrids of hemiclonal frogs. Genet Res. 89:39–45. PubMed
Sánchez-Montes G, Recuero E, Gutiérrez-Rodríguez J, Gomez-Mestre I, Martínez-Solano I. 2016. Species assignment in the Pelophylax ridibundus x P. perezi hybridogenetic complex based on 16 newly characterised microsatellite markers. Herpetol J. 26:99–108.
Schmeller D, Crivelli A, Veith M. 2001. Is triploidy indisputably determinable in hybridogenetic hybrids by planimetric analyses of erythrocytes?. Zoosyst Evol. 77(1):71–77.
Symonova R, Sember A, Majtánová Z, Ráb P. 2015. Characterization of fish genomes by GISH and CGH. In: Ozouf-Costaz C, Pisano E, Foresti F, Toledo LFdA, editors. Fish cytogenetic techniques: ray-fin fishes and Chondrichthyans. 1st ed. Boca Raton: CRC Press. p. 118–131.
Trifonov VA, Vorobieva NN, Rens W. 2009. FISH with and without COT1 DNA. In: Liehr T, editor. Fluorescence in situ hybridization (FISH)—application guide. Jena, Germany: Springer. p. 99–109.
Tunner HG, Heppich-Tunner S. 1991. Genome exclusion and two strategies of chromosome duplication in oogenesis of a hybrid frog. Naturwissenschaften 78:32–34.
Tunner HG, Heppich S. 1983. A genetic analysis of water frogs from Greece: evidence for the existence of a cryptic species. J Zool Syst Evol Res. 20(3):209–223.
Uzzell T, Berger L. 1975. Electrophoretic phenotypes of Rana ridibunda, Rana lessonae, and their hybridogenetic associate, Rana esculenta. Proc Acad Nat Sci Philadelphia. 127:13–24.
Zaleśna A, et al. 2011. Evidence for integrity of parental genomes in the diploid hybridogenetic water frog Pelophylax esculentus by genomic in situ hybridization. Cytogenet Genome Res. 134:206–212. PubMed
Zlotina A, Dedukh D, Krasikova A. 2017. Amphibian and avian karyotype evolution: insights from lampbrush chromosome studies. Genes (Basel). 8:311. PubMed PMC