Activation of the cisplatin and transplatin complexes in solution with constant pH and concentration of chloride anions; quantum chemical study

. 2011 Sep ; 17 (9) : 2385-93. [epub] 20110427

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid21523556

The thermodynamics of cisplatin and transplatin hydration is studied within the model of constant pH solution. Several implicit solvation models were chosen for the determination of pK(a) and pK constants of the hydration reactions. The polarizable dielectric model (DPCM), integral equation formalism polarizable model (IEFPCM), and polarizable conductor model (CPCM) were combined with the 'united atom model for Hartree-Fock' (UAHF) method for cavity construction and the B3LYP/6-31++G(2dp,2pd) level of calculations for the determination of electronic energies. The results were compared with the COSMO-RS and SM8 model developed by Truhlar (with M06 and MPWX functionals and the charge model CM4). The RMS difference between experimental and calculated pK(a) values of cis/transplatin, water, HCl, and NH (4) (+) was used to evaluate accuracy of calculations. The DPCM model was confirmed to perform the best. The predicted pK(a) constants were used in Legendre transformation for the estimation of the ΔG' energies in the constant-pH model. The dependence of the pK constant on pH is plotted and compared with experimental value at pH=7.4. The influence of various chloride concentrations on the molar fractions of dissolved forms of cisplatin is examined for the DPCM model. The increased ratio of cisplatin active aqua-forms is clearly visible for 4 mM chloride solution in comparison with 104 mM Cl(-) concentration.

Zobrazit více v PubMed

J Comput Chem. 2008 Nov 15;29(14):2370-81 PubMed

Chemistry. 2007;13(36):10108-16 PubMed

Inorg Chem. 2000 Apr 17;39(8):1728-34 PubMed

J Comput Chem. 2004 Jun;25(8):1060-7 PubMed

J Am Chem Soc. 2001 Sep 26;123(38):9378-87 PubMed

Eur J Biochem. 1990 Aug 17;191(3):743-53 PubMed

J Chem Phys. 2007 Aug 28;127(8):084309 PubMed

J Chem Theory Comput. 2007 Nov;3(6):2011-33 PubMed

J Chem Phys. 2008 Apr 28;128(16):165103 PubMed

J Chem Phys. 2010 May 7;132(17):174507 PubMed

J Comput Chem. 2002 Jan 30;23(2):275-81 PubMed

J Mol Model. 2008 Aug;14(8):705-16 PubMed

J Phys Chem B. 2006 Jun 22;110(24):12047-54 PubMed

J Comput Chem. 2005 Jul 15;26(9):907-14 PubMed

J Biol Inorg Chem. 1999 Feb;4(1):32-8 PubMed

Nucleic Acids Res. 1991 Apr 11;19(7):1483-9 PubMed

J Chem Inf Model. 2009 Jun;49(6):1407-19 PubMed

J Chem Phys. 2004 Jan 15;120(3):1253-62 PubMed

J Phys Chem B. 2009 Jan 22;113(3):831-8 PubMed

Chemphyschem. 2009 May 11;10(7):1044-52 PubMed

J Chem Phys. 2009 Oct 7;131(13):135101 PubMed

J Chem Phys. 2008 Jul 7;129(1):014506 PubMed

J Comput Chem. 2003 Apr 30;24(6):669-81 PubMed

J Phys Chem A. 2008 Oct 23;112(42):10604-13 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...