Endosomal sorting of VAMP3 is regulated by PI4K2A

. 2014 Sep 01 ; 127 (Pt 17) : 3745-56. [epub] 20140707

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Intramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid25002402

Grantová podpora
MOP-119483 Canadian Institutes of Health Research - Canada
MOP-84314 Canadian Institutes of Health Research - Canada
Intramural NIH HHS - United States

Specificity of membrane fusion in vesicular trafficking is dependent on proper subcellular distribution of soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). Although SNARE complexes are fairly promiscuous in vitro, substantial specificity is achieved in cells owing to the spatial segregation and shielding of SNARE motifs prior to association with cognate Q-SNAREs. In this study, we identified phosphatidylinositol 4-kinase IIα (PI4K2A) as a binding partner of vesicle-associated membrane protein 3 (VAMP3), a small R-SNARE involved in recycling and retrograde transport, and found that the two proteins co-reside on tubulo-vesicular endosomes. PI4K2A knockdown inhibited VAMP3 trafficking to perinuclear membranes and impaired the rate of VAMP3-mediated recycling of the transferrin receptor. Moreover, depletion of PI4K2A significantly decreased association of VAMP3 with its cognate Q-SNARE Vti1a. Although binding of VAMP3 to PI4K2A did not require kinase activity, acute depletion of phosphatidylinositol 4-phosphate (PtdIns4P) on endosomes significantly delayed VAMP3 trafficking. Modulation of SNARE function by phospholipids had previously been proposed based on in vitro studies, and our study provides mechanistic evidence in support of these claims by identifying PI4K2A and PtdIns4P as regulators of an R-SNARE in intact cells.

Zobrazit více v PubMed

Balla A., Balla T. (2006). Phosphatidylinositol 4-kinases: old enzymes with emerging functions. Trends Cell Biol. 16, 351–361 10.1016/j.tcb.2006.05.003 PubMed DOI

Balla A., Tuymetova G., Barshishat M., Geiszt M., Balla T. (2002). Characterization of type II phosphatidylinositol 4-kinase isoforms reveals association of the enzymes with endosomal vesicular compartments. J. Biol. Chem. 277, 20041–20050 10.1074/jbc.M111807200 PubMed DOI

Balla A., Tuymetova G., Tsiomenko A., Várnai P., Balla T. (2005). A plasma membrane pool of phosphatidylinositol 4-phosphate is generated by phosphatidylinositol 4-kinase type-III alpha: studies with the PH domains of the oxysterol binding protein and FAPP1. Mol. Biol. Cell 16, 1282–1295 10.1091/mbc.E04-07-0578 PubMed DOI PMC

Balla A., Kim Y. J., Varnai P., Szentpetery Z., Knight Z., Shokat K. M., Balla T. (2008). Maintenance of hormone-sensitive phosphoinositide pools in the plasma membrane requires phosphatidylinositol 4-kinase IIIalpha. Mol. Biol. Cell 19, 711–721 10.1091/mbc.E07-07-0713 PubMed DOI PMC

Barylko B., Gerber S. H., Binns D. D., Grichine N., Khvotchev M., Südhof T. C., Albanesi J. P. (2001). A novel family of phosphatidylinositol 4-kinases conserved from yeast to humans. J. Biol. Chem. 276, 7705–7708 10.1074/jbc.C000861200 PubMed DOI

Bethani I., Lang T., Geumann U., Sieber J. J., Jahn R., Rizzoli S. O. (2007). The specificity of SNARE pairing in biological membranes is mediated by both proof-reading and spatial segregation. EMBO J. 26, 3981–3992 10.1038/sj.emboj.7601820 PubMed DOI PMC

Brandhorst D., Zwilling D., Rizzoli S. O., Lippert U., Lang T., Jahn R. (2006). Homotypic fusion of early endosomes: SNAREs do not determine fusion specificity. Proc. Natl. Acad. Sci. USA 103, 2701–2706 10.1073/pnas.0511138103 PubMed DOI PMC

Burgess J., Del Bel L. M., Ma C. I., Barylko B., Polevoy G., Rollins J., Albanesi J. P., Krämer H., Brill J. A. (2012). Type II phosphatidylinositol 4-kinase regulates trafficking of secretory granule proteins in Drosophila. Development 139, 3040–3050 10.1242/dev.077644 PubMed DOI PMC

Craige B., Salazar G., Faundez V. (2008). Phosphatidylinositol-4-kinase type II alpha contains an AP-3-sorting motif and a kinase domain that are both required for endosome traffic. Mol. Biol. Cell 19, 1415–1426 10.1091/mbc.E07-12-1239 PubMed DOI PMC

Ellena J. F., Liang B., Wiktor M., Stein A., Cafiso D. S., Jahn R., Tamm L. K. (2009). Dynamic structure of lipid-bound synaptobrevin suggests a nucleation-propagation mechanism for trans-SNARE complex formation. Proc. Natl. Acad. Sci. USA 106, 20306–20311 10.1073/pnas.0908317106 PubMed DOI PMC

Fasshauer D., Sutton R. B., Brunger A. T., Jahn R. (1998). Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc. Natl. Acad. Sci. USA 95, 15781–15786 10.1073/pnas.95.26.15781 PubMed DOI PMC

Fasshauer D., Antonin W., Margittai M., Pabst S., Jahn R. (1999). Mixed and non-cognate SNARE complexes. Characterization of assembly and biophysical properties. J. Biol. Chem. 274, 15440–15446 10.1074/jbc.274.22.15440 PubMed DOI

Feng D., Crane K., Rozenvayn N., Dvorak A. M., Flaumenhaft R. (2002). Subcellular distribution of 3 functional platelet SNARE proteins: human cellubrevin, SNAP-23, and syntaxin 2. Blood 99, 4006–4014 10.1182/blood.V99.11.4006 PubMed DOI

Galli T., Chilcote T., Mundigl O., Binz T., Niemann H., De Camilli P. (1994). Tetanus toxin-mediated cleavage of cellubrevin impairs exocytosis of transferrin receptor-containing vesicles in CHO cells. J. Cell Biol. 125, 1015–1024 10.1083/jcb.125.5.1015 PubMed DOI PMC

Ganley I. G., Espinosa E., Pfeffer S. R. (2008). A syntaxin 10-SNARE complex distinguishes two distinct transport routes from endosomes to the trans-Golgi in human cells. J. Cell Biol. 180, 159–172 10.1083/jcb.200707136 PubMed DOI PMC

Gillooly D. J., Morrow I. C., Lindsay M., Gould R., Bryant N. J., Gaullier J. M., Parton R. G., Stenmark H. (2000). Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J. 19, 4577–4588 10.1093/emboj/19.17.4577 PubMed DOI PMC

Gillooly D. J., Raiborg C., Stenmark H. (2003). Phosphatidylinositol 3-phosphate is found in microdomains of early endosomes. Histochem. Cell Biol. 120, 445–453 10.1007/s00418-003-0591-7 PubMed DOI

Gordon D. E., Mirza M., Sahlender D. A., Jakovleska J., Peden A. A. (2009). Coiled-coil interactions are required for post-Golgi R-SNARE trafficking. EMBO Rep. 10, 851–856 10.1038/embor.2009.96 PubMed DOI PMC

Goudreault M., D'Ambrosio L. M., Kean M. J., Mullin M. J., Larsen B. G., Sanchez A., Chaudhry S., Chen G. I., Sicheri F., Nesvizhskii A. I. et al.(2009). A PP2A phosphatase high density interaction network identifies a novel striatin-interacting phosphatase and kinase complex linked to the cerebral cavernous malformation 3 (CCM3) protein. Mol. Cell. Proteomics 8, 157–171 10.1074/mcp.M800266-MCP200 PubMed DOI PMC

Guo J., Wenk M. R., Pellegrini L., Onofri F., Benfenati F., De Camilli P. (2003). Phosphatidylinositol 4-kinase type IIalpha is responsible for the phosphatidylinositol 4-kinase activity associated with synaptic vesicles. Proc. Natl. Acad. Sci. USA 100, 3995–4000 10.1073/pnas.0230488100 PubMed DOI PMC

Hsu V. W., Bai M., Li J. (2012). Getting active: protein sorting in endocytic recycling. Nat. Rev. Mol. Cell Biol. 13, 323–328 PubMed

Inoue T., Heo W. D., Grimley J. S., Wandless T. J., Meyer T. (2005). An inducible translocation strategy to rapidly activate and inhibit small GTPase signaling pathways. Nat. Methods 2, 415–418 10.1038/nmeth763 PubMed DOI PMC

Jović M., Kean M. J., Szentpetery Z., Polevoy G., Gingras A. C., Brill J. A., Balla T. (2012). Two phosphatidylinositol 4-kinases control lysosomal delivery of the Gaucher disease enzyme, β-glucocerebrosidase. Mol. Biol. Cell 23, 1533–1545 10.1091/mbc.E11-06-0553 PubMed DOI PMC

Knight Z. A., Gonzalez B., Feldman M. E., Zunder E. R., Goldenberg D. D., Williams O., Loewith R., Stokoe D., Balla A., Toth B. et al.(2006). A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell 125, 733–747 10.1016/j.cell.2006.03.035 PubMed DOI PMC

Komatsu T., Kukelyansky I., McCaffery J. M., Ueno T., Varela L. C., Inoue T. (2010). Organelle-specific, rapid induction of molecular activities and membrane tethering. Nat. Methods 7, 206–208 10.1038/nmeth.1428 PubMed DOI PMC

Liu G., Zhang J., Larsen B., Stark C., Breitkreutz A., Lin Z. Y., Breitkreutz B. J., Ding Y., Colwill K., Pasculescu A. et al.(2010). ProHits: integrated software for mass spectrometry-based interaction proteomics. Nat. Biotechnol. 28, 1015–1017 10.1038/nbt1010-1015 PubMed DOI PMC

Mallard F., Tang B. L., Galli T., Tenza D., Saint-Pol A., Yue X., Antony C., Hong W., Goud B., Johannes L. (2002). Early/recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform. J. Cell Biol. 156, 653–664 10.1083/jcb.200110081 PubMed DOI PMC

Martinez-Arca S., Rudge R., Vacca M., Raposo G., Camonis J., Proux-Gillardeaux V., Daviet L., Formstecher E., Hamburger A., Filippini F. et al.(2003). A dual mechanism controlling the localization and function of exocytic v-SNAREs. Proc. Natl. Acad. Sci. USA 100, 9011–9016 10.1073/pnas.1431910100 PubMed DOI PMC

Maxfield F. R., McGraw T. E. (2004). Endocytic recycling. Nat. Rev. Mol. Cell Biol. 5, 121–132 10.1038/nrm1315 PubMed DOI

Mayer A., Wickner W., Haas A. (1996). Sec18p (NSF)-driven release of Sec17p (alpha-SNAP) can precede docking and fusion of yeast vacuoles. Cell 85, 83–94 10.1016/S0092-8674(00)81084-3 PubMed DOI

McMahon H. T., Ushkaryov Y. A., Edelmann L., Link E., Binz T., Niemann H., Jahn R., Südhof T. C. (1993). Cellubrevin is a ubiquitous tetanus-toxin substrate homologous to a putative synaptic vesicle fusion protein. Nature 364, 346–349 10.1038/364346a0 PubMed DOI

McNew J. A., Parlati F., Fukuda R., Johnston R. J., Paz K., Paumet F., Söllner T. H., Rothman J. E. (2000). Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 407, 153–159 10.1038/35025000 PubMed DOI

Miller S. E., Sahlender D. A., Graham S. C., Höning S., Robinson M. S., Peden A. A., Owen D. J. (2011). The molecular basis for the endocytosis of small R-SNAREs by the clathrin adaptor CALM. Cell 147, 1118–1131 10.1016/j.cell.2011.10.038 PubMed DOI PMC

Minogue S., Waugh M. G., De Matteis M. A., Stephens D. J., Berditchevski F., Hsuan J. J. (2006). Phosphatidylinositol 4-kinase is required for endosomal trafficking and degradation of the EGF receptor. J. Cell Sci. 119, 571–581 10.1242/jcs.02752 PubMed DOI

Naughtin M. J., Sheffield D. A., Rahman P., Hughes W. E., Gurung R., Stow J. L., Nandurkar H. H., Dyson J. M., Mitchell C. A. (2010). The myotubularin phosphatase MTMR4 regulates sorting from early endosomes. J. Cell Sci. 123, 3071–3083 10.1242/jcs.060103 PubMed DOI

Pan W., Choi S. C., Wang H., Qin Y., Volpicelli-Daley L., Swan L., Lucast L., Khoo C., Zhang X., Li L. et al.(2008). Wnt3a-mediated formation of phosphatidylinositol 4,5-bisphosphate regulates LRP6 phosphorylation. Science 321, 1350–1353 10.1126/science.1160741 PubMed DOI PMC

Parlati F., Varlamov O., Paz K., McNew J. A., Hurtado D., Söllner T. H., Rothman J. E. (2002). Distinct SNARE complexes mediating membrane fusion in Golgi transport based on combinatorial specificity. Proc. Natl. Acad. Sci. USA 99, 5424–5429 10.1073/pnas.082100899 PubMed DOI PMC

Poirier M. A., Xiao W., Macosko J. C., Chan C., Shin Y. K., Bennett M. K. (1998). The synaptic SNARE complex is a parallel four-stranded helical bundle. Nat. Struct. Biol. 5, 765–769 10.1038/1799 PubMed DOI

Polgár J., Chung S. H., Reed G. L. (2002). Vesicle-associated membrane protein 3 (VAMP-3) and VAMP-8 are present in human platelets and are required for granule secretion. Blood 100, 1081–1083 10.1182/blood.V100.3.1081 PubMed DOI

Regazzi R., Sadoul K., Meda P., Kelly R. B., Halban P. A., Wollheim C. B. (1996). Mutational analysis of VAMP domains implicated in Ca2+-induced insulin exocytosis. EMBO J. 15, 6951–6959 PubMed PMC

Rothenberger F., Velic A., Stehberger P. A., Kovacikova J., Wagner C. A. (2007). Angiotensin II stimulates vacuolar H+ -ATPase activity in renal acid-secretory intercalated cells from the outer medullary collecting duct. J. Am. Soc. Nephrol. 18, 2085–2093 10.1681/ASN.2006070753 PubMed DOI

Ryder P. V., Vistein R., Gokhale A., Seaman M. N., Puthenveedu M. A., Faundez V. (2013). The WASH complex, an endosomal Arp2/3 activator, interacts with the Hermansky-Pudlak syndrome complex BLOC-1 and its cargo phosphatidylinositol-4-kinase type IIα. Mol. Biol. Cell 24, 2269–2284 10.1091/mbc.E13-02-0088 PubMed DOI PMC

Salazar G., Zlatic S., Craige B., Peden A. A., Pohl J., Faundez V. (2009). Hermansky-Pudlak syndrome protein complexes associate with phosphatidylinositol 4-kinase type II alpha in neuronal and non-neuronal cells. J. Biol. Chem. 284, 1790–1802 10.1074/jbc.M805991200 PubMed DOI PMC

Simons J. P., Al-Shawi R., Minogue S., Waugh M. G., Wiedemann C., Evangelou S., Loesch A., Sihra T. S., King R., Warner T. T. et al.(2009). Loss of phosphatidylinositol 4-kinase 2alpha activity causes late onset degeneration of spinal cord axons. Proc. Natl. Acad. Sci. USA 106, 11535–11539 10.1073/pnas.0903011106 PubMed DOI PMC

Söllner T., Bennett M. K., Whiteheart S. W., Scheller R. H., Rothman J. E. (1993). A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75, 409–418 10.1016/0092-8674(93)90376-2 PubMed DOI

Sutton R. B., Fasshauer D., Jahn R., Brunger A. T. (1998). Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395, 347–353 10.1038/26412 PubMed DOI

Szentpetery Z., Várnai P., Balla T. (2010). Acute manipulation of Golgi phosphoinositides to assess their importance in cellular trafficking and signaling. Proc. Natl. Acad. Sci. USA 107, 8225–8230 10.1073/pnas.1000157107 PubMed DOI PMC

Vicogne J., Vollenweider D., Smith J. R., Huang P., Frohman M. A., Pessin J. E. (2006). Asymmetric phospholipid distribution drives in vitro reconstituted SNARE-dependent membrane fusion. Proc. Natl. Acad. Sci. USA 103, 14761–14766 10.1073/pnas.0606881103 PubMed DOI PMC

Volchuk A., Sargeant R., Sumitani S., Liu Z., He L., Klip A. (1995). Cellubrevin is a resident protein of insulin-sensitive GLUT4 glucose transporter vesicles in 3T3-L1 adipocytes. J. Biol. Chem. 270, 8233–8240 10.1074/jbc.270.14.8233 PubMed DOI

Wang Y. J., Wang J., Sun H. Q., Martinez M., Sun Y. X., Macia E., Kirchhausen T., Albanesi J. P., Roth M. G., Yin H. L. (2003). Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. Cell 114, 299–310 10.1016/S0092-8674(03)00603-2 PubMed DOI

Xu H., Wickner W. (2010). Phosphoinositides function asymmetrically for membrane fusion, promoting tethering and 3Q-SNARE subcomplex assembly. J. Biol. Chem. 285, 39359–39365 10.1074/jbc.M110.183111 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...