Lifespan and telomere length variation across populations of wild-derived African killifish
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34826177
DOI
10.1111/mec.16287
Knihovny.cz E-zdroje
- Klíčová slova
- comparative biology, fish, inter-population gradient, sex differences telomeres,
- MeSH
- Cyprinodontiformes * genetika MeSH
- dlouhověkost genetika MeSH
- Fundulidae * genetika MeSH
- telomery genetika MeSH
- zkracování telomer genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Telomeres and telomerase prevent the continuous erosion of chromosome-ends caused by lifelong cell division. Shortened telomeres are associated with age-related pathologies. While short telomere length is positively correlated with increased lethality at the individual level, in comparisons across species short telomeres are associated with long (and not short) lifespans. Here, we tested this contradiction between individual and evolutionary patterns in telomere length using African annual killifish. We analysed lifespan and telomere length in a set of captive strains derived from well-defined wild populations of Nothobranchius furzeri and its sister species, N. kadleci, from sites along a strong gradient of aridity which ultimately determines maximum natural lifespan. Overall, males were shorter-lived than females, and also had shorter telomeres. Male lifespan (measured in controlled laboratory conditions) was positively associated with the amount of annual rainfall in the site of strain origin. However, fish from wetter climates had shorter telomeres. In addition, individual fish which grew largest over the juvenile period possessed shorter telomeres at the onset of adulthood. This demonstrates that individual condition and environmentally-driven selection indeed modulate the relationship between telomere length and lifespan in opposite directions, validating the existence of inverse trends within a single taxon. Intraindividual heterogeneity of telomere length (capable to detect very short telomeres) was not associated with mean telomere length, suggesting that the shortest telomeres are controlled by regulatory pathways other than those that determine mean telomere length. The substantial variation in telomere length between strains from different environments identifies killifish as a powerful system in understanding the adaptive value of telomere length.
Czech Academy of Sciences Institute of Vertebrate Biology Brno Czech Republic
Department of Botany and Zoology Faculty of Science Masaryk University Brno Czech Republic
Institute for Research on Cancer and Aging of Nice UMR7284 U1081 Université Côte d'Azur Nice France
Zobrazit více v PubMed
Ahmed, W., & Lingner, J. (2018). PRDX1 and MTH1 cooperate to prevent ROS-mediated inhibition of telomerase. Genes and Development, 32(9-10), 658-669. https://doi.org/10.1101/gad.313460.118
Armanios, M., Alder, J. K., Parry, E. M., Karim, B., Strong, M. A., & Greider, C. W. (2009). Short telomeres are sufficient to cause the degenerative defects associated with aging. American Journal of Human Genetics, 85(6), 823-832. https://doi.org/10.1016/j.ajhg.2009.10.028
Armanios, M., & Blackburn, E. H. (2012). Telomere syndromes. Nature Reviews Genetics, 13(10), 693-704. https://doi.org/10.1038/nrg3246
Aubert, G., Baerlocher, G. M., Vulto, I., Poon, S. S., & Lansdorp, P. M. (2012). Collapse of Telomere homeostasis in hematopoietic cells caused by heterozygous mutations in Telomerase genes. PLoS Genetics, 8(5), e1002696. https://doi.org/10.1371/journal.pgen.1002696
Aviv, A., Anderson, J. J., & Shay, J. W. (2017). Mutations, cancer and the telomere length paradox. Trends in Cancer, 3(4), 253-258. https://doi.org/10.1016/j.trecan.2017.02.005
Barrett, E. L. B., Burke, T. A., Hammers, M., Komdeur, J., & Richardson, D. S. (2013). Telomere length and dynamics predict mortality in a wild longitudinal study. Molecular Ecology, 22(1), 249-259. https://doi.org/10.1111/mec.12110
Barrett, E. L. B., & Richardson, D. S. (2011). Sex differences in telomeres and lifespan. Aging Cell, 10(6), 913-921. https://doi.org/10.1111/j.1474-9726.2011.00741.x
Bartáková, V., Reichard, M., Blažek, R., Polačik, M., & Bryja, J. (2015). Terrestrial fishes: rivers are barriers to gene flow in annual fishes from the African savanna. Journal of Biogeography, 42(10), 1832-1844. https://doi.org/10.1111/jbi.12567
Bartáková, V., Reichard, M., Janko, K, Polačik, M, Blažek, R, Reichwald, K, Cellerino, A, & Bryja, J. (2013). Strong population genetic structuring in an annual fish, Nothobranchius furzeri, suggests multiple savannah refugia in southern Mozambique. BMC Evolutionary Biology, 13(1), 196. https://doi.org/10.1186/1471-2148-13-196
Bartoń, K. (2009). Mu-MIn: Multi-model inference [R Package Version 0.12.2/r18]. Retrieved from: http://R-Forge.R-project.org/projects/mumin/
Bauch, C., Gatt, M. C., Granadeiro, J. P., Verhulst, S., & Catry, P. (2020). Sex-specific telomere length and dynamics in relation to age and reproductive success in Cory’s shearwaters. Molecular Ecology, 29(7), 1344-1357. https://doi.org/10.1111/mec.15399
Blažek, R., Polačik, M., Kačer, P, Cellerino, A, Řežucha, R, Methling, C, Tomášek, O, Syslová, K, Terzibasi Tozzini, E, Albrecht, T, Vrtílek, M, & Reichard, M (2017). Repeated intraspecific divergence in life span and aging of African annual fishes along an aridity gradient. Evolution, 71(2), 386-402. https://doi.org/10.1111/evo.13127
Blažek, R., Polačik, M., & Reichard, M. (2013). Rapid growth, early maturation and short generation time in African annual fishes. EvoDevo, 4(1), 1-7. https://doi.org/10.1186/2041-9139-4-24
Bonduriansky, R., Maklakov, A., Zajitschek, F., & Brooks, R. (2008). Sexual selection, sexual conflict and the evolution of ageing and life span. Functional Ecology, 22(3), 443-453. https://doi.org/10.1111/j.1365-2435.2008.01417.x
Boonekamp, J. J., Mulder, G. A., Salomons, H. M., Dijkstra, C., & Verhulst, S. (2014). Nestling telomere shortening, but not telomere length, reflects developmental stress and predicts survival in wild birds. Proceedings of the Royal Society B: Biological Sciences, 281(1785), https://doi.org/10.1098/rspb.2013.3287
Brooks, M. E., Kristensen, K., Benthem, K. J.V, Magnusson, A, Berg, C W, Nielsen, A, Skaug, H J, Mächler, M, & Bolker, B M (2017). glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R Journal, 9(2), 378-400. https://doi.org/10.32614/rj-2017-066
Burraco, P., Comas, M., Reguera, S., Zamora-Camacho, F. J., & Moreno-Rueda, G. (2020). Telomere length mirrors age structure along a 2200-m altitudinal gradient in a Mediterranean lizard. Comparative Biochemistry and Physiology -Part A : Molecular and Integrative Physiology, 247, 110741 (March), https://doi.org/10.1016/j.cbpa.2020.110741
Carneiro, M. C., Henriques, C. M., Nabais, J., Ferreira, T., Carvalho, T., & Ferreira, M. G. (2016). Short telomeres in key tissues initiate local and systemic aging in zebrafish. PLoS Genetics, 12(1), 1-31. https://doi.org/10.1371/journal.pgen.1005798
Cellerino, A., Valenzano, D. R., & Reichard, M. (2016). From the bush to the bench: The annual Nothobranchius fishes as a new model system in biology. Biological Reviews, 91(2), 511-533. https://doi.org/10.1111/brv.12183
Chatelain, M., Drobniak, S. M., & Szulkin, M. (2020). The association between stressors and telomeres in non-human vertebrates: a meta-analysis. Ecology Letters, 23(2), 381-398. https://doi.org/10.1111/ele.13426
Cui, R., Medeiros, T., Willemsen, D., Iasi, L N. M., Collier, G E., Graef, M, Reichard, M, & Valenzano, D R (2019). Relaxed selection limits lifespan by increasing mutation load. Cell, 178(2), 385-399.e20. https://doi.org/10.1016/j.cell.2019.06.004
Dantzer, B., & Fletcher, Q. E. (2015). Telomeres shorten more slowly in slow-aging wild animals than in fast-aging ones. Experimental Gerontology, 71, 38-47. https://doi.org/10.1016/j.exger.2015.08.012
de Lange, T. (2005). Shelterin: The protein complex that shapes and safeguards human telomeres. Genes and Development, 19(18), 2100-2110. https://doi.org/10.1101/gad.1346005
Dorn, A., Ng’oma, E., Janko, K., Reichwald, K., Polačik, M., Platzer, M., Cellerino, A., & Reichard, M. (2011). Phylogeny, genetic variability and colour polymorphism of an emerging animal model: The short-lived annual Nothobranchius fishes from southern Mozambique. Molecular Phylogenetics and Evolution, 61(3), 739-749. https://doi.org/10.1016/j.ympev.2011.06.010
El Maï, M., Marzullo, M., de Castro, I. P., & Ferreira, M. G. (2020). Opposing p53 and mTOR/AKT promote an in vivo switch from apoptosis to senescence upon telomere shortening in zebrafish. eLife, 9, 1-26. https://doi.org/10.7554/eLife.54935
Epel, E. S., Blackburn, E. H., Lin, J., Dhabhar, F. S., Adler, N. E., Morrow, J. D., & Cawthon, R. M. (2004). Accelerated telomere shortening in response to life stress. Proceedings of the National Academy of Sciences, 101(49), 17312-17315. https://doi.org/10.1073/pnas.0407162101
Epel, E. S., Merkin, S. S., Cawthon, R., Blackburn, E. H., Adler, N. E., Pletcher, M. J., & Seeman, T. E. (2008). The rate of leukocyte telomere shortening predicts mortality from cardiovascular disease in elderly men. Aging, 1(1), 81-88. https://doi.org/10.18632/aging.100007
Fairlie, J., Holland, R., Pilkington, J. G., Pemberton, J. M., Harrington, L., & Nussey, D. H. (2016). Lifelong leukocyte telomere dynamics and survival in a free-living mammal. Aging Cell, 15(1), 140-148. https://doi.org/10.1111/acel.12417
Fick, L. J., Fick, G. H., Li, Z., Cao, E., Bao, B., Heffelfinger, D., Parker, HG, Ostrander, EA, & Riabowol, K. (2012). Telomere length correlates with life span of dog breeds. Cell Reports, 2(6), 1530-1536. https://doi.org/10.1016/j.celrep.2012.11.021
Forsyth, N. R., Wright, W. E., & Shay, J. W. (2002). Telomerase and differentiation in multicellular organisms: Turn it off, turn it on, and turn it off again. Differentiation, 69(4-5), 188-197. https://doi.org/10.1046/j.1432-0436.2002.690412.x
Gao, J., & Munch, S. B. (2015). Does reproductive investment decrease telomere length in Menidia menidia? PLoS One, 10(5), e0125674. https://doi.org/10.1371/journal.pone.0125674
Gardner, M, Bann, D, Wiley, L, Cooper, R, Hardy, R, Nitsch, D, Martin-Ruiz, C, Shiels, P, Sayer, A A, Barbieri, M, Bekaert, S, Bischoff, C, Brooks-Wilson, A, Chen, W, Cooper, C, Christensen, K, De Meyer, T, Deary, I, Der, G, Roux, A D, Fitzpatrick, A, Hajat, A, Halaschek-Wiener, J, Harris, S, Hunt, S C., Jagger, C, Jeon, H-S, Kaplan, R, Kimura, M, Lansdorp, P, Li, C, Maeda, T, Mangino, M, Nawrot, T S., Nilsson, P, Nordfjall, K, Paolisso, G, Ren, F, Riabowol, K, Robertson, T, Roos, G, Staessen, J A., Spector, T, Tang, N, Unryn, B, van der Harst, P, Woo, J, Xing, C, Yadegarfar, M E., Park, J Y, Young, N, Kuh, D, von Zglinicki, T, & Ben-Shlomo, Y (2014). Gender and telomere length: Systematic review and meta-analysis. Experimental Gerontology, 51(1), 15-27. https://doi.org/10.1016/j.exger.2013.12.004
Glade, M. J., & Meguid, M. M. (2015). A glance at … telomeres, oxidative stress, antioxidants, and biological aging. Nutrition, 31(11-12), 1447-1451. https://doi.org/10.1016/j.nut.2015.05.018
Gomes, N. M. V., Ryder, O. A., Houck, M. L., Charter, S. J., Walker, W., Forsyth, N. R., Austad, S N., Venditti, C, Pagel, M, Shay, J W., & Wright, W. E. (2011). Comparative biology of mammalian telomeres: Hypotheses on ancestral states and the roles of telomeres in longevity determination. Aging Cell, 10(5), 761-768. https://doi.org/10.1111/j.1474-9726.2011.00718.x
Gopalakrishnan, S., Cheung, N.K.M., Yip, B.W.P., & Au, D. W.T. (2013). Medaka fish exhibits longevity gender gap, a natural drop in estrogen and telomere shortening during aging: a unique model for studying sex-dependent longevity. Frontiers in Zoology, 10(1), 78. https://doi.org/10.1186/1742-9994-10-78
Graf, M., Hartmann, N., Reichwald, K., & Englert, C. (2013). Absence of replicative senescence in cultured cells from the short-lived killifish Nothobranchius furzeri. Experimental Gerontology, 48(1), 17-28. https://doi.org/10.1016/j.exger.2012.02.012
Greider, C. W., & Blackburn, E. H. (1989). A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature, 337, 331-337. https://doi.org/10.1038/337331a0
Harel, I., & Brunet, A. (2015). The African turquoise killifish: A model for exploring vertebrate aging and diseases in the fast lane. Cold Spring Harbor Symposia on Quantitative Biology, 80, 275-279. https://doi.org/10.1101/sqb.2015.80.027524
Hartmann, N., Reichwald, K., Lechel, A., Graf, M., Kirschner, J., Dorn, A., Terzibasi, E, Wellner, J, Platzer, M, Rudolph, K L, Cellerino, A, & Englert, C. (2009). Telomeres shorten while Tert expression increases during ageing of the short-lived fish Nothobranchius furzeri. Mechanisms of Ageing and Development, 130(5), 290-296. https://doi.org/10.1016/j.mad.2009.01.003
Haussmann, M. F., Winkler, D. W., O’Reilly, K. M., Huntington, C. E., Nisbet, I. C. T., & Vleck, C. M. (2003). Telomeres shorten more slowly in long-lived birds and mammals than in short-lived ones. Proceedings of the Royal Society B: Biological Sciences, 270(1522), 1387-1392. https://doi.org/10.1098/rspb.2003.2385
Heidinger, B. J., Blount, J. D., Boner, W., Griffiths, K., Metcalfe, N. B., & Monaghan, P. (2012). Telomere length in early life predicts lifespan. Proceedings of the National Academy of Sciences, 109(5), 1743-1748. https://doi.org/10.1073/pnas.1113306109
Henriques, C. M., Carneiro, M. C., Tenente, I. M., Jacinto, A., & Ferreira, M. G. (2013). Telomerase is required for zebrafish lifespan. PLoS Genetics, 9(1), e1003214. https://doi.org/10.1371/journal.pgen.1003214
Hu, C. K., & Brunet, A. (2018). The African turquoise killifish: A research organism to study vertebrate aging and diapause. Aging Cell, 17(3), e12757. https://doi.org/10.1111/acel.12757
Ibáñez-Álamo, J. D., Pineda-Pampliega, J., Thomson, R. L., Aguirre, J. I., Díez-Fernández, A., Faivre, B., Figuerola, J, & Verhulst, S. (2018). Urban blackbirds have shorter telomeres. Biology Letters, 14(3), 20180083. https://doi.org/10.1098/rsbl.2018.0083
Izzo, C., Bertozzi, T., Gillanders, B. M., & Donnellan, S. C. (2014). Variation in telomere length of the common carp, Cyprinus carpio (Cyprinidae), in relation to body length. Copeia, 2014(1), 87-94. https://doi.org/10.1643/CI-11-162
Kimura, M., Stone, R. C., Hunt, S. C., Skurnick, J., Lu, X., Cao, X., Harley, C B., & Aviv, A. (2010). Measurement of telomere length by the southern blot analysis of terminal restriction fragment lengths. Nature Protocols, 5(9), 1596-1607. https://doi.org/10.1038/nprot.2010.124
Kota, L. N., Bharath, S., Purushottam, M., Moily, N. S., Sivakumar, P. T., Varghese, M., Pal, P K, & Jain, S. (2015). Reduced telomere length in neurodegenerative disorders may suggest shared biology. Journal of Neuropsychiatry and Clinical Neurosciences, 27(2), e92-e96. https://doi.org/10.1176/appi.neuropsych.13100240
Lai, T. P., Wright, W. E., & Shay, J. W. (2018). Comparison of telomere length measurement methods. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1741), 20160451. https://doi.org/10.1098/rstb.2016.0451
Lapham, K., Kvale, M. N., Lin, J., Connell, S., Croen, L. A., Dispensa, B. P., Fang, L, Hesselson, S, Hoffmann, T J., Iribarren, C, Jorgenson, E, Kushi, L H., Ludwig, D, Matsuguchi, T, McGuire, W B., Miles, S, Quesenberry, C P., Rowell, S, Sadler, M, Sakoda, L C., Smethurst, D, Somkin, C P., Van Den Eeden, S K., Walter, L, Whitmer, R A., Kwok, PY, Risch, N, Schaefer, C, & Blackburn, E. H. (2015). Automated assay of telomere length measurement and informatics for 100,000 subjects in the genetic epidemiology research on adult health and aging (GERA) cohort. Genetics, 200(4), 1061-1072. https://doi.org/10.1534/genetics.115.178624
Lex, K., Maia Gil, M., Lopes-Bastos, B., Figueira, M., Marzullo, M., Giannetti, K., Carvalho, T, & Ferreira, M. G. (2020). Telomere shortening produces an inflammatory environment that increases tumor incidence in zebrafish. Proceedings of the National Academy of Sciences, 117(26), 15066-15074. https://doi.org/10.1073/pnas.1920049117
Li, B., & De Lange, T. (2003). Rap1 affects the length and heterogeneity of human telomeres. Molecular Biology of the Cell, 14, 5060-5068. https://doi.org/10.1091/mbc.e03-06-0403
López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194-1217, 1194. https://doi.org/10.1016/j.cell.2013.05.039
Martínez, P., & Blasco, M. A. (2018). Heart-breaking telomeres. Circulation Research, 123(7), 787-802. https://doi.org/10.1161/CIRCRESAHA.118.312202
McLennan, D., Armstrong, J. D., Stewart, D. C., Mckelvey, S., Boner, W., Monaghan, P., & Metcalfe, N. B. (2017). Shorter juvenile telomere length is associated with higher survival to spawning in migratory Atlantic salmon. Functional Ecology, 31(11), 2070-2079. https://doi.org/10.1111/1365-2435.12939
Monaghan, P., & Ozanne, S. E. (2018). Somatic growth and telomere dynamics in vertebrates: Relationships, mechanisms and consequences. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1741), 20160446. https://doi.org/10.1098/rstb.2016.0446
Moskalev, A. A., Shaposhnikov, M. V., Plyusnina, E. N., Zhavoronkov, A., Budovsky, A., Yanai, H., & Fraifeld, V. E. (2013). The role of DNA damage and repair in aging through the prism of Koch-like criteria. Ageing Research Reviews, 12(2), 661-684. https://doi.org/10.1016/j.arr.2012.02.001
Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution, 4(2), 133-142. https://doi.org/10.1111/j.2041-210x.2012.00261.x
Noreikiene, K., Kuparinen, A., & Merilä, J. (2017). Age at maturation has sex-and temperature-specific effects on telomere length in a fish. Oecologia, 184(4), 767-777. https://doi.org/10.1007/s00442-017-3913-5
Olovnikov, A. M. (1973). A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. Journal of Theoretical Biology, 41(1), 181-190. https://doi.org/10.1016/0022-5193(73)90198-7
Opresko, P. L., Fan, J., Danzy, S., Wilson, D. M., & Bohr, V. A. (2005). Oxidative damage in telomeric DNA disrupts recognition by TRF1 and TRF2. Nucleic Acids Research, 33(4), 1230-1239. https://doi.org/10.1093/nar/gki273
Polačik, M., Blažek, R., & Reichard, M. (2016). Laboratory breeding of the short-lived annual killifish Nothobranchius furzeri. Nature Protocols, 11(8), 1396-1413. https://doi.org/10.1038/nprot.2016.080
Reichard, M. (2015). The evolutionary ecology of african annual fishes. In N. Berois, G. García, & R. de Sá (Eds.), Annual Fishes: Life History Strategy, Diversity, and Evolution (pp. 133-158). CRC Press. https://doi.org/10.1201/b19016-12
Reichard, M., Giannetti, K., Ferreira, T., Maouche, A., Vrtílek, M., Polačik, M., Blažek, R., & Ferreira, M. G. (2021). Data for Lifespan and telomere length variation across wild-derived African killifish populations. [stored on Figshare data repository]. doi: https://doi.org/10.6084/m9.figshare.14748099
Reichard, M., Janáč, M., Polačik, M., Blažek, R., & Vrtílek, M. (2017). Community assembly in Nothobranchiusannual fishes: Nested patterns, environmental niche and biogeographic history. Ecology and Evolution, 7(7), 2294-2306. https://doi.org/10.1002/ece3.2851
Reichard, M., & Polačik, M. (2019). Nothobranchius furzeri, an “instant” fish from an ephemeral habitat. Elife, 8, 1-11. https://doi.org/10.7554/eLife.41548
Reichard, M., Polačik, M., Blažek, R., & Vrtílek, M. (2014). Female bias in the adult sex ratio of African annual fishes: interspecific differences, seasonal trends and environmental predictors. Evolutionary Ecology, 28(6), 1105-1120. https://doi.org/10.1007/s10682-014-9732-9
Reichwald, K., Petzold, A., Koch, P., Downie, B. R., Hartmann, N., Pietsch, S., Baumgart, M, Chalopin, D, Felder, M, Bens, M, Sahm, A, Szafranski, K, Taudien, S, Groth, M, Arisi, I, Weise, A, Bhatt, SS, Sharma, V, Kraus, JM, Schmid, F, Priebe, S, Liehr, T, Görlach, M, Than, ME, Hiller, M, Kestler, HA, Volff, JN, Schartl, M, Cellerino, A, Englert, C, & Platzer, M. (2015). Insights into sex chromosome evolution and aging from the genome of a short-lived fish. Cell, 163(6), 1527-1538. https://doi.org/10.1016/j.cell.2015.10.071
Remot, F., Ronget, V., Froy, H., Rey, B., Gaillard, J. M., Nussey, D. H., & Lemaître, J. F. (2020). No sex differences in adult telomere length across vertebrates: A meta-analysis. Royal Society Open Science, 7, 200548. https://doi.org/10.1098/rsos.200548
Roos, W. P., & Kaina, B. (2006). DNA damage-induced cell death by apoptosis. Trends in Molecular Medicine, 12(9), 440-450. https://doi.org/10.1016/j.molmed.2006.07.007
Rudolph, K. L., Chang, S., Lee, H., Blasco, M., Gottlieb, G. J., Greider, C., & DePinho, R. A. (1999). Longevity, stress response, and cancer. Cell, 96, 701-712. https://doi.org/10.1016/S0092-8674(00)80580-2
Salomons, H. M., Mulder, G. A., Van De Zande, L., Haussmann, M. F., Linskens, M. H. K., & Verhulst, S. (2009). Telomere shortening and survival in free-living corvids. Proceedings of the Royal Society B: Biological Sciences, 276(1670), 3157-3165. https://doi.org/10.1098/rspb.2009.0517
Sethi, I., Bhat, G. R., Singh, V., Kumar, R., Bhanwer, A. J. S., Bamezai, R. N. K., Sharma, S, & Rai, E. (2016). Role of telomeres and associated maintenance genes in Type 2 Diabetes Mellitus: A review. Diabetes Research and Clinical Practice, 122, 92-100. https://doi.org/10.1016/j.diabres.2016.10.015
Sherr, C. J., & DePinho, R. A. (2000). Cellular senescence: Mitotic clock or culture shock? Cell, 102(4), 407-410. https://doi.org/10.1016/S0092-8674(00)00046-5
STINDL, R. (2004). Tying it all together: Telomeres, sexual size dimorphism and the gender gap in life expectancy. Medical Hypotheses, 62(1), 151-154. https://doi.org/10.1016/S0306-9877(03)00316-5
Therneau, T. (2021). A Package for Survival Analysis in R [R package version 3.2-10]. Retrieved from: https://CRAN.R-project.org/package=survival
Tozzini, E. T., Dorn, A., & Ng’oma, E., Polačik, M., Blažek, R, Reichwald, K, Petzold, A, Watters, B, Reichard, M, & Cellerino, A (2013). Parallel evolution of senescence in annual fishes in response to extrinsic mortality. BMC Evolutionary Biology, 13, 77. https://doi.org/10.1186/1471-2148-13-77
Vrtílek, M., Žák, J., Polačik, M., Blažek, R., & Reichard, M. (2018). Longitudinal demographic study of wild populations of African annual killifish. Scientific Reports, 8, 4774. https://doi.org/10.1038/s41598-018-22878-6
Vrtílek, M., Žák, J., Polačik, M., Blažek, R., & Reichard, M. (2019). Rapid growth and large body size in annual fish populations are compromised by density-dependent regulation. Journal of Fish Biology, 95, 673-678. https://doi.org/10.1111/jfb.14052
Vrtílek, M., Žák, J., Pšenička, M., & Reichard, M. (2018). Extremely rapid maturation of a wild African annual fish. Current Biology, 28(15), R822-R824. https://doi.org/10.1016/j.cub.2018.06.031
Whittemore, K., Vera, E., Martínez-Nevado, E., Sanpera, C., & Blasco, M. A. (2019). Telomere shortening rate predicts species life span. Proceedings of the National Academy of Sciences, 116, 15122-15127. https://doi.org/10.1073/pnas.1902452116
Wilbourn, R. V., Moatt, J. P., Froy, H., Walling, C. A., Nussey, D. H., & Boonekamp, J. J. (2018). The relationship between telomere length and mortality risk in non-model vertebrate systems: A meta-analysis. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1741), 20160447. https://doi.org/10.1098/rstb.2016.0447
Wildekamp, R. H. (2004). A World of Killies: Atlas of the Oviparous Cyprinidontiform Fishes of the World, Vol. IV. American Killifish Association.
Willemsen, D., Cui, R., Reichard, M., & Valenzano, D. R. (2020). Intra-species Differences in Population Size Shape Life History and Genome Evolution, eLife, 9, e55794.
Young, A. J. (2018). The role of telomeres in the mechanisms and evolution of life-history trade-offs and ageing. Philosophical Transactions of the Royal Society B: Biological Sciences, 373, 20160452. https://doi.org/10.1098/rstb.2016.0452
Zhang, J., Rane, G., Dai, X., Shanmugam, M. K., Arfuso, F., Samy, R. P., Lai, M K P, Kappei, D, Kumar, A P & Sethi, G. (2016). Ageing and the telomere connection: An intimate relationship with inflammation. Ageing Research Reviews, 25, 55-69. https://doi.org/10.1016/j.arr.2015.11.006
Zuur, A. F., & Ieno, E. N. (2016). A protocol for conducting and presenting results of regression-type analyses. Methods in Ecology and Evolution, 7(6), 636-645. https://doi.org/10.1111/2041-210X.12577
Fast satellite DNA evolution in Nothobranchius annual killifishes