A large scale high-throughput screen identifies chemical inhibitors of phosphatidylinositol 4-kinase type II alpha
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Intramural, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
30626625
PubMed Central
PMC6399489
DOI
10.1194/jlr.d090159
PII: S0022-2275(20)32628-6
Knihovny.cz E-zdroje
- Klíčová slova
- endosome, phosphoinositide, vesicular traffic,
- MeSH
- 1-fosfatidylinositol-4-kinasa antagonisté a inhibitory chemie metabolismus MeSH
- biologický transport MeSH
- Cercopithecus aethiops MeSH
- COS buňky MeSH
- endozomy účinky léků metabolismus MeSH
- Golgiho aparát účinky léků metabolismus MeSH
- HEK293 buňky MeSH
- inhibitory enzymů metabolismus farmakologie MeSH
- konformace proteinů MeSH
- lidé MeSH
- preklinické hodnocení léčiv MeSH
- rychlé screeningové testy * MeSH
- simulace molekulového dockingu MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Intramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- 1-fosfatidylinositol-4-kinasa MeSH
- inhibitory enzymů MeSH
The minor phospholipid, phosphatidylinositol 4-phosphate (PI4P), is emerging as a key regulator of lipid transfer in ER-membrane contact sites. Four different phosphatidylinositol 4-kinase (PI4K) enzymes generate PI4P in different membrane compartments supporting distinct cellular processes, many of which are crucial for the maintenance of cellular integrity but also hijacked by intracellular pathogens. While type III PI4Ks have been targeted by small molecular inhibitors, thus helping decipher their importance in cellular physiology, no inhibitors are available for the type II PI4Ks, which hinders investigations into their cellular functions. Here, we describe the identification of small molecular inhibitors of PI4K type II alpha (PI4K2A) by implementing a large scale small molecule high-throughput screening. A novel assay was developed that allows testing of selected inhibitors against PI4K2A in intact cells using a bioluminescence resonance energy transfer approach adapted to plate readers. The compounds disclosed here will pave the way to the optimization of PI4K2A inhibitors that can be used in cellular and animal studies to better understand the role of this enzyme in both normal and pathological states.
Zobrazit více v PubMed
Balla T. 2013. Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol. Rev. 93: 1019–1137. PubMed PMC
Shuttleworth S. J., Silva F. A., Cecil A. R., Tomassi C. D., Hill T. J., Raynaud F. I., Clarke P. A., and Workman P.. 2011. Progress in the preclinical discovery and clinical development of class I and dual class I/IV phosphoinositide 3-kinase (PI3K) inhibitors. Curr. Med. Chem. 18: 2686–2714. PubMed PMC
Boura E., and Nencka R.. 2015. Phosphatidylinositol 4-kinases: function, structure, and inhibition. Exp. Cell Res. 337: 136–145. PubMed
D’Angelo G., Vicinanza M., Wilson C., and De Matteis M. A.. 2012. Phosphoinositides in Golgi complex function. Subcell. Biochem. 59: 255–270. PubMed
Nakatsu F., Baskin J. M., Chung J., Tanner L. B., Shui G., Lee S. Y., Pirruccello M., Haio M., Ingolia N. T., Wenk M. R., et al. . 2012. PtdIns4P synthesis by PI4KIIIa at the plasma membrane and its impact on plasma membrane identity. J. Cell Biol. 199: 1003–1016. PubMed PMC
Minogue S. 2018. The many roles of type II phosphatidylinositol 4-kinases in membrane trafficking: new tricks for old dogs. Bioessays. 40: doi:10.1002/bies.201700145. PubMed
Altan-Bonnet N., and Balla T.. 2012. Phosphatidylinositol 4-kinases: hostages harnessed to build panviral replication platforms. Trends Biochem. Sci. 37: 293–302. PubMed PMC
Vanhaesebroeck B., Stephens L., and Hawkins P.. 2012. PI3K signalling: the path to discovery and understanding. Nat. Rev. Mol. Cell Biol. 13: 195–203. PubMed
Bianco A., Reghellin V., Donnici L., Fenu S., Alvarez R., Baruffa C., Peri F., Pagani M., Abrignani S., Neddermann P., et al. . 2012. Metabolism of phosphatidylinositol 4-kinase IIIalpha-dependent PI4P is subverted by HCV and is targeted by a 4-anilino quinazoline with antiviral activity. PLoS Pathog. 8: e1002576. PubMed PMC
Arita M., Kojima H., Nagano T., Okabe T., Wakita T., and Shimizu H.. 2011. Phosphatidylinositol 4-kinase III beta is a target of enviroxime-like compounds for antipoliovirus activity. J. Virol. 85: 2364–2372. PubMed PMC
Thibaut H. J., van der Schaar H. M., Lanke K. H., Verbeken E., Andrews M., Leyssen P., Neyts J., and van Kuppeveld F. J.. 2014. Fitness and virulence of a coxsackievirus mutant that can circumnavigate the need for phosphatidylinositol 4-kinase class III beta. J. Virol. 88: 3048–3051. PubMed PMC
Balla A., Kim Y. J., Varnai P., Szentpetery Z., Knight Z., Shokat K. M., and Balla T.. 2008. Maintenance of hormone-sensitive phosphoinositide pools in the plasma membrane requires phosphatidylinositol 4-kinase III{alpha}. Mol. Biol. Cell. 19: 711–721. PubMed PMC
Pan W., Choi S. C., Wang H., Qin Y., Volpicelli-Daley L., Swan L., Lucast L., Khoo C., Zhang X., Li L., et al. . 2008. Wnt3a-mediated formation of phosphatidylinositol 4,5-bisphosphate regulates LRP6 phosphorylation. Science. 321: 1350–1353. PubMed PMC
Qin Y., Li L., Pan W., and Wu D.. 2009. Regulation of phosphatidylinositol kinases and metabolism by Wnt3a and Dvl. J. Biol. Chem. 284: 22544–22548. PubMed PMC
Tanneberger K., Pfister A. S., Brauburger K., Schneikert J., Hadjihannas M. V., Kriz V., Schulte G., Bryja V., and Behrens J.. 2011. Amer1/WTX couples Wnt-induced formation of PtdIns(4,5)P2 to LRP6 phosphorylation. EMBO J. 30: 1433–1443. PubMed PMC
Jović M., Kean M. J., Dubankova A., Boura E., Gingras A. C., Brill J. A., and Balla T.. 2014. Endosomal sorting of VAMP3 is regulated by PI4K2A. J. Cell Sci. 127: 3745–3756. PubMed PMC
Jeong Y. H., Sekiya M., Hirata M., Ye M., Yamagishi A., Lee S. M., Kang M. J., Hosoda A., Fukumura T., Kim D. H., et al. . 2010. The low-density lipoprotein receptor-related protein 10 is a negative regulator of the canonical Wnt/beta-catenin signaling pathway. Biochem. Biophys. Res. Commun. 392: 495–499. PubMed
Bilic J., Huang Y. L., Davidson G., Zimmermann T., Cruciat C. M., Bienz M., and Niehrs C.. 2007. Wnt induces LRP6 signalosomes and promotes dishevelled-dependent LRP6 phosphorylation. Science. 316: 1619–1622. PubMed
Klima M., Baumlova A., Chalupska D., Hrebabecky H., Dejmek M., Nencka R., and Boura E.. 2015. The high-resolution crystal structure of phosphatidylinositol 4-kinase IIβ and the crystal structure of phosphatidylinositol 4-kinase IIα containing a nucleoside analogue provide a structural basis for isoform-specific inhibitor design. Acta Crystallogr. D Biol. Crystallogr. 71: 1555–1563. PubMed
Najdi R., Holcombe R. F., and Waterman M. L.. 2011. Wnt signaling and colon carcinogenesis: beyond APC. J. Carcinog. 10: 5. PubMed PMC
Morris J. P. t., Wang S. C., and Hebrok M.. 2010. KRAS, Hedgehog, Wnt and the twisted developmental biology of pancreatic ductal adenocarcinoma. Nat. Rev. Cancer. 10: 683–695. PubMed PMC
Hezel A. F., Kimmelman A. C., Stanger B. Z., Bardeesy N., and Depinho R. A.. 2006. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev. 20: 1218–1249. PubMed
Giuliani N., Morandi F., Tagliaferri S., Lazzaretti M., Donofrio G., Bonomini S., Sala R., Mangoni M., and Rizzoli V.. 2007. Production of Wnt inhibitors by myeloma cells: potential effects on canonical Wnt pathway in the bone microenvironment. Cancer Res. 67: 7665–7674. PubMed
Kocemba K. A., Groen R. W., van Andel H., Kersten M. J., Mahtouk K., Spaargaren M., and Pals S. T.. 2012. Transcriptional silencing of the Wnt-antagonist DKK1 by promoter methylation is associated with enhanced Wnt signaling in advanced multiple myeloma. PLoS One. 7: e30359. PubMed PMC
Huang S. M., Mishina Y. M., Liu S., Cheung A., Stegmeier F., Michaud G. A., Charlat O., Wiellette E., Zhang Y., Wiessner S., et al. . 2009. Tankyrase inhibition stabilizes axin and antagonizes Wnt signalling. Nature. 461: 614–620. PubMed
Chu K. M., Minogue S., Hsuan J. J., and Waugh M. G.. 2010. Differential effects of the phosphatidylinositol 4-kinases, PI4KIIα and PI4KIIIβ, on Akt activation and apoptosis. Cell Death Dis. 1: e106. PubMed PMC
Walz H. A., Shi X., Chouinard M., Bue C. A., Navaroli D. M., Hayakawa A., Zhou Q. L., Nadler J., Leonard D. M., and Corvera S.. 2010. Isoform-specific regulation of Akt signaling by the endosomal protein WDFY2. J. Biol. Chem. 285: 14101–14108. PubMed PMC
Schenck A., Goto-Silva L., Collinet C., Rhinn M., Giner A., Habermann B., Brand M., and Zerial M.. 2008. The endosomal protein Appl1 mediates Akt substrate specificity and cell survival in vertebrate development. Cell. 133: 486–497. PubMed
Nazarewicz R. R., Salazar G., Patrushev N., San Martin A., Hilenski L., Xiong S., and Alexander R. W.. 2011. Early endosomal antigen 1 (EEA1) is an obligate scaffold for angiotensin II-induced, PKC-alpha-dependent Akt activation in endosomes. J. Biol. Chem. 286: 2886–2895. PubMed PMC
Jović M., Kean M. J., Szentpetery Z., Polevoy G., Gingras A. C., Brill J. A., and Balla T.. 2012. Two phosphatidylinositol 4-kinases control lysosomal delivery of the Gaucher disease enzyme, β-glucocerebrosidase. Mol. Biol. Cell. 23: 1533–1545. PubMed PMC
Gatta A. T., and Levine T. P.. 2017. Piecing together the patchwork of contact sites. Trends Cell Biol. 27: 214–229. PubMed
Forrest S., Chai A., Sanhueza M., Marescotti M., Parry K., Georgiev A., Sahota V., Mendez-Castro R., and Pennetta G.. 2013. Increased levels of phosphoinositides cause neurodegeneration in a Drosophila model of amyotrophic lateral sclerosis. Hum. Mol. Genet. 22: 2689–2704. PubMed PMC
Cao M., Wu Y., Ashrafi G., McCartney A. J., Wheeler H., Bushong E. A., Boassa D., Ellisman M. H., Ryan T. A., and De Camilli P.. 2017. Parkinson Sac domain mutation in synaptojanin 1 impairs clathrin uncoating at synapses and triggers dystrophic changes in dopaminergic axons. Neuron. 93: 882–896.e5. PubMed PMC
Alvarez-Prats A., Bjelobaba I., Aldworth Z., Baba T., Abebe D., Kim Y. J., Stojilkovic S. S., Stopfer M., and Balla T.. 2018. Schwann-cell-specific deletion of phosphatidylinositol 4-kinase alpha causes aberrant myelination. Cell Reports. 23: 2881–2890. PubMed PMC
Li J., Gao Z., Zhao D., Zhang L., Qiao X., Zhao Y., Ding H., Zhang P., Lu J., Liu J., et al. . 2017. PI-273, a substrate-competitive, specific small-molecule inhibitor of PI4KIIalpha, inhibits the growth of breast cancer cells. Cancer Res. 77: 6253–6266. PubMed
Balla A., Tuymetova G., Barshishat M., Geiszt M., and Balla T.. 2002. Characterization of type II phosphatidylinositol 4-kinase isoforms reveals association of the enzymes with endosomal vesicular compartments. J. Biol. Chem. 277: 20041–20050. PubMed
Hammond G. R., Machner M. P., and Balla T.. 2014. A novel probe for phosphatidylinositol 4-phosphate reveals multiple pools beyond the Golgi. J. Cell Biol. 205: 113–126. PubMed PMC
Tóth J. T., Gulyás G., Tóth D. J., Balla A., Hammond G. R., Hunyady L., Balla T., and Várnai P.. 2016. BRET-monitoring of the dynamic changes of inositol lipid pools in living cells reveals a PKC-dependent PtdIns4P increase upon EGF and M3 receptor activation. Biochim. Biophys. Acta. 1861: 177–187. PubMed PMC
Baumlova A., Chalupska D., Rozycki B., Jovic M., Wisniewski E., Klima M., Dubankova A., Kloer D. P., Nencka R., Balla T., et al. . 2014. The crystal structure of the phosphatidylinositol 4-kinase IIα. EMBO Rep. 15: 1085–1092. PubMed PMC
Nakanishi S., Catt K. J., and Balla T.. 1995. A wortmannin-sensitive phosphatidylinositol 4-kinase that regulates hormone-sensitive pools of inositolphospholipids. Proc. Natl. Acad. Sci. USA. 92: 5317–5321. PubMed PMC
Tai A. W., Bojjireddy N., and Balla T.. 2011. A homogeneous and nonisotopic assay for phosphatidylinositol 4-kinases. Anal. Biochem. 417: 97–102. PubMed PMC
Inglese J., Auld D. S., Jadhav A., Johnson R. L., Simeonov A., Yasgar A., Zheng W., and Austin C. P.. 2006. Quantitative high-throughput screening: a titration-based approach that efficiently identifies biological activities in large chemical libraries. Proc. Natl. Acad. Sci. USA. 103: 11473–11478. PubMed PMC
Klima M., Toth D. J., Hexnerova R., Baumlova A., Chalupska D., Tykvart J., Rezabkova L., Sengupta N., Man P., Dubankova A., et al. . 2016. Structural insights and in vitro reconstitution of membrane targeting and activation of human PI4KB by the ACBD3 protein. Sci. Rep. 6: 23641. PubMed PMC
Jung G., Wang J., Wlodarski P., Barylko B., Binns D. D., Shu H., Yin H. L., and Albanesi J. P.. 2008. Molecular determinants of activation and membrane targeting of phosphoinositol 4-kinase IIbeta. Biochem. J. 409: 501–509. PubMed
Bojjireddy N., Guzman-Hernandez M. L., Reinhard N. R., Jovic M., and Balla T.. 2015. EFR3s are palmitoylated plasma membrane proteins that control responsiveness to G-protein-coupled receptors. J. Cell Sci. 128: 118–128. PubMed PMC
Várnai P., Gulyás G., Tóth D. J., Sohn M., Sengupta N., and Balla T.. 2017. Quantifying lipid changes in various membrane compartments using lipid binding protein domains. Cell Calcium. 64: 72–82. PubMed PMC
Bojjireddy N., Botyanszki J., Hammond G., Creech D., Peterson R., Kemp D. C., Snead M., Brown R., Morrison A., Wilson S., et al. . 2014. Pharmacological and genetic targeting of pPI4KA reveals its important role in maintaining plasma membrane PtdIns4p and PtdIns(4,5)p2 levels. J. Biol. Chem. 289: 6120–6132. PubMed PMC
Dong R., Saheki Y., Swarup S., Lucast L., Harper J. W., and De Camilli P.. 2016. Endosome-ER contacts control actin nucleation and retromer function through VAP-dependent regulation of PI4P. Cell. 166: 408–423. PubMed PMC