Tuning the Reactivity and Bonding Properties of Metal Square-Planar Complexes by the Substitution(s) on the Trans-Coordinated Pyridine Ring

. 2020 May 26 ; 5 (20) : 11768-11783. [epub] 20200514

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32478268

The kinetics of the hydration reaction on trans-[Pt(NH3)2(pyrX)Cl]+ (pyr = pyridine) complexes (X = OH-, Cl-, F-, Br-, NO2 -, NH2, SH-, CH3, C≡CH, and DMA) was studied by density functional theory calculations in the gas phase and in water solution described by the implicit polarizable continuum model method. All possible positions ortho, meta, and para of the substituent X in the pyridine ring were considered. The substitution of the pyr ligand by electron-donating X's led to the strengthening of the Pt-N1(pyrX) (Pt-NpyrX) bond and the weakening of the trans Pt-Cl or Pt-Ow bonds. The electron-withdrawing X's have exactly the opposite effect. The strengths of these bonds can be predicted from the basicity of sigma electrons on the NpyrX atom determined on the isolated pyrX ligand. As the pyrX ring was oriented perpendicularly with respect to the plane of the complex, the nature of the X···Cl electrostatic interaction was the decisive factor for the transition-state (TS) stabilization which resulted in the highest selectivity of ortho-substituted systems with respect to the reaction rate. Because of a smaller size of X's, the steric effects influenced less importantly the values of activation Gibbs energies ΔG ⧧ but caused geometry changes such as the elongation of the Pt-NpyrX bonds. Substitution in the meta position led to the highest ΔG ⧧ values for most of the X's. The changes of ΔG ⧧ because of electronic effects were the same in the gas phase and the water solvent. However, as the water solvent dampened electrostatic interactions, 2200 and 150 times differences in the reaction rate were observed between the most and the least reactive mono-substituted complexes in the gas phase and the water solvent, respectively. An additional NO2 substitution of the pyrNO2 ligand further decelerated the rate of the hydration reaction, but on the other hand, the poly-NH2 complexes were no more reactive than the fastest o-NH2 system. In the gas phase, the poly-X complexes showed the additivity of the substituent effects with respect to the Pt-ligand bond strengths and the ligand charges.

Erratum v

PubMed

Zobrazit více v PubMed

Reedijk J.; Teuben J. M.. Platinum-Sulfur Interactions Involved in Antitumor Drugs, Rescue Agents, and Biomolecules. In Cisplatin; Lippert B., Ed.; Verlag Helvetica Chimica Acta, 1999; pp 339–362.

Lin Z.; Hall M. B. Theoretical studies of inorganic and organometallic reaction mechanisms. 2. The trans effect in square-planar platinum(II) and rhodium(I) substitution reactions. Inorg. Chem. 1991, 30, 646–651. 10.1021/ic00004a011. DOI

Wendt O. F.; Elding L. I. Trans Effect and Trans Influence of Triphenyl-Stibine and -Phosphine in Platinum(II) Complexes. A Comparative Mechanistic and Structural Study. J. Chem. Soc., Dalton Trans. 1997, 24, 4725–4732. 10.1039/a706617a. DOI

Khoroshun D. V.; Musaev D. G.; Morokuma K. Electronic Reorganization: Origin of Sigma Trans Promotion Effect. J. Comput. Chem. 2007, 28, 423–441. 10.1002/jcc.20551. PubMed DOI

Zhu J.; Lin Z.; Marder T. B. Trans Influence of Boryl Ligands and Comparison with C, Si, and Sn Ligands. Inorg. Chem. 2005, 44, 9384–9390. 10.1021/ic0513641. PubMed DOI

Chval Z.; Sip M.; Burda J. V. The Trans Effect in Square-Planar Platinum(II) Complexes—A Density Functional Study. J. Comput. Chem. 2008, 29, 2370–2381. 10.1002/jcc.20980. PubMed DOI

Kapoor P. N.; Kakkar R. Trans and Cis Influence in Square Planar Pt(II) Complexes: A Density Functional Study of [PtClX(DmS)(2)] and Related Complexes. J. Mol. Struct.: THEOCHEM 2004, 679, 149–156. 10.1016/j.theochem.2004.03.029. DOI

Pinter B.; Van Speybroeck V.; Waroquier M.; Geerlings P.; De Proft F. Trans Effect and Trans Influence: Importance of Metal Mediated Ligand–Ligand Repulsion. Phys. Chem. Chem. Phys. 2013, 15, 17354.10.1039/c3cp52383g. PubMed DOI

Tsipis A. C. Trans-Philicity (Trans-Influence/Trans-Effect) Ladders for Square Planar Platinum(II) Complexes Constructed by 35Cl NMR Probe. J. Comput. Chem. 2019, 40, 2550–2562. 10.1002/jcc.26031. PubMed DOI

Manojlovic-Muir L. J.; Muir K. W. The Trans-Influence of Ligands in Platinum(II) Complexes. The Significance of the Bond Length Data. Inorg. Chim. Acta 1974, 10, 47–49. 10.1016/s0020-1693(00)86707-9. DOI

Wheate N. J.; Walker S.; Craig G. E.; Oun R. The Status of Platinum Anticancer Drugs in the Clinic and in Clinical Trials. Dalton Trans. 2010, 39, 8113–8127. 10.1039/c0dt00292e. PubMed DOI

Malina J.; Novakova O.; Vojtiskova M.; Natile G.; Brabec V. Conformation of DNA GG Intrastrand Cross-Link of Antitumor Oxaliplatin and Its Enantiomeric Analog. Biophys. J. 2007, 93, 3950–3962. 10.1529/biophysj.107.116996. PubMed DOI PMC

Legendre F.; Bas V.; Kozelka J.; Chottard J.-C. A Complete Kinetic Study of GG versus AG Platination Suggests That the Doubly Aquated Derivatives of Cisplatin Are the Actual DNA Binding Species. Chem.—Eur. J. 2000, 6, 2002–2010. 10.1002/1521-3765(20000602)6:11<2002::aid-chem2002>3.0.co;2-h. PubMed DOI

Kozelka J. Molecular Origin of the Sequence-Dependent Kinetics of Reactions between Cisplatin Derivatives and DNA. Inorg. Chim. Acta 2009, 362, 651–668. 10.1016/j.ica.2008.04.024. DOI

Chval Z.; Kabeláč M.; Burda J. V. Mechanism of the cis-[Pt(1R,2R-DACH)(H2O)2]2+ Intrastrand Binding to the Double-Stranded (pGpG)·(CpC) Dinucleotide in Aqueous Solution: A Computational DFT Study. Inorg. Chem. 2013, 52, 5801–5813. 10.1021/ic302654s. PubMed DOI

Summa N.; Schiessl W.; Puchta R.; van Eikema Hommes N.; van Eldik R. Thermodynamic and Kinetic Studies on Reactions of Pt(II) Complexes with Biologically Relevant Nucleophiles. Inorg. Chem. 2006, 45, 2948–2959. 10.1021/ic051955r. PubMed DOI

Petrović B.; Bugarčić Ž. D.; Dees A.; Ivanović-Burmazović I.; Heinemann F. W.; Puchta R.; Steinmann S. N.; Corminboeuf C.; van Eldik R. Role of π-Acceptor Effects in Controlling the Lability of Novel Monofunctional Pt(II) and Pd(II) Complexes: Crystal Structure of [Pt(Tripyridinedimethane)Cl]Cl. Inorg. Chem. 2012, 51, 1516–1529. 10.1021/ic201807a. PubMed DOI

Kinunda G.; Jaganyi D. Understanding the Electronic and π-Conjugation Roles of Quinoline on Ligand Substitution Reactions of Platinum(II) Complexes. Transition Met. Chem. 2014, 39, 451–459. 10.1007/s11243-014-9819-8. DOI

Khusi B. B.; Mambanda A.; Jaganyi D. The Role of Substituents in a Bidentate N,N-Chelating Ligand on the Substitution of Aqua Ligands from Mononuclear Pt(II) Complexes. Transition Met. Chem. 2016, 41, 191–203. 10.1007/s11243-015-0011-6. DOI

Jaganyi D.; Hofmann A.; van Eldik R. Controlling the Lability of Square-Planar PtII Complexes through Electronic Communication between π-Acceptor Ligands. Angew. Chem., Int. Ed. 2001, 40, 1680–1683. 10.1002/1521-3773(20010504)40:9<1680::aid-anie16800>3.0.co;2-k. PubMed DOI

Ćoćić D.; Jovanović S.; Radisavljević S.; Korzekwa J.; Scheurer A.; Puchta R.; Baskić D.; Todorović D.; Popović S.; Matić S.; Petrović B. New Monofunctional Platinum(II) and Palladium(II) Complexes: Studies of the Nucleophilic Substitution Reactions, DNA/BSA Interaction, and Cytotoxic Activity. J. Inorg. Biochem. 2018, 189, 91–102. 10.1016/j.jinorgbio.2018.09.005. PubMed DOI

Shaira A.; Reddy D.; Jaganyi D. A Kinetic and Mechanistic Study into the Substitution Behaviour of Platinum(II) Polypyridyl Complexes with a Series of Azole Ligands. Dalton Trans. 2013, 42, 8426–8436. 10.1039/c3dt00022b. PubMed DOI

Lovejoy K. S.; Todd R. C.; Zhang S.; McCormick M. S.; D’Aquino J. A.; Reardon J. T.; Sancar A.; Giacomini K. M.; Lippard S. J. Cis-Diammine(Pyridine)Chloroplatinum(II), a Monofunctional Platinum(II) Antitumor Agent: Uptake, Structure, Function, and Prospects. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 8902–8907. 10.1073/pnas.0803441105. PubMed DOI PMC

Icsel C.; Yilmaz V. T.; Golcu A.; Ulukaya E.; Buyukgungor O. Synthesis, Crystal Structures, DNA Binding and Cytotoxicity of Two Novel Platinum(II) Complexes Containing 2-(Hydroxymethyl)Pyridine and Pyridine-2-Carboxylate Ligands. Bioorg. Med. Chem. Lett. 2013, 23, 2117–2122. 10.1016/j.bmcl.2013.01.119. PubMed DOI

Munk V. P.; Diakos C. I.; Ellis L. T.; Fenton R. R.; Messerle B. A.; Hambley T. W. Investigations into the Interactions between DNA and Conformationally Constrained Pyridylamineplatinum(II) Analogues of AMD473. Inorg. Chem. 2003, 42, 3582–3590. 10.1021/ic0340231. PubMed DOI

Cerón-Carrasco J. P.; Jacquemin D. Tuning the Optical Properties of Phenanthriplatin: Towards New Photoactivatable Analogues. ChemPhotoChem 2017, 1, 504–512. 10.1002/cptc.201700090. DOI

Stehlikova K.; Kasparkova J.; Novakova O.; Martinez A.; Moreno V.; Brabec V. Recognition of DNA Modified by Trans-[PtCl2NH3(4-Hydroxymethylpyridine)] by Tumor Suppressor Protein P53 and Character of DNA Adducts of This Cytotoxic Complex. FEBS J. 2006, 273, 301–314. 10.1111/j.1742-4658.2005.05061.x. PubMed DOI

Raynaud F. I.; Boxall F. E.; Goddard P. M.; Valenti M.; Jones M.; Murrer B. A.; Abrams M.; Kelland L. R. Cis-Amminedichloro(2-Methylpyridine) Platinum(II) (AMD473), a Novel Sterically Hindered Platinum Complex: In Vivo Activity, Toxicology, and Pharmacokinetics in Mice. Clin. Cancer Res. 1997, 3, 2063–2074. PubMed

Chen Y.; Guo Z.; Parsons S.; Sadler P. J. Stereospecific and Kinetic Control over the Hydrolysis of a Sterically Hindered Platinum Picoline Anticancer Complex. Chem.—Eur. J. 1998, 4, 672–676. 10.1002/(sici)1521-3765(19980416)4:4<672::aid-chem672>3.0.co;2-8. DOI

Gao Y.; Zhou L. DNA Bindings of a Novel Anticancer Drug, Trans-[PtCl2(Isopropylamine)(3-Picoline)], and Kinetic Competition of Purine Bases with Protein Residues in the Bifunctional Substitutions: A Theoretical DFT Study. Theor. Chem. Acc. 2009, 123, 455–468. 10.1007/s00214-009-0557-5. DOI

Banerjee S.; Sengupta P. S.; Mukherjee A. K. A Detailed Theoretical DFT Study of the Hydrolysis Mechanism of Orally Active Anticancer Drug ZD0473. Chem. Phys. Lett. 2010, 487, 108–115. 10.1016/j.cplett.2010.01.001. DOI

Sarmah P.; Deka R. C. Hydrolysis and Binding Mechanism of AMD473 (Cis-[PtCl2(NH3)(2-Picoline)]) with Guanine: A Quantum Mechanical Study. J. Mol. Struct.: THEOCHEM 2010, 955, 53–60. 10.1016/j.theochem.2010.05.030. DOI

Novotný J.; Sojka M.; Komorovsky S.; Nečas M.; Marek R. Interpreting the Paramagnetic NMR Spectra of Potential Ru(III) Metallodrugs: Synergy between Experiment and Relativistic DFT Calculations. J. Am. Chem. Soc. 2016, 138, 8432–8445. 10.1021/jacs.6b02749. PubMed DOI

Lovejoy K. S.; Serova M.; Bieche I.; Emami S.; D’Incalci M.; Broggini M.; Erba E.; Gespach C.; Cvitkovic E.; Faivre S.; Raymond E.; Lippard S. J. Spectrum of Cellular Responses to Pyriplatin, a Monofunctional Cationic Antineoplastic Platinum(II) Compound, in Human Cancer Cells. Mol. Cancer Ther. 2011, 10, 1709–1719. 10.1158/1535-7163.mct-11-0250. PubMed DOI PMC

Pinto A. L.; Lippard S. J. Sequence-Dependent Termination of in Vitro DNA Synthesis by Cis- and Trans-Diamminedichloroplatinum (II). Proc. Natl. Acad. Sci. U.S.A. 1985, 82, 4616.10.1073/pnas.82.14.4616. PubMed DOI PMC

Hollis L. S.; Amundsen A. R.; Stern E. W. Chemical and Biological Properties of a New Series of Cis-Diammineplatinum(II) Antitumor Agents Containing Three Nitrogen Donors: Cis-[Pt(NH3)2(N-Donor) Cl]+. J. Med. Chem. 1989, 32, 128–136. 10.1021/jm00121a024. PubMed DOI

Park G. Y.; Wilson J. J.; Song Y.; Lippard S. J. Phenanthriplatin, a Monofunctional DNA-Binding Platinum Anticancer Drug Candidate with Unusual Potency and Cellular Activity Profile. Proc. Natl. Acad. Sci. U.S.A. 2012, 109, 11987–11992. 10.1073/pnas.1207670109. PubMed DOI PMC

Gregory M. T.; Park G. Y.; Johnstone T. C.; Lee Y.-S.; Yang W.; Lippard S. J. Structural and Mechanistic Studies of Polymerase Bypass of Phenanthriplatin DNA Damage. Proc. Natl. Acad. Sci. U.S.A. 2014, 111, 9133–9138. 10.1073/pnas.1405739111. PubMed DOI PMC

Veclani D.; Melchior A.; Tolazzi M.; Cerón-Carrasco J. P. Using Theory To Reinterpret the Kinetics of Monofunctional Platinum Anticancer Drugs: Stacking Matters. J. Am. Chem. Soc. 2018, 140, 14024–14027. 10.1021/jacs.8b07875. PubMed DOI

Almaqwashi A. A.; Zhou W.; Naufer M. N.; Riddell I. A.; Yilmaz Ö. H.; Lippard S. J.; Williams M. C. DNA Intercalation Facilitates Efficient DNA-Targeted Covalent Binding of Phenanthriplatin. J. Am. Chem. Soc. 2019, 141, 1537–1545. 10.1021/jacs.8b10252. PubMed DOI PMC

Chval Z.; Sip M. Pentacoordinated Transition States of Cisplatin Hydrolysis—Ab Initio Study. J. Mol. Struct.: THEOCHEM 2000, 532, 59–68. 10.1016/s0166-1280(00)00502-9. DOI

Zhang Y.; Guo Z.; You X.-Z. Hydrolysis Theory for Cisplatin and Its Analogues Based on Density Functional Studies. J. Am. Chem. Soc. 2001, 123, 9378–9387. 10.1021/ja0023938. PubMed DOI

Costa L. A. S.; Rocha W. R.; De Almeida W. B.; Dos Santos H. F. The Hydrolysis Process of the Cis-Dichloro(Ethylenediamine)Platinum(II): A Theoretical Study. J. Chem. Phys. 2003, 118, 10584–10592. 10.1063/1.1573177. DOI

Lau J. K.-C.; Deubel D. V. Hydrolysis of the Anticancer Drug Cisplatin: Pitfalls in the Interpretation of Quantum Chemical Calculations. J. Chem. Theory Comput. 2006, 2, 103–106. 10.1021/ct050229a. PubMed DOI

Burda J. V.; Zeizinger M.; Leszczynski J. Hydration Process as an Activation of Trans- and Cisplatin Complexes in Anticancer Treatment. DFT and Ab Initio Computational Study of Thermodynamic and Kinetic Parameters. J. Comput. Chem. 2005, 26, 907–914. 10.1002/jcc.20228. PubMed DOI

Zimmermann T.; Leszczynski J.; Burda J. V. Activation of the Cisplatin and Transplatin Complexes in Solution with Constant PH and Concentration of Chloride Anions; Quantum Chemical Study. J. Mol. Model. 2011, 17, 2385–2393. 10.1007/s00894-011-1031-6. PubMed DOI

Ahmad S. Kinetic Aspects of Platinum Anticancer Agents. Polyhedron 2017, 138, 109–124. 10.1016/j.poly.2017.09.016. DOI

Kozelka J. Hydrolysis of Chlorido Complexes of D8 Metals: Old Models, New Facts. Inorg. Chim. Acta 2019, 495, 118946.10.1016/j.ica.2019.05.045. DOI

Grushin V. V. The Organometallic Fluorine Chemistry of Palladium and Rhodium: Studies toward Aromatic Fluorination. Acc. Chem. Res. 2010, 43, 160–171. 10.1021/ar9001763. PubMed DOI

Mazurek A.; Dobrowolski J. C. Heteroatom Incorporation Effect in σ- and π-Electron Systems: The sEDA(II) and pEDA(II) Descriptors. J. Org. Chem. 2012, 77, 2608–2618. 10.1021/jo202542e. PubMed DOI

Siodła T.; Ozimiński W. P.; Hoffmann M.; Koroniak H.; Krygowski T. M. Toward a Physical Interpretation of Substituent Effects: The Case of Fluorine and Trifluoromethyl Groups. J. Org. Chem. 2014, 79, 7321–7331. 10.1021/jo501013p. PubMed DOI

Stenlid J. H.; Brinck T. Nucleophilic Aromatic Substitution Reactions Described by the Local Electron Attachment Energy. J. Org. Chem. 2017, 82, 3072–3083. 10.1021/acs.joc.7b00059. PubMed DOI

Dapprich S.; Frenking G. Investigation of Donor-Acceptor Interactions: A Charge Decomposition Analysis Using Fragment Molecular Orbitals. J. Phys. Chem. 1995, 99, 9352–9362. 10.1021/j100023a009. DOI

Lu T.; Chen F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592. 10.1002/jcc.22885. PubMed DOI

Wolters L. P.; Bickelhaupt F. M. The Activation Strain Model and Molecular Orbital Theory. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2015, 5, 324–343. 10.1002/wcms.1221. PubMed DOI PMC

Sajith P. K.; Suresh C. H. Quantification of Mutual Trans Influence of Ligands in Pd(II) Complexes: A Combined Approach Using Isodesmic Reactions and AIM Analysis. Dalton Trans. 2009, 39, 815–822. 10.1039/b911013e. PubMed DOI

Sajith P. K.; Suresh C. H. Bond Dissociation Energies of Ligands in Square Planar Pd(II) and Pt(II) Complexes: An Assessment Using Trans Influence. J. Organomet. Chem. 2011, 696, 2086–2092. 10.1016/j.jorganchem.2010.11.007. DOI

Sandoval-Lira J.; Mondragón-Solórzano G.; Lugo-Fuentes L. I.; Barroso-Flores J. Accurate Estimation of PKb Values for Amino Groups from Surface Electrostatic Potential (VS,Min) Calculations: The Isoelectric Points of Amino Acids as a Case Study. J. Chem. Inf. Model. 2020, 60, 1445–1452. 10.1021/acs.jcim.9b01173. PubMed DOI

Chval Z.; Dvořáčková O.; Chvalová D.; Burda J. V. Square-Planar Pt(II) and Ir(I) Complexes as the Lewis Bases: Donor-Acceptor Adducts with Group 13 Trihalides and Trihydrides. Inorg. Chem. 2019, 58, 3616–3626. 10.1021/acs.inorgchem.8b02765. PubMed DOI

Kapinos L. E.; Sigel H. Acid–Base and Metal Ion Binding Properties of Pyridine-Type Ligands in Aqueous Solution.: Effect of Ortho Substituents and Interrelation between Complex Stability and Ligand Basicity. Inorg. Chim. Acta 2002, 337, 131–142. 10.1016/s0020-1693(02)00993-3. DOI

Wang B.; Rong C.; Chattaraj P. K.; Liu S. A Comparative Study to Predict Regioselectivity, Electrophilicity and Nucleophilicity with Fukui Function and Hirshfeld Charge. Theor. Chem. Acc. 2019, 138, 124.10.1007/s00214-019-2515-1. DOI

Ebrahimi A.; Habibi-Khorasani S. M.; Jahantab M. Additivity of Substituent Effects on the Proton Affinity and Gas-Phase Basicity of Pyridines. Comput. Theor. Chem. 2011, 966, 31–37. 10.1016/j.comptc.2011.02.008. DOI

Hęclik K.; Dobrowolski J. C. On the Nonadditivity of the Substituent Effect in Homo-Disubstituted Pyridines. J. Phys. Org. Chem. 2017, 30, e365610.1002/poc.3656. DOI

Cerón-Carrasco J. P.; Requena A.; Jacquemin D. Impact of DFT Functionals on the Predicted Magnesium–DNA Interaction: An ONIOM Study. Theor. Chem. Acc. 2012, 131, 1188.10.1007/s00214-012-1188-9. DOI

Dohm S.; Hansen A.; Steinmetz M.; Grimme S.; Checinski M. P. Comprehensive Thermochemical Benchmark Set of Realistic Closed-Shell Metal Organic Reactions. J. Chem. Theory Comput. 2018, 14, 2596–2608. 10.1021/acs.jctc.7b01183. PubMed DOI

Gwee E. S. H.; Seeger Z. L.; Appadoo D. R. T.; Wood B. R.; Izgorodina E. I. Influence of DFT Functionals and Solvation Models on the Prediction of Far-Infrared Spectra of Pt-Based Anticancer Drugs: Why Do Different Complexes Require Different Levels of Theory?. ACS Omega 2019, 4, 5254–5269. 10.1021/acsomega.8b03455. PubMed DOI PMC

Zhao Y.; Truhlar D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Functionals. Theor. Chem. Acc. 2008, 120, 215–241. 10.1007/s00214-007-0310-x. DOI

McGowan G.; Parsons S.; Sadler P. J. Contrasting Chemistry ofcis- andtrans-Platinum(II) Diamine Anticancer Compounds: Hydrolysis Studies of Picoline Complexes. Inorg. Chem. 2005, 44, 7459–7467. 10.1021/ic050763t. PubMed DOI

Michalska D.; Wysokiński R. Molecular Structure and Bonding in Platinum-Picoline Anticancer Complex: Density Functional Study. Collect. Czech. Chem. Commun. 2004, 69, 63–72. 10.1135/cccc20040063. DOI

Martínez A.; Lorenzo J.; Prieto M. J.; Font-Bardia M.; Solans X.; Avilés F. X.; Moreno V. Influence of the Position of Substituents in the Cytotoxic Activity of Trans Platinum Complexes with Hydroxymethyl Pyridines. Bioorg. Med. Chem. 2007, 15, 969–979. 10.1016/j.bmc.2006.10.031. PubMed DOI

Becke A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648.10.1063/1.464913. DOI

Andrae D.; Häußermann U.; Dolg M.; Stoll H.; Preuß H. Energy-Adjustedab Initio Pseudopotentials for the Second and Third Row Transition Elements. Theor. Chem. Acc. Theory Comput. Model. Theor. Chim. Acta 1990, 77, 123–141. 10.1007/bf01114537. DOI

Bergner A.; Dolg M.; Küchle W.; Stoll H.; Preuß H. Ab initio energy-adjusted pseudopotentials for elements of groups 13-17. Mol. Phys. 1993, 80, 1431–1441. 10.1080/00268979300103121. DOI

Burda J. V.; Zeizinger M.; Šponer J.; Leszczynski J. Hydration of Cis- and Trans-Platin: A Pseudopotential Treatment in the Frame of a G3-Type Theory for Platinum Complexes. J. Chem. Phys. 2000, 113, 2224–2232. 10.1063/1.482036. DOI

Grimme S.; Ehrlich S.; Goerigk L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory. J. Comput. Chem. 2011, 32, 1456–1465. 10.1002/jcc.21759. PubMed DOI

Boys S. F.; Bernardi F. The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors. Mol. Phys. 1970, 19, 553–566. 10.1080/00268977000101561. DOI

te Velde G.; Bickelhaupt F. M.; Baerends E. J.; Guerra C. F.; Van Gisbergen S. J. A.; Snijders J. G.; Ziegler T. Chemistry with ADF. J. Comput. Chem. 2001, 22, 931–967. 10.1002/jcc.1056. DOI

Ziegler T.; Rauk A. On the calculation of bonding energies by the Hartree Fock Slater method. Theor. Chim. Acta 1977, 46, 1–10. 10.1007/bf02401406. DOI

Mitoraj M. P.; Michalak A.; Ziegler T. A Combined Charge and Energy Decomposition Scheme for Bond Analysis. J. Chem. Theory Comput. 2009, 5, 962–975. 10.1021/ct800503d. PubMed DOI

Mitoraj M. P.; Zhu H.; Michalak A.; Ziegler T. On the Origin of the Trans-Influence in Square Planar D8-Complexes: A Theoretical Study. Int. J. Quantum Chem. 2009, 109, 3379–3386. 10.1002/qua.21910. DOI

van Lenthe E.; van Leeuwen R.; Baerends E. J.; Snijders J. G. Relativistic Regular Two-Component Hamiltonians. Int. J. Quantum Chem. 1996, 57, 281–293. 10.1002/(sici)1097-461x(1996)57:3<281::aid-qua2>3.0.co;2-u. DOI

Zimmermann T.; Chval Z.; Burda J. V. Cisplatin Interaction with Cysteine and Methionine in Aqueous Solution: Computational DFT/PCM Study. J. Phys. Chem. B 2009, 113, 3139–3150. 10.1021/jp807645x. PubMed DOI

Frisch M. J.; Trucks G. W.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani G.; Barone V.; Mennucci B.; Petersson G. A.; Nakatsuji H.; Caricato M.; Li X.; Hratchian H. P.; Izmaylov A. F.; Bloino J.; Zheng G.; Sonnenberg J. L.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Montgomery J. A. Jr.; Peralta J. E.; Ogliaro F.; Bearpark M.; Heyd J. J.; Brothers E.; Kudin K. N.; Staroverov V. N.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Rega N.; Millam J. M.; Klene M.; Knox J. E.; Cross J. B.; Bakken V.; Adamo C.; Jaramillo J.; Gomperts R.; Stratmann R. E.; Yazyev O.; Austin A. J.; Cammi R.; Pomelli C.; Ochterski J. W.; Martin R. L.; Morokuma K.; Zakrzewski V. G.; Voth G. A.; Salvador P.; Dannenberg J. J.; Dapprich S.; Daniels A. D.; Farkas Ö.; Foresman J. B.; Ortiz J. V.; Cioslowski J.; Fox D. J.. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford CT, 2009.

Keith T. A.AIMAll, Version 10.11.24, (aim.tkgristmill.com), 2010.

Glendening E. D.; Reed A. E.; Carpenter J. E.; Weinhold F.. NBO 3.1.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace