Fast satellite DNA evolution in Nothobranchius annual killifishes
Jazyk angličtina Země Nizozemsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
19-22346Y
Grantová Agentura České Republiky
19-22346Y
Grantová Agentura České Republiky
19-22346Y
Grantová Agentura České Republiky
19-22346Y
Grantová Agentura České Republiky
19-22346Y
Grantová Agentura České Republiky
19-22346Y
Grantová Agentura České Republiky
19-22346Y
Grantová Agentura České Republiky
19-22346Y
Grantová Agentura České Republiky
19-22346Y
Grantová Agentura České Republiky
e-INFRA LM2018140
e-Infrastruktura CZ
e-INFRA LM2018140
e-Infrastruktura CZ
e-INFRA LM2018140
e-Infrastruktura CZ
e-INFRA LM2018140
e-Infrastruktura CZ
LM2018131
Projects of Large Research, Development and Innovations Infrastructures and the ELIXIR-CZ project
LM2018131
Projects of Large Research, Development and Innovations Infrastructures and the ELIXIR-CZ project
LM2018131
Projects of Large Research, Development and Innovations Infrastructures and the ELIXIR-CZ project
LM2018131
Projects of Large Research, Development and Innovations Infrastructures and the ELIXIR-CZ project
UJAR10MS
Spanish Ministry of Universities with European Union's NextGenerationEU funds
67985904
RVO of IAPG CAS
67985904
RVO of IAPG CAS
67985904
RVO of IAPG CAS
204069
Charles University Research Centre program
PubMed
37985497
PubMed Central
PMC10661780
DOI
10.1007/s10577-023-09742-8
PII: 10.1007/s10577-023-09742-8
Knihovny.cz E-zdroje
- Klíčová slova
- Centromere drive, Constitutive heterochromatin, RepeatExplorer, Repetitive sequences, satDNA,
- MeSH
- centromera genetika MeSH
- Cyprinodontidae * genetika MeSH
- Fundulidae * genetika MeSH
- molekulární evoluce MeSH
- satelitní DNA MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- satelitní DNA MeSH
Satellite DNA (satDNA) is a rapidly evolving class of tandem repeats, with some monomers being involved in centromere organization and function. To identify repeats associated with (peri)centromeric regions, we investigated satDNA across Southern and Coastal clades of African annual killifishes of the genus Nothobranchius. Molecular cytogenetic and bioinformatic analyses revealed that two previously identified satellites, designated here as NkadSat01-77 and NfurSat01-348, are associated with (peri)centromeres only in one lineage of the Southern clade. NfurSat01-348 was, however, additionally detected outside centromeres in three members of the Coastal clade. We also identified a novel satDNA, NrubSat01-48, associated with (peri)centromeres in N. foerschi, N. guentheri, and N. rubripinnis. Our findings revealed fast turnover of satDNA associated with (peri)centromeres and different trends in their evolution in two clades of the genus Nothobranchius.
Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
Department of Ecology and Vertebrate Zoology University of Łódź Łódź Poland
Department of Ecology Faculty of Science Charles University Prague Czech Republic
Department of Experimental Biology Genetics Area University of Jaén Jaén Spain
Department of Genetics and Microbiology Faculty of Science Charles University Prague Czech Republic
Department of Zoology Faculty of Science Charles University Prague Czech Republic
Faculty of Science University of South Bohemia České Budějovice Czech Republic
Institute of Animal Physiology and Genetics Czech Academy of Sciences Liběchov Czech Republic
Institute of Vertebrate Biology Czech Academy of Sciences Brno Czech Republic
Severtsov Institute of Ecology and Evolution Russian Academy of Sciences Moscow Russia
Zobrazit více v PubMed
Akera T, Trimm E, Lampson MA. Molecular strategies of meiotic cheating by selfish centromeres. Cell. 2019;178:1132–1144. doi: 10.1016/j.cell.2019.07.001. PubMed DOI PMC
Amor DJ, Bentley K, Ryan J, Perry J, Wong L, Slater H, Choo KA. Human centromere repositioning “in progress”. Proc Natl Acad Sci USA. 2004;101:6542–6547. doi: 10.1073/pnas.030863710. PubMed DOI PMC
Andrews S (2010) FastQC: a quality control tool for high throughput sequence data [Online]. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/. Accessed 25 Sept 2019
Ávila Robledillo L, Koblížková A, Novák P, Böttinger K, Vrbová I, Neumann P, Schubert I, Macas J. Satellite DNA in Vicia faba is characterized by remarkable diversity in its sequence composition, association with centromeres, and replication timing. Sci Rep. 2018;8:5838. doi: 10.1038/s41598-018-24196-3. PubMed DOI PMC
Ávila Robledillo L, Neumann P, Koblížková A, Novák P, Vrbová I, Macas J. Extraordinary sequence diversity and promiscuity of centromeric satellites in the legume tribe Fabeae. Mol Biol Evol. 2020;37:2341–2356. doi: 10.1093/molbev/msaa090. PubMed DOI PMC
Bartáková V, Reichard M, Blažek R, Polačik M, Bryja J. Terrestrial fishes: rivers are barriers to gene flow in annual fishes from the African savanna. J Biogeogr. 2015;42:1832–1844. doi: 10.1111/jbi.12567. DOI
Berois N, García G, de Sá RO. Annual fishes: life history strategy, diversity and evolution. Boca Raton, FL: CRC Press; 2016.
Bertollo LAC, Cioffi MB, Moreira-Filho O (2015) Direct chromosome preparation from freshwater teleost fishes. In: Ozouf-Costaz C, Pisano E, Foresti F, and de Almeida-Toledo LF (eds) Fish cytogenetic techniques: ray-fin fishes and chondrichthyans. CRC Press, Inc, Endfield, pp 21–26. 10.1201/b18534–4 DOI
Blackmon H, Justison J, Mayrose I, Goldberg EE. Meiotic drive shapes rates of karyotype evolution in mammals. Evolution. 2019;73:511–523. doi: 10.1111/evo.13682. PubMed DOI PMC
Blažek R, Polačik M, Reichard M. Rapid growth, early maturation and short generation time in African annual fishes. EvoDevo. 2013;4:24. doi: 10.1186/2041-9139-4-24. PubMed DOI PMC
Blažek R, Polačik M, Kačer P, Cellerino A, Řežucha R, Methling C, Tomášek O, Syslová K, Terzibasi Tozzini E, Albrecht T, Vrtílek M, Reichard M. Repeated intraspecific divergence in life span and aging of African annual fishes along an aridity gradient. Evolution. 2017;71:386–402. doi: 10.1111/evo.13127. PubMed DOI
Bracewell R, Chatla K, Nalley MJ, Bachtrog D. Dynamic turnover of centromeres drives karyotype evolution in Drosophila. Elife. 2019;8:e49002. doi: 10.7554/eLife.49002. PubMed DOI PMC
Cappelletti E, Piras FM, Sola L, Santagostino M, Abdelgadir WA, Raimondi E, Lescai F, Nergadze SG, Giulotto E. Robertsonian fusion and centromere repositioning contributed to the formation of satellite-free centromeres during the evolution of zebras. Mol Biol Evol. 2022;39:msac162. doi: 10.1093/molbev/msac162. PubMed DOI PMC
Caputo V, Marchegiani F, Sorice M, Olmo E. Heterochromatin heterogeneity and chromosome variability in four species of gobiid fishes (Perciformes: Gobiidae) Cytogenet Genome Res. 1997;79:266–271. doi: 10.1159/000134739. PubMed DOI
Cech JN, Peichel CL. Identification of the centromeric repeat in the threespine stickleback fish (Gasterosteus aculeatus) Chromosome Res. 2015;23:767–779. doi: 10.1007/s10577-015-9495-3. PubMed DOI PMC
Cech JN, Peichel CL. Centromere inactivation on a neo-Y fusion chromosome in threespine stickleback fish. Chromosome Res. 2016;24:437–450. doi: 10.1007/s10577-016-9535-7. PubMed DOI PMC
Cellerino A, Valenzano DR, Reichard M. From the bush to the bench: the annual Nothobranchius fishes as a new model system in biology. Biol Rev. 2016;91:511–533. doi: 10.1111/brv.12183. PubMed DOI
Chang SB, Yang TJ, Datema E, Van Vugt J, Vosman B, Kuipers A, Meznikova M, Szinay D, Klein Lankhorst R, Jacobsen E, de Jong H. FISH mapping and molecular organization of the major repetitive sequences of tomato. Chromosome Res. 2008;16:919–933. doi: 10.1007/s10577-008-1249-z. PubMed DOI
Chmátal L, Gabriel SI, Mitsainas GP, Martínez-Vargas J, Ventura J, Searle JB, Schultz RM, Lampson MA. Centromere strength provides the cell biological basis for meiotic drive and karyotype evolution in mice. Curr Biol. 2014;24:2295–2300. doi: 10.1016/j.cub.2014.08.017. PubMed DOI PMC
Conte MA, Joshi R, Moore EC, Nandamuri SP, Gammerdinger WJ, Roberts RB, Carleton KL, Lien S, Kocher T. Chromosome-scale assemblies reveal the structural evolution of African cichlid genomes. Gigascience. 2019;8:giz030. doi: 10.1093/gigascience/giz030. PubMed DOI PMC
Cuadrado Á, Jouve N. Chromosomal detection of simple sequence repeats (SSRs) using nondenaturing FISH (ND-FISH) Chromosoma. 2010;119:495–503. doi: 10.1007/s00412-010-0273-x. PubMed DOI
Cui R, Medeiros T, Willemsen D, Iasi LNM, Collier GE, Graef M, Reichard M, Valenzano DR. Relaxed selection limits lifespan by increasing mutation load. Cell. 2019;178:385–399.e20. doi: 10.1016/j.cell.2019.06.004. PubMed DOI
de Lima LG, Ruiz-Ruano FJ. In-depth satellitome analyses of 37 Drosophila species illuminate repetitive DNA evolution in the Drosophila genus. Genome Biol Evol. 2022;14:evac064. doi: 10.1093/gbe/evac064. PubMed DOI PMC
de Silva DMZA, Utsunomia R, Ruiz-Ruano FJ, Daniel SN, Porto-Foresti F, Hashimoto DT, Oliveira C, Camacho JPM, Foresti F. High-throughput analysis unveils a highly shared satellite DNA library among three species of fish genus Astyanax. Sci Rep. 2017;7:12726. doi: 10.1038/s41598-017-12939-7. PubMed DOI PMC
Despot-Slade E, Širca S, Mravinac B, Castagnone-Sereno P, Plohl M, Meštrović N. Satellitome analyses in nematodes illuminate complex species history and show conserved features in satellite DNAs. BMC Biol. 2022;20:259. doi: 10.1186/s12915-022-01460-7. PubMed DOI PMC
Dorn A, Musilová Z, Platzer M, Reichwald K, Cellerino A. The strange case of East African annual fishes: aridification correlates with diversification for a savannah aquatic group? BMC Evol Biol. 2014;14:210. doi: 10.1186/s12862-014-0210-3. PubMed DOI PMC
Ewulonu UK, Haas R, Turner B. A multiple sex chromosome system in the annual killfish, Nothobranchius guentheri. Copeia. 1985;2:503–508. doi: 10.2307/1444868. DOI
Feliciello I, Akrap I, Brajkovi J, Zlatar I, Ugarković Đ. Satellite DNA as a driver of population divergence in the red flour beetle Tribolium castaneum. Genome Biol Evol. 2014;7:228–239. doi: 10.1093/gbe/evu280. PubMed DOI PMC
Ferreira IA, Poletto AB, Kocher TD, Mota-Velasco JC, Penman DJ, Martins C. Chromosome evolution in african cichlid fish: contributions from the physical mapping of repeated DNAs. Cytogenet Genome Res. 2010;129:314–322. doi: 10.1159/000315895. PubMed DOI PMC
Fricke R, Eschmeyer WN, Van der Laan R (eds) (2023) Eschmeyer’s catalog of fishes: genera, species, references. http://researcharchive.calacademy.org/research/ichthyology/catalog/fishcatmain.asp. Accessed 3 May 2023
Furness AI. The evolution of an annual life cycle in killifish: adaptation to ephemeral aquatic environments through embryonic diapause. Biol Rev Camb Philos Soc. 2016;91:796–812. doi: 10.1111/brv.12194. PubMed DOI
Gamba R, Fachinetti D. From evolution to function: two sides of the same CENP-B coin? Exp Cell Res. 2020;390:111959. doi: 10.1016/j.yexcr.2020.111959. PubMed DOI
Garrido-Ramos MA. Satellite DNA: an evolving topic. Genes. 2017;8:230. doi: 10.3390/genes8090230. PubMed DOI PMC
Goes CAG, dos Santos RZ, Aguiar WRC, Alves DCV, Silva DMZA, Foresti F, Oliveira C, Utsunomia R, Porto-Foresti F. Revealing the satellite DNA history in Psalidodon and Astyanax characid fish by comparative satellitomics. Front Genet. 2022;13:884072. doi: 10.3389/fgene.2022.884072. PubMed DOI PMC
Goes CAG, dos Santos N, Rodrigues PHM, Stornioli JHF, da Silva AB, dos Santos RZ, Vidal JAD, Silva DMZA, Artoni RF, Foresti F. The satellite DNA catalogues of two Serrasalmidae (Teleostei, Characiformes): conservation of general satDNA features over 30 million years. Genes. 2023;14:91. doi: 10.3390/genes14010091. PubMed DOI PMC
Haaf T, Schmid M. An early stage of ZZ/ZW sex chromosomes differentiation in Poecilia sphenops var. melanistica (Poeciliidae, Cyprinodontiformes) Chromosoma. 1984;89:37–41. doi: 10.1007/BF00302348. DOI
Hartley G, O’Neill RJ. Centromere repeats: hidden gems of the genome. Genes. 2019;10:223. doi: 10.3390/genes10030223. PubMed DOI PMC
Hartley GA, Okhovat M, Neill RJO. Comparative analyses of gibbon centromeres reveal dynamic genus-specific shifts in repeat composition. Mol Biol Evol. 2021;38:3972–3992. doi: 10.1093/molbev/msab148. PubMed DOI PMC
Henikoff S, Ahmad K, Malik HS. The centromere paradox: stable inheritance with rapidly evolving DNA. Science. 2001;293:1098–1102. doi: 10.1126/science.1062939. PubMed DOI
Hu CK, Brunet A. The African turquoise killifish: a research organism to study vertebrate aging and diapause. Aging Cell. 2018;17:e12757. doi: 10.1111/acel.12757. PubMed DOI PMC
Ichikawa K, Tomioka S, Suzuki Y, Nakamura R, Doi K, Yoshimura J, Kumagai M, Inoue Y, Uchida Y, Irie N, Takeda H, Morishita S. Centromere evolution and CpG methylation during vertebrate speciation. Nat Commun. 2017;8:1833. doi: 10.1038/s41467-017-01982-7. PubMed DOI PMC
Kim NS, Armstrong KC, Fedak G, Ho K, Park NI. A microsatellite sequence from the rice blast fungus (Magnaporthe grisea) distinguishes between the centromeres of Hordeum vulgare and H. bulbosum in hybrid plants. Genome. 2002;45:165–174. doi: 10.1139/G01-129. PubMed DOI
Kligerman AD, Bloom SE. Rapid chromosome preparations from solid tissues of fishes. J Fish Res Board Can. 1977;34:266–269. doi: 10.1139/f77-039. DOI
Kretschmer R, Goes CAG, Bertollo LAC, Ezaz T, Porto-Foresti F, Toma GA, Utsunomia R, Cioffi MB. Satellitome analysis illuminates the evolution of ZW sex chromosomes of Triportheidae fishes (Teleostei: Characiformes) Chromosoma. 2022;131:29–45. doi: 10.1007/s00412-022-00768-1. PubMed DOI
Krysanov E, Demidova T. Extensive karyotype variability of African fish genus Nothobranchius (Cyprinodontiformes) Comp Cytogenet. 2018;12:387–402. doi: 10.3897/CompCytogen.v12i3.25092. PubMed DOI PMC
Krysanov E, Demidova T, Nagy B. Divergent karyotypes of the annual killifish genus Nothobranchius (Cyprinodontiformes, Nothobranchiidae) Comp Cytogenet. 2016;10:439–445. doi: 10.3897/CompCytogen.v10i3.9863. PubMed DOI PMC
Krysanov EY, Nagy B, Watters BR, Sember A, Simanovsky SA. Karyotype differentiation in the Nothobranchius ugandensis species group (Teleostei, Cyprinodontiformes), seasonal fishes from the east African inland plateau, in the context of phylogeny and biogeography. Comp Cytogenet. 2023;7:13–29. doi: 10.3897/compcytogen.v7.i1.97165. PubMed DOI PMC
Kumon T, Lampson MA. Evolution of eukaryotic centromeres by drive and suppression of selfish genetic elements. Semin Cell Dev Biol. 2022;128:51–60. doi: 10.1016/j.semcdb.2022.03.026. PubMed DOI PMC
Kursel LE, Malik HS. The cellular mechanisms and consequences of centromere drive. Curr Opin Cell Biol. 2018;52:58–65. doi: 10.1016/j.ceb.2018.01.011. PubMed DOI PMC
Levan AK, Fredga K, Sandberg AA. Nomenclature for centromeric position on chromosomes. Hereditas. 1964;52:201–220. doi: 10.1111/j.1601-5223.1964.tb01953.x. DOI
Lower SS, McGurk MP, Clark AG, Barbash DA. Satellite DNA evolution: old ideas, new approaches. Curr Opin Genet Dev. 2018;49:70–78. doi: 10.1016/j.gde.2018.03.003. PubMed DOI PMC
Lukšíková K, Pavlica T, Altmanová M, Štundlová J, Pelikánová Š, Simanovsky SA, Yu KE, Jankásek M, Hiřman M, Reichard M, Ráb P, Sember A (2023) Conserved satellite DNA motif and lack of interstitial telomeric sites in highly rearranged African Nothobranchius killifish karyotypes. J Fish Biol 1–14. 10.1111/jfb.15550 PubMed
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 2011;17:10–12. doi: 10.14806/ej.17.1.200. DOI
Masumoto H, Masukata H, Muro Y, Nozaki N, Okazaki T. A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J Cell Biol. 1989;109:1963–1973. doi: 10.1083/jcb.109.5.1963. PubMed DOI PMC
Mayr B, Ráb P, Kalat M. Localisation of NORs and counterstain-enhanced fluorescence studies in Perca fluviatilis (Pisces, Percidae) Genetica. 1985;67:51–56. doi: 10.1007/BF02424460. PubMed DOI
McKinley KL, Cheeseman IM. The molecular basis for centromere identity and function. Nat Rev Mol Cell Biol. 2016;17:16–29. doi: 10.1038/nrm.2015.5. PubMed DOI PMC
Melters DP, Bradnam KR, Young HA, Young HA, Telis N, May MR, Ruby JG, Sebra R, Peluso P, Eid J, Rank D, Garcia JF, et al. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol. 2013;14:R10. doi: 10.1186/gb-2013-14-1-r10. PubMed DOI PMC
Molina WF, Martinez PA, Bertollo LAC, Bidau CJ. Evidence for meiotic drive as an explanation for karyotype changes in fishes. Mar Genomics. 2014;15:29–34. doi: 10.1016/j.margen.2014.05.001. PubMed DOI
Mora P, Pita S, Montiel EE, Rico-Porras JM, Palomeque T, Panzera F, Lorite P. Making the genome huge: the case of Triatoma delpontei, a Triatominae species with more than 50% of its genome full of satellite DNA. Genes. 2023;14:371. doi: 10.3390/genes14020371. PubMed DOI PMC
Nagy B, Watters BR. A review of the conservation status of seasonal Nothobranchius fishes (Teleostei: Cyprinodontiformes), a genus with a high level of threat, inhabiting ephemeral wetland habitats in Africa. Aquat Conserv. 2021;32:199–216. doi: 10.1002/aqc.3741. DOI
Nishihara H, Stanyon R, Tanabe H, Koga A. Replacement of owl monkey centromere satellite by a newly evolved variant was a recent and rapid process. Genes Cells. 2021;26:979–986. doi: 10.1111/gtc.12898. PubMed DOI
Novák P, Neumann P, Macas J. Global analysis of repetitive DNA from unassembled sequence reads using RepeatExplorer2. Nat Protoc. 2020;15:3745–3776. doi: 10.1038/s41596-020-0400-y. PubMed DOI
Palacios-Gimenez OM, Milani D, Song H, Marti DA, López-León MD, Ruiz-Ruano FJ, Camacho JPM, Cabral-de-Mello DC. Eight million years of satellite DNA evolution in grasshoppers of the genus Schistocerca illuminate the ins and outs of the library hypothesis. Genome Biol Evol. 2020;12:88–102. doi: 10.1093/gbe/evaa018. PubMed DOI PMC
Pardo-Manuel De Villena F, Sapienza C. Nonrandom segregation during meiosis: the unfairness of females. Mamm Genome. 2001;12:331–339. doi: 10.1007/s003350040003. PubMed DOI
Peona V, Kutschera VE, Blom MP, Irestedt M, Suh A. Satellite DNA evolution in Corvoidea inferred from short and long reads. Mol Ecol. 2022;32:1288–1305. doi: 10.1111/mec.16484. PubMed DOI
Pita S, Panzera F, Mora P, Vela J, Cuadrado Á, Sánchez A, Palomeque T, Lorite P. Comparative repeatome analysis on Triatoma infestans Andean and non-Andean lineages, main vector of Chagas disease. PLoS One. 2017;12:e0181635. doi: 10.1371/journal.pone.0181635. PubMed DOI PMC
Plohl M, Meštrović N, Mravinac B. Satellite DNA evolution. Genome Dyn. 2012;7:126–152. doi: 10.1159/000337122. PubMed DOI
Pokorná M, Altmanová M, Kratochvíl L. Multiple sex chromosomes in the light of female meiotic drive in amniote vertebrates. Chromosome Res. 2014;22:35–44. doi: 10.1007/s10577-014-9403-2. PubMed DOI
Ráb P, Roth P. Cold-blooded vertebrates. In: Balicek P, Forejt J, Rubeš J, editors. Methods of chromosome analysis. Cytogenetická Sekce Československé Biologické Společnosti při CSAV: Brno, Czech Republic; 1988. pp. 115–124.
Reichard M, Giannetti K, Ferreira T, Maouche A, Vrtílek M, Polačik M, Blažek R, Ferreira MG. Lifespan and telomere length variation across populations of wild-derived African killifish. Mol Ecol. 2022;31:5979–5992. doi: 10.1111/mec.16287. PubMed DOI
Reichwald K, Lauber C, Nanda I, Kirschner J, Hartmann N, Schories S, Gausmann U, Taudien S, Schilhabel MB, Szafranski K, Glöckner G, Schmid M, et al. High tandem repeat content in the genome of the short-lived annual fish Nothobranchius furzeri: a new vertebrate model for aging research. Genome Biol. 2009;10:R16. doi: 10.1186/gb-2009-10-2-r16. PubMed DOI PMC
Reichwald K, Petzold A, Koch P, Downie BR, Hartmann N, Pietsch S, Baumgart M, Chalopin D, Felder M, Bens M, Sahm A, Szafranski K, et al. Insights into sex chromosome evolution and aging from the genome of a short-lived fish. Cell. 2015;163:1527–1538. doi: 10.1016/j.cell.2015.10.071. PubMed DOI
Ruiz-Ruano FJ, López-León MD, Cabrero J, Camacho JPM. High-throughput analysis of the satellitome illuminates satellite DNA evolution. Sci Rep. 2016;6:28333. doi: 10.1038/srep28333. PubMed DOI PMC
Šatović-Vukšić E, Plohl M. Satellite DNAs—from localized to highly dispersed genome components. Genes. 2023;14:742. doi: 10.3390/genes14030742. PubMed DOI PMC
Sember A, Bohlen J, Šlechtová V, Altmanová M, Symonová R, Ráb P. Karyotype differentiation in 19 species of river loach fishes (Nemacheilidae, Teleostei): extensive variability associated with rDNA and heterochromatin distribution and its phylogenetic and ecological interpretation. BMC Evol Biol. 2015;15:251. doi: 10.1186/s12862-015-0532-9. PubMed DOI PMC
Serrano-Freitas ÉA, Silva DMZA, Ruiz-Ruano FJ, Utsunomia R, Araya-Jaime C, Oliveira C, Camacho JPM, Foresti F. Satellite DNA content of B chromosomes in the characid fish Characidium gomesi supports their origin from sex chromosomes. Mol Genet Genomics. 2020;295:195–207. doi: 10.1007/s00438-019-01615-2. PubMed DOI
Sola L, Rossi AR, Iaselli V, Rasch EM, Monaco PJ. Cytogenetics of bisexual/unisexual species of Poecilia. II. Analysis of heterochromatin and nucleolar organizer regions in Poecilia mexicana mexicana by C-banding and DAPI, quinacrine, chromomycin A3, and silver staining. Cytogenet Cell Genet. 1992;60:229–235. doi: 10.1159/000133346. PubMed DOI
Stornioli JHF, Goes CAG, Calegari RM, dos Santos RZ, Giglio LM, Foresti F, Oliveira C, Penitente M, Porto-Foresti F, Utsunomia R. The B chromosomes of Prochilodus lineatus (Teleostei, Characiformes) are highly enriched in satellite DNAs. Cells. 2021;10:1527. doi: 10.3390/cells10061527. PubMed DOI PMC
Štundlová J, Hospodářská M, Lukšíková K, Voleníková A, Pavlica T, Altmanová M, Richter A, Reichard M, Dalíková M, Pelikánová Š, Marta A, Simanovsky SA, et al. Sex chromosome differentiation via changes in the Y chromosome repeat landscape in African annual killifishes Nothobranchius furzeri and N. kadleci. Chromosome Res. 2022;30:309–333. doi: 10.1007/s10577-022-09707-3. PubMed DOI
Suntronpong A, Kugou K, Masumoto H, Srikulnath K, Ohshima K, Hirai H, Koga A. CENP-B box, a nucleotide motif involved in centromere formation, occurs in a New World monkey. Biol Lett. 2016;12:20150817. doi: 10.1098/rsbl.2015.0817. PubMed DOI PMC
Suntronpong A, Singchat W, Kruasuwana W, Prakhongcheep O, Sillapaprayoon S, Muangmai N, Somyong S, Indananda C, Kraichak E, Peyachoknagul S, Srikulnath K. Characterization of centromeric satellite DNAs (MALREP) in the Asian swamp eel (Monopterus albus) suggests the possible origin of repeats from transposable elements. Genomics. 2020;112:3097–3107. doi: 10.1016/j.ygeno.2020.05.024. PubMed DOI
Talbert PB, Henikoff S. What makes a centromere? Exp Cell Res. 2020;389:111895. doi: 10.1016/j.yexcr.2020.111895. PubMed DOI
Tao W, Xu L, Zhao L, Zhu Z, Wu X, Min Q, Wang D, Zhou Q. High-quality chromosome-level genomes of two tilapia species reveal their evolution of repeat sequences and sex chromosomes. Mol Ecol Resour. 2021;21:543–560. doi: 10.1111/1755-0998.13273. PubMed DOI
Terzibasi Tozzini E, Cellerino A. Nothobranchius annual killifishes. Evodevo. 2020;11:25. doi: 10.1186/s13227-020-00170-x. PubMed DOI PMC
Thakur J, Packiaraj J, Henikoff S. Sequence, chromatin and evolution of satellite DNA. Int J Mol Sci. 2021;22:4309. doi: 10.3390/ijms22094309. PubMed DOI PMC
The Galaxy Community The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2022 update. Nucleic Acids Res. 2022;50:W345–W351. doi: 10.1093/nar/gkac247. PubMed DOI PMC
van der Merwe PDW, Cotterill FPD, Kandziora M, Watters BR, Nagy B, Genade T, Flügel TJ, Svendsen DS, Bellstedt DU. Genomic fingerprints of palaeogeographic history: the tempo and mode of rift tectonics across tropical Africa has shaped the diversification of the killifish genus Nothobranchius (Teleostei: Cyprinodontiformes) Mol Phylogenet Evol. 2021;158:106988. doi: 10.1016/j.ympev.2020.106988. PubMed DOI
Varadharajan S, Rastas P, Lӧytynoja A, Matschiner M, Calboli FCF, Guo B, Nederbragt AJ, Jakobsen KS, Merilä J. A high-quality assembly of the nine-spined stickleback (Pungitius pungitius) genome. Genome Biol Evol. 2019;11:3291–3308. doi: 10.1093/gbe/evz240. PubMed DOI PMC
Völker M, Ráb P. Direct chromosome preparation from regenerating fin tissue. In: Ozouf-Costaz C, Pisano E, Foresti F, de Almeida-Toledo LF, editors. Fish cytogenetic techniques: ray-fin fishes and chondrichthyans. Endfield: CRC Press Inc; 2015. pp. 37–41.
Völker M, Ráb P, Kullmann H. Karyotype differentiation in Chromaphyosemion killifishes (Cyprinodontiformes, Nothobranchiidae): patterns, mechanisms, and evolutionary implications. Biol J Linn Soc. 2008;94:143–153. doi: 10.1111/j.1095-8312.2008.00967.x. DOI
Vondrak T, Ávila Robledillo L, Novák P, Koblížková A, Neumann P, Macas J. Characterization of repeat arrays in ultra-long nanopore reads reveals frequent origin of satellite DNA from retrotransposon-derived tandem repeats. Plant J. 2020;101:484–500. doi: 10.1111/tpj.14546. PubMed DOI PMC
Watters BR, Cooper BJ, Wildekamp RH. Description of Nothobranchius cardinalis spec. nov. (Cyprinodontiformes: Aplocheilidae), an annual fish from the Mbwemkuru River basin, Tanzania. J Am Killifsh Ass. 2008;40(56):129–145.
Watters BR, Nagy B, van der Merwe PDW, Cotterill FPD, Bellstedt DU. Redescription of the seasonal killifish species Nothobranchius ocellatus and description of a related new species Nothobranchius matanduensis, from eastern Tanzania (Teleostei: Nothobranchiidae) Ichthyol Explor Freshw. 2020;30:151–178. doi: 10.23788/IEF-1149. DOI
Wildekamp RH. A world of killies. Atlas of the oviparous cyprinodontiform fishes of the world (Vol. III) Mishawaka: American Killifish Association; 1996. p. 330.
Wildekamp RH (2004) A world of killies – atlas of the oviparous cyprinodontiform fishes of the world (Vol. 4). The American Killifish Association, Elyria, Ohio
Willemsen D, Cui R, Reichard M, Valenzano DR. Intra-species differences in population size shape life history and genome evolution. Elife. 2020;9:e55794. doi: 10.7554/eLife.55794. PubMed DOI PMC
Yano CF, Bertollo LAC, Ezaz T, Trifonov V, Sember A, Liehr T, Cioffi MB. Highly conserved Z and molecularly diverged W chromosomes in the fish genus Triportheus (Characiformes, Triportheidae) Heredity. 2017;118:276–283. doi: 10.1038/hdy.2016.83F. PubMed DOI PMC
Yoshida K, Kitano J. The contribution of female meiotic drive to the evolution of neo-sex chromosomes. Evolution. 2012;66:3198–3208. doi: 10.1111/j.1558-5646.2012.01681.x. PubMed DOI PMC
Ziemniczak K, Barros AV, Rosa KO, Nogaroto V, Almeida MC, Cestari MM, Moreira-Filho O, Artoni RF, Vicari MR. Comparative cytogenetics of Loricariidae (Actinopterygii: Siluriformes): emphasis in Neoplecostominae and Hypoptopomatinae. Ital J Zool. 2012;79:492–501. doi: 10.1080/11250003.2012.676677. DOI