Lifespan and telomere length variation across populations of wild-derived African killifish

. 2022 Dec ; 31 (23) : 5979-5992. [epub] 20211207

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34826177

Telomeres and telomerase prevent the continuous erosion of chromosome-ends caused by lifelong cell division. Shortened telomeres are associated with age-related pathologies. While short telomere length is positively correlated with increased lethality at the individual level, in comparisons across species short telomeres are associated with long (and not short) lifespans. Here, we tested this contradiction between individual and evolutionary patterns in telomere length using African annual killifish. We analysed lifespan and telomere length in a set of captive strains derived from well-defined wild populations of Nothobranchius furzeri and its sister species, N. kadleci, from sites along a strong gradient of aridity which ultimately determines maximum natural lifespan. Overall, males were shorter-lived than females, and also had shorter telomeres. Male lifespan (measured in controlled laboratory conditions) was positively associated with the amount of annual rainfall in the site of strain origin. However, fish from wetter climates had shorter telomeres. In addition, individual fish which grew largest over the juvenile period possessed shorter telomeres at the onset of adulthood. This demonstrates that individual condition and environmentally-driven selection indeed modulate the relationship between telomere length and lifespan in opposite directions, validating the existence of inverse trends within a single taxon. Intraindividual heterogeneity of telomere length (capable to detect very short telomeres) was not associated with mean telomere length, suggesting that the shortest telomeres are controlled by regulatory pathways other than those that determine mean telomere length. The substantial variation in telomere length between strains from different environments identifies killifish as a powerful system in understanding the adaptive value of telomere length.

Zobrazit více v PubMed

Ahmed, W., & Lingner, J. (2018). PRDX1 and MTH1 cooperate to prevent ROS-mediated inhibition of telomerase. Genes and Development, 32(9-10), 658-669. https://doi.org/10.1101/gad.313460.118

Armanios, M., Alder, J. K., Parry, E. M., Karim, B., Strong, M. A., & Greider, C. W. (2009). Short telomeres are sufficient to cause the degenerative defects associated with aging. American Journal of Human Genetics, 85(6), 823-832. https://doi.org/10.1016/j.ajhg.2009.10.028

Armanios, M., & Blackburn, E. H. (2012). Telomere syndromes. Nature Reviews Genetics, 13(10), 693-704. https://doi.org/10.1038/nrg3246

Aubert, G., Baerlocher, G. M., Vulto, I., Poon, S. S., & Lansdorp, P. M. (2012). Collapse of Telomere homeostasis in hematopoietic cells caused by heterozygous mutations in Telomerase genes. PLoS Genetics, 8(5), e1002696. https://doi.org/10.1371/journal.pgen.1002696

Aviv, A., Anderson, J. J., & Shay, J. W. (2017). Mutations, cancer and the telomere length paradox. Trends in Cancer, 3(4), 253-258. https://doi.org/10.1016/j.trecan.2017.02.005

Barrett, E. L. B., Burke, T. A., Hammers, M., Komdeur, J., & Richardson, D. S. (2013). Telomere length and dynamics predict mortality in a wild longitudinal study. Molecular Ecology, 22(1), 249-259. https://doi.org/10.1111/mec.12110

Barrett, E. L. B., & Richardson, D. S. (2011). Sex differences in telomeres and lifespan. Aging Cell, 10(6), 913-921. https://doi.org/10.1111/j.1474-9726.2011.00741.x

Bartáková, V., Reichard, M., Blažek, R., Polačik, M., & Bryja, J. (2015). Terrestrial fishes: rivers are barriers to gene flow in annual fishes from the African savanna. Journal of Biogeography, 42(10), 1832-1844. https://doi.org/10.1111/jbi.12567

Bartáková, V., Reichard, M., Janko, K, Polačik, M, Blažek, R, Reichwald, K, Cellerino, A, & Bryja, J. (2013). Strong population genetic structuring in an annual fish, Nothobranchius furzeri, suggests multiple savannah refugia in southern Mozambique. BMC Evolutionary Biology, 13(1), 196. https://doi.org/10.1186/1471-2148-13-196

Bartoń, K. (2009). Mu-MIn: Multi-model inference [R Package Version 0.12.2/r18]. Retrieved from: http://R-Forge.R-project.org/projects/mumin/

Bauch, C., Gatt, M. C., Granadeiro, J. P., Verhulst, S., & Catry, P. (2020). Sex-specific telomere length and dynamics in relation to age and reproductive success in Cory’s shearwaters. Molecular Ecology, 29(7), 1344-1357. https://doi.org/10.1111/mec.15399

Blažek, R., Polačik, M., Kačer, P, Cellerino, A, Řežucha, R, Methling, C, Tomášek, O, Syslová, K, Terzibasi Tozzini, E, Albrecht, T, Vrtílek, M, & Reichard, M (2017). Repeated intraspecific divergence in life span and aging of African annual fishes along an aridity gradient. Evolution, 71(2), 386-402. https://doi.org/10.1111/evo.13127

Blažek, R., Polačik, M., & Reichard, M. (2013). Rapid growth, early maturation and short generation time in African annual fishes. EvoDevo, 4(1), 1-7. https://doi.org/10.1186/2041-9139-4-24

Bonduriansky, R., Maklakov, A., Zajitschek, F., & Brooks, R. (2008). Sexual selection, sexual conflict and the evolution of ageing and life span. Functional Ecology, 22(3), 443-453. https://doi.org/10.1111/j.1365-2435.2008.01417.x

Boonekamp, J. J., Mulder, G. A., Salomons, H. M., Dijkstra, C., & Verhulst, S. (2014). Nestling telomere shortening, but not telomere length, reflects developmental stress and predicts survival in wild birds. Proceedings of the Royal Society B: Biological Sciences, 281(1785), https://doi.org/10.1098/rspb.2013.3287

Brooks, M. E., Kristensen, K., Benthem, K. J.V, Magnusson, A, Berg, C W, Nielsen, A, Skaug, H J, Mächler, M, & Bolker, B M (2017). glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R Journal, 9(2), 378-400. https://doi.org/10.32614/rj-2017-066

Burraco, P., Comas, M., Reguera, S., Zamora-Camacho, F. J., & Moreno-Rueda, G. (2020). Telomere length mirrors age structure along a 2200-m altitudinal gradient in a Mediterranean lizard. Comparative Biochemistry and Physiology -Part A : Molecular and Integrative Physiology, 247, 110741 (March), https://doi.org/10.1016/j.cbpa.2020.110741

Carneiro, M. C., Henriques, C. M., Nabais, J., Ferreira, T., Carvalho, T., & Ferreira, M. G. (2016). Short telomeres in key tissues initiate local and systemic aging in zebrafish. PLoS Genetics, 12(1), 1-31. https://doi.org/10.1371/journal.pgen.1005798

Cellerino, A., Valenzano, D. R., & Reichard, M. (2016). From the bush to the bench: The annual Nothobranchius fishes as a new model system in biology. Biological Reviews, 91(2), 511-533. https://doi.org/10.1111/brv.12183

Chatelain, M., Drobniak, S. M., & Szulkin, M. (2020). The association between stressors and telomeres in non-human vertebrates: a meta-analysis. Ecology Letters, 23(2), 381-398. https://doi.org/10.1111/ele.13426

Cui, R., Medeiros, T., Willemsen, D., Iasi, L N. M., Collier, G E., Graef, M, Reichard, M, & Valenzano, D R (2019). Relaxed selection limits lifespan by increasing mutation load. Cell, 178(2), 385-399.e20. https://doi.org/10.1016/j.cell.2019.06.004

Dantzer, B., & Fletcher, Q. E. (2015). Telomeres shorten more slowly in slow-aging wild animals than in fast-aging ones. Experimental Gerontology, 71, 38-47. https://doi.org/10.1016/j.exger.2015.08.012

de Lange, T. (2005). Shelterin: The protein complex that shapes and safeguards human telomeres. Genes and Development, 19(18), 2100-2110. https://doi.org/10.1101/gad.1346005

Dorn, A., Ng’oma, E., Janko, K., Reichwald, K., Polačik, M., Platzer, M., Cellerino, A., & Reichard, M. (2011). Phylogeny, genetic variability and colour polymorphism of an emerging animal model: The short-lived annual Nothobranchius fishes from southern Mozambique. Molecular Phylogenetics and Evolution, 61(3), 739-749. https://doi.org/10.1016/j.ympev.2011.06.010

El Maï, M., Marzullo, M., de Castro, I. P., & Ferreira, M. G. (2020). Opposing p53 and mTOR/AKT promote an in vivo switch from apoptosis to senescence upon telomere shortening in zebrafish. eLife, 9, 1-26. https://doi.org/10.7554/eLife.54935

Epel, E. S., Blackburn, E. H., Lin, J., Dhabhar, F. S., Adler, N. E., Morrow, J. D., & Cawthon, R. M. (2004). Accelerated telomere shortening in response to life stress. Proceedings of the National Academy of Sciences, 101(49), 17312-17315. https://doi.org/10.1073/pnas.0407162101

Epel, E. S., Merkin, S. S., Cawthon, R., Blackburn, E. H., Adler, N. E., Pletcher, M. J., & Seeman, T. E. (2008). The rate of leukocyte telomere shortening predicts mortality from cardiovascular disease in elderly men. Aging, 1(1), 81-88. https://doi.org/10.18632/aging.100007

Fairlie, J., Holland, R., Pilkington, J. G., Pemberton, J. M., Harrington, L., & Nussey, D. H. (2016). Lifelong leukocyte telomere dynamics and survival in a free-living mammal. Aging Cell, 15(1), 140-148. https://doi.org/10.1111/acel.12417

Fick, L. J., Fick, G. H., Li, Z., Cao, E., Bao, B., Heffelfinger, D., Parker, HG, Ostrander, EA, & Riabowol, K. (2012). Telomere length correlates with life span of dog breeds. Cell Reports, 2(6), 1530-1536. https://doi.org/10.1016/j.celrep.2012.11.021

Forsyth, N. R., Wright, W. E., & Shay, J. W. (2002). Telomerase and differentiation in multicellular organisms: Turn it off, turn it on, and turn it off again. Differentiation, 69(4-5), 188-197. https://doi.org/10.1046/j.1432-0436.2002.690412.x

Gao, J., & Munch, S. B. (2015). Does reproductive investment decrease telomere length in Menidia menidia? PLoS One, 10(5), e0125674. https://doi.org/10.1371/journal.pone.0125674

Gardner, M, Bann, D, Wiley, L, Cooper, R, Hardy, R, Nitsch, D, Martin-Ruiz, C, Shiels, P, Sayer, A A, Barbieri, M, Bekaert, S, Bischoff, C, Brooks-Wilson, A, Chen, W, Cooper, C, Christensen, K, De Meyer, T, Deary, I, Der, G, Roux, A D, Fitzpatrick, A, Hajat, A, Halaschek-Wiener, J, Harris, S, Hunt, S C., Jagger, C, Jeon, H-S, Kaplan, R, Kimura, M, Lansdorp, P, Li, C, Maeda, T, Mangino, M, Nawrot, T S., Nilsson, P, Nordfjall, K, Paolisso, G, Ren, F, Riabowol, K, Robertson, T, Roos, G, Staessen, J A., Spector, T, Tang, N, Unryn, B, van der Harst, P, Woo, J, Xing, C, Yadegarfar, M E., Park, J Y, Young, N, Kuh, D, von Zglinicki, T, & Ben-Shlomo, Y (2014). Gender and telomere length: Systematic review and meta-analysis. Experimental Gerontology, 51(1), 15-27. https://doi.org/10.1016/j.exger.2013.12.004

Glade, M. J., & Meguid, M. M. (2015). A glance at … telomeres, oxidative stress, antioxidants, and biological aging. Nutrition, 31(11-12), 1447-1451. https://doi.org/10.1016/j.nut.2015.05.018

Gomes, N. M. V., Ryder, O. A., Houck, M. L., Charter, S. J., Walker, W., Forsyth, N. R., Austad, S N., Venditti, C, Pagel, M, Shay, J W., & Wright, W. E. (2011). Comparative biology of mammalian telomeres: Hypotheses on ancestral states and the roles of telomeres in longevity determination. Aging Cell, 10(5), 761-768. https://doi.org/10.1111/j.1474-9726.2011.00718.x

Gopalakrishnan, S., Cheung, N.K.M., Yip, B.W.P., & Au, D. W.T. (2013). Medaka fish exhibits longevity gender gap, a natural drop in estrogen and telomere shortening during aging: a unique model for studying sex-dependent longevity. Frontiers in Zoology, 10(1), 78. https://doi.org/10.1186/1742-9994-10-78

Graf, M., Hartmann, N., Reichwald, K., & Englert, C. (2013). Absence of replicative senescence in cultured cells from the short-lived killifish Nothobranchius furzeri. Experimental Gerontology, 48(1), 17-28. https://doi.org/10.1016/j.exger.2012.02.012

Greider, C. W., & Blackburn, E. H. (1989). A telomeric sequence in the RNA of Tetrahymena telomerase required for telomere repeat synthesis. Nature, 337, 331-337. https://doi.org/10.1038/337331a0

Harel, I., & Brunet, A. (2015). The African turquoise killifish: A model for exploring vertebrate aging and diseases in the fast lane. Cold Spring Harbor Symposia on Quantitative Biology, 80, 275-279. https://doi.org/10.1101/sqb.2015.80.027524

Hartmann, N., Reichwald, K., Lechel, A., Graf, M., Kirschner, J., Dorn, A., Terzibasi, E, Wellner, J, Platzer, M, Rudolph, K L, Cellerino, A, & Englert, C. (2009). Telomeres shorten while Tert expression increases during ageing of the short-lived fish Nothobranchius furzeri. Mechanisms of Ageing and Development, 130(5), 290-296. https://doi.org/10.1016/j.mad.2009.01.003

Haussmann, M. F., Winkler, D. W., O’Reilly, K. M., Huntington, C. E., Nisbet, I. C. T., & Vleck, C. M. (2003). Telomeres shorten more slowly in long-lived birds and mammals than in short-lived ones. Proceedings of the Royal Society B: Biological Sciences, 270(1522), 1387-1392. https://doi.org/10.1098/rspb.2003.2385

Heidinger, B. J., Blount, J. D., Boner, W., Griffiths, K., Metcalfe, N. B., & Monaghan, P. (2012). Telomere length in early life predicts lifespan. Proceedings of the National Academy of Sciences, 109(5), 1743-1748. https://doi.org/10.1073/pnas.1113306109

Henriques, C. M., Carneiro, M. C., Tenente, I. M., Jacinto, A., & Ferreira, M. G. (2013). Telomerase is required for zebrafish lifespan. PLoS Genetics, 9(1), e1003214. https://doi.org/10.1371/journal.pgen.1003214

Hu, C. K., & Brunet, A. (2018). The African turquoise killifish: A research organism to study vertebrate aging and diapause. Aging Cell, 17(3), e12757. https://doi.org/10.1111/acel.12757

Ibáñez-Álamo, J. D., Pineda-Pampliega, J., Thomson, R. L., Aguirre, J. I., Díez-Fernández, A., Faivre, B., Figuerola, J, & Verhulst, S. (2018). Urban blackbirds have shorter telomeres. Biology Letters, 14(3), 20180083. https://doi.org/10.1098/rsbl.2018.0083

Izzo, C., Bertozzi, T., Gillanders, B. M., & Donnellan, S. C. (2014). Variation in telomere length of the common carp, Cyprinus carpio (Cyprinidae), in relation to body length. Copeia, 2014(1), 87-94. https://doi.org/10.1643/CI-11-162

Kimura, M., Stone, R. C., Hunt, S. C., Skurnick, J., Lu, X., Cao, X., Harley, C B., & Aviv, A. (2010). Measurement of telomere length by the southern blot analysis of terminal restriction fragment lengths. Nature Protocols, 5(9), 1596-1607. https://doi.org/10.1038/nprot.2010.124

Kota, L. N., Bharath, S., Purushottam, M., Moily, N. S., Sivakumar, P. T., Varghese, M., Pal, P K, & Jain, S. (2015). Reduced telomere length in neurodegenerative disorders may suggest shared biology. Journal of Neuropsychiatry and Clinical Neurosciences, 27(2), e92-e96. https://doi.org/10.1176/appi.neuropsych.13100240

Lai, T. P., Wright, W. E., & Shay, J. W. (2018). Comparison of telomere length measurement methods. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1741), 20160451. https://doi.org/10.1098/rstb.2016.0451

Lapham, K., Kvale, M. N., Lin, J., Connell, S., Croen, L. A., Dispensa, B. P., Fang, L, Hesselson, S, Hoffmann, T J., Iribarren, C, Jorgenson, E, Kushi, L H., Ludwig, D, Matsuguchi, T, McGuire, W B., Miles, S, Quesenberry, C P., Rowell, S, Sadler, M, Sakoda, L C., Smethurst, D, Somkin, C P., Van Den Eeden, S K., Walter, L, Whitmer, R A., Kwok, PY, Risch, N, Schaefer, C, & Blackburn, E. H. (2015). Automated assay of telomere length measurement and informatics for 100,000 subjects in the genetic epidemiology research on adult health and aging (GERA) cohort. Genetics, 200(4), 1061-1072. https://doi.org/10.1534/genetics.115.178624

Lex, K., Maia Gil, M., Lopes-Bastos, B., Figueira, M., Marzullo, M., Giannetti, K., Carvalho, T, & Ferreira, M. G. (2020). Telomere shortening produces an inflammatory environment that increases tumor incidence in zebrafish. Proceedings of the National Academy of Sciences, 117(26), 15066-15074. https://doi.org/10.1073/pnas.1920049117

Li, B., & De Lange, T. (2003). Rap1 affects the length and heterogeneity of human telomeres. Molecular Biology of the Cell, 14, 5060-5068. https://doi.org/10.1091/mbc.e03-06-0403

López-Otín, C., Blasco, M. A., Partridge, L., Serrano, M., & Kroemer, G. (2013). The hallmarks of aging. Cell, 153(6), 1194-1217, 1194. https://doi.org/10.1016/j.cell.2013.05.039

Martínez, P., & Blasco, M. A. (2018). Heart-breaking telomeres. Circulation Research, 123(7), 787-802. https://doi.org/10.1161/CIRCRESAHA.118.312202

McLennan, D., Armstrong, J. D., Stewart, D. C., Mckelvey, S., Boner, W., Monaghan, P., & Metcalfe, N. B. (2017). Shorter juvenile telomere length is associated with higher survival to spawning in migratory Atlantic salmon. Functional Ecology, 31(11), 2070-2079. https://doi.org/10.1111/1365-2435.12939

Monaghan, P., & Ozanne, S. E. (2018). Somatic growth and telomere dynamics in vertebrates: Relationships, mechanisms and consequences. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1741), 20160446. https://doi.org/10.1098/rstb.2016.0446

Moskalev, A. A., Shaposhnikov, M. V., Plyusnina, E. N., Zhavoronkov, A., Budovsky, A., Yanai, H., & Fraifeld, V. E. (2013). The role of DNA damage and repair in aging through the prism of Koch-like criteria. Ageing Research Reviews, 12(2), 661-684. https://doi.org/10.1016/j.arr.2012.02.001

Nakagawa, S., & Schielzeth, H. (2013). A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution, 4(2), 133-142. https://doi.org/10.1111/j.2041-210x.2012.00261.x

Noreikiene, K., Kuparinen, A., & Merilä, J. (2017). Age at maturation has sex-and temperature-specific effects on telomere length in a fish. Oecologia, 184(4), 767-777. https://doi.org/10.1007/s00442-017-3913-5

Olovnikov, A. M. (1973). A theory of marginotomy. The incomplete copying of template margin in enzymic synthesis of polynucleotides and biological significance of the phenomenon. Journal of Theoretical Biology, 41(1), 181-190. https://doi.org/10.1016/0022-5193(73)90198-7

Opresko, P. L., Fan, J., Danzy, S., Wilson, D. M., & Bohr, V. A. (2005). Oxidative damage in telomeric DNA disrupts recognition by TRF1 and TRF2. Nucleic Acids Research, 33(4), 1230-1239. https://doi.org/10.1093/nar/gki273

Polačik, M., Blažek, R., & Reichard, M. (2016). Laboratory breeding of the short-lived annual killifish Nothobranchius furzeri. Nature Protocols, 11(8), 1396-1413. https://doi.org/10.1038/nprot.2016.080

Reichard, M. (2015). The evolutionary ecology of african annual fishes. In N. Berois, G. García, & R. de Sá (Eds.), Annual Fishes: Life History Strategy, Diversity, and Evolution (pp. 133-158). CRC Press. https://doi.org/10.1201/b19016-12

Reichard, M., Giannetti, K., Ferreira, T., Maouche, A., Vrtílek, M., Polačik, M., Blažek, R., & Ferreira, M. G. (2021). Data for Lifespan and telomere length variation across wild-derived African killifish populations. [stored on Figshare data repository]. doi: https://doi.org/10.6084/m9.figshare.14748099

Reichard, M., Janáč, M., Polačik, M., Blažek, R., & Vrtílek, M. (2017). Community assembly in Nothobranchiusannual fishes: Nested patterns, environmental niche and biogeographic history. Ecology and Evolution, 7(7), 2294-2306. https://doi.org/10.1002/ece3.2851

Reichard, M., & Polačik, M. (2019). Nothobranchius furzeri, an “instant” fish from an ephemeral habitat. Elife, 8, 1-11. https://doi.org/10.7554/eLife.41548

Reichard, M., Polačik, M., Blažek, R., & Vrtílek, M. (2014). Female bias in the adult sex ratio of African annual fishes: interspecific differences, seasonal trends and environmental predictors. Evolutionary Ecology, 28(6), 1105-1120. https://doi.org/10.1007/s10682-014-9732-9

Reichwald, K., Petzold, A., Koch, P., Downie, B. R., Hartmann, N., Pietsch, S., Baumgart, M, Chalopin, D, Felder, M, Bens, M, Sahm, A, Szafranski, K, Taudien, S, Groth, M, Arisi, I, Weise, A, Bhatt, SS, Sharma, V, Kraus, JM, Schmid, F, Priebe, S, Liehr, T, Görlach, M, Than, ME, Hiller, M, Kestler, HA, Volff, JN, Schartl, M, Cellerino, A, Englert, C, & Platzer, M. (2015). Insights into sex chromosome evolution and aging from the genome of a short-lived fish. Cell, 163(6), 1527-1538. https://doi.org/10.1016/j.cell.2015.10.071

Remot, F., Ronget, V., Froy, H., Rey, B., Gaillard, J. M., Nussey, D. H., & Lemaître, J. F. (2020). No sex differences in adult telomere length across vertebrates: A meta-analysis. Royal Society Open Science, 7, 200548. https://doi.org/10.1098/rsos.200548

Roos, W. P., & Kaina, B. (2006). DNA damage-induced cell death by apoptosis. Trends in Molecular Medicine, 12(9), 440-450. https://doi.org/10.1016/j.molmed.2006.07.007

Rudolph, K. L., Chang, S., Lee, H., Blasco, M., Gottlieb, G. J., Greider, C., & DePinho, R. A. (1999). Longevity, stress response, and cancer. Cell, 96, 701-712. https://doi.org/10.1016/S0092-8674(00)80580-2

Salomons, H. M., Mulder, G. A., Van De Zande, L., Haussmann, M. F., Linskens, M. H. K., & Verhulst, S. (2009). Telomere shortening and survival in free-living corvids. Proceedings of the Royal Society B: Biological Sciences, 276(1670), 3157-3165. https://doi.org/10.1098/rspb.2009.0517

Sethi, I., Bhat, G. R., Singh, V., Kumar, R., Bhanwer, A. J. S., Bamezai, R. N. K., Sharma, S, & Rai, E. (2016). Role of telomeres and associated maintenance genes in Type 2 Diabetes Mellitus: A review. Diabetes Research and Clinical Practice, 122, 92-100. https://doi.org/10.1016/j.diabres.2016.10.015

Sherr, C. J., & DePinho, R. A. (2000). Cellular senescence: Mitotic clock or culture shock? Cell, 102(4), 407-410. https://doi.org/10.1016/S0092-8674(00)00046-5

STINDL, R. (2004). Tying it all together: Telomeres, sexual size dimorphism and the gender gap in life expectancy. Medical Hypotheses, 62(1), 151-154. https://doi.org/10.1016/S0306-9877(03)00316-5

Therneau, T. (2021). A Package for Survival Analysis in R [R package version 3.2-10]. Retrieved from: https://CRAN.R-project.org/package=survival

Tozzini, E. T., Dorn, A., & Ng’oma, E., Polačik, M., Blažek, R, Reichwald, K, Petzold, A, Watters, B, Reichard, M, & Cellerino, A (2013). Parallel evolution of senescence in annual fishes in response to extrinsic mortality. BMC Evolutionary Biology, 13, 77. https://doi.org/10.1186/1471-2148-13-77

Vrtílek, M., Žák, J., Polačik, M., Blažek, R., & Reichard, M. (2018). Longitudinal demographic study of wild populations of African annual killifish. Scientific Reports, 8, 4774. https://doi.org/10.1038/s41598-018-22878-6

Vrtílek, M., Žák, J., Polačik, M., Blažek, R., & Reichard, M. (2019). Rapid growth and large body size in annual fish populations are compromised by density-dependent regulation. Journal of Fish Biology, 95, 673-678. https://doi.org/10.1111/jfb.14052

Vrtílek, M., Žák, J., Pšenička, M., & Reichard, M. (2018). Extremely rapid maturation of a wild African annual fish. Current Biology, 28(15), R822-R824. https://doi.org/10.1016/j.cub.2018.06.031

Whittemore, K., Vera, E., Martínez-Nevado, E., Sanpera, C., & Blasco, M. A. (2019). Telomere shortening rate predicts species life span. Proceedings of the National Academy of Sciences, 116, 15122-15127. https://doi.org/10.1073/pnas.1902452116

Wilbourn, R. V., Moatt, J. P., Froy, H., Walling, C. A., Nussey, D. H., & Boonekamp, J. J. (2018). The relationship between telomere length and mortality risk in non-model vertebrate systems: A meta-analysis. Philosophical Transactions of the Royal Society B: Biological Sciences, 373(1741), 20160447. https://doi.org/10.1098/rstb.2016.0447

Wildekamp, R. H. (2004). A World of Killies: Atlas of the Oviparous Cyprinidontiform Fishes of the World, Vol. IV. American Killifish Association.

Willemsen, D., Cui, R., Reichard, M., & Valenzano, D. R. (2020). Intra-species Differences in Population Size Shape Life History and Genome Evolution, eLife, 9, e55794.

Young, A. J. (2018). The role of telomeres in the mechanisms and evolution of life-history trade-offs and ageing. Philosophical Transactions of the Royal Society B: Biological Sciences, 373, 20160452. https://doi.org/10.1098/rstb.2016.0452

Zhang, J., Rane, G., Dai, X., Shanmugam, M. K., Arfuso, F., Samy, R. P., Lai, M K P, Kappei, D, Kumar, A P & Sethi, G. (2016). Ageing and the telomere connection: An intimate relationship with inflammation. Ageing Research Reviews, 25, 55-69. https://doi.org/10.1016/j.arr.2015.11.006

Zuur, A. F., & Ieno, E. N. (2016). A protocol for conducting and presenting results of regression-type analyses. Methods in Ecology and Evolution, 7(6), 636-645. https://doi.org/10.1111/2041-210X.12577

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...