Determination of Amino Acids' pKa: Importance of Cavity Scaling within Implicit Solvation Models and Choice of DFT Functionals

. 2024 Feb 22 ; 128 (7) : 1627-1637. [epub] 20240212

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38345944

Protonation states of molecules significantly influence the thermodynamics and kinetics of chemical reactions. This is especially important in biochemical processes, where appropriate protonation states of amino acids control the exo/endoergicity of practically all biochemical cycles. This paper is focused on appraisal of the impact of DFT functionals and PCM solvation models on the accuracy of pKa evaluations for all proteinogenic amino acids. Eight functionals (B3LYP, PBE0, revPBE0, M06-2X, M11, M11-L, TPSSh, and ωB97X-D) and four basis sets are considered, together with four kinds of implicit solvation models when additional attention is paid to a cavity construction. An influence of nonelectrostatic contributions and Wertz's corrections on Gibbs free energy is investigated together with accuracy of provided proton solvation energy. The best model is based on the M06-2X/6-311++G**/D-PCM/UAKS computational level. The fitting procedure is utilized to improve the accuracy of the evaluated models. All of these results are also compared with values obtained from the COSMOtherm program and CCSD(T) calculations. Results for cysteine and histidine are discussed individually, as they can be found in different protonation states at neutral pH.

Zobrazit více v PubMed

Lide D. R.CRC Handbook of Chemistry and Physics; 7–1 Properties of Amino Acids. 88th ed.; CRC Press: 2007; Vol. 7–1Properties of Amino Acids, p 2640.

COSMOtherm, Version C3.0, Release 16.01; COSMOlogic GmbH & Co. KG, Leverkusen, Germany, 2015.: 2015.

Dutra F. R.; Silva C. d. S.; Custodio R. On the Accuracy of the Direct Method to Calculate pKa from Electronic Structure Calculations. J. Phys. Chem. A 2021, 125, 65–73. 10.1021/acs.jpca.0c08283. PubMed DOI PMC

Sun W.; Kinsel G. R.; Marynick D. S. Computational estimates of the gas-phase basicity and proton affinity of glutamic acid. J. Phys. Chem. A 1999, 103 (20), 4113–4117. 10.1021/jp9908101. DOI

Smith B. J.; Radom L. An evaluation of the peerformance of density functional theory, MP2, MP4, F4, G2 (MP2) and G2 procedures in predicting gas-phase proton affinities. Chem. Phys. Lett. 1994, 231 (4–6), 345–351. 10.1016/0009-2614(94)01273-3. DOI

Casasnovas R.; Fernández D.; Ortega-Castro J.; Frau J.; Donoso J.; Muñoz F. Avoiding gas-phase calculations in theoretical pK a predictions. Theor. Chem. Acc. 2011, 130 (1), 1–13. 10.1007/s00214-011-0945-5. DOI

Michera L.; Nekadova M.; Burda J. V. Reactions of cisplatin and glycine in solution with constant pH: a computational study. Phys. Chem. Chem. Phys. 2012, 14, 12571–12579. 10.1039/c2cp41016h. PubMed DOI

Liptak M. D.; Shields G. C. Accurate p K a calculations for carboxylic acids using complete basis set and Gaussian-n models combined with CPCM continuum solvation methods. J. Am. Chem. Soc. 2001, 123 (30), 7314–7319. 10.1021/ja010534f. PubMed DOI

Rebollar-Zepeda A. M.; Galano A. First principles calculations of pKa values of amines in aqueous solution: Application to neurotransmitters. Int. J. Quantum Chem. 2012, 112 (21), 3449–3460. 10.1002/qua.24048. DOI

Alongi K. S.; Shields G. C. Theoretical calculations of acid dissociation constants: A review article. Ann. Rep. Comput. Chem. 2010, 6, 113–138. 10.1016/S1574-1400(10)06008-1. DOI

Ho J.; Coote M. L. A universal approach for continuum solvent pK a calculations: are we there yet?. Theor. Chem. Acc. 2010, 125 (1–2), 3–21. 10.1007/s00214-009-0667-0. DOI

Adamo C.; Barone V. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. J. Chem. Phys. 1998, 108, 664–675. 10.1063/1.475428. DOI

Ho J.; Klamt A.; Coote M. L. Comment on the correct use of continuum solvent models. J. Phys. Chem. A 2010, 114 (51), 13442–13444. 10.1021/jp107136j. PubMed DOI

Eckert F.; Klamt A. Accurate prediction of basicity in aqueous solution with COSMO-RS. J. Comput. Chem. 2006, 27 (1), 11–19. 10.1002/jcc.20309. PubMed DOI

Zimmermann T.; Burda J. V. Charge-scaled cavities in polarizable continuum model: Determination of acid dissociation constants for platinum-amino acid complexes. J. Chem. Phys. 2009, 131, 135101.10.1063/1.3236842. PubMed DOI

Bradáč O.; Zimmermann T.; Burda J. V. Comparison of the electronic properties, and thermodynamic and kinetic parameters of the aquation of selected platinum(II) derivatives with their anticancer IC50 indexes. J. Mol. Model. 2008, 14 (8), 705–716. 10.1007/s00894-008-0285-0. PubMed DOI

Zimmermann T.; Burda J. V. Reaction of cisplatin with cysteine and methionine at constant pH. Dalton Trans. 2010, 39, 1295–1301. 10.1039/B913803J. PubMed DOI

Zimmermann T.; Šebesta F.; Burda J. B. A new grand-canonical potential for the thermodynamic description of the reactions in solutions with constant pH. J. Mol. Liq. 2021, 335, 11597910.1016/j.molliq.2021.115979. DOI

Kelly C. P.; Cramer C. J.; Truhlar D. G. Adding Explicit Solvent Molecules to Continuum Solvent Calculations for the Calculation of Aqueous Acid Dissociation Constants. J. Phys. Chem. A 2006, 110 (7), 2493–2499. 10.1021/jp055336f. PubMed DOI PMC

Pearson R. G. Ionization potentials and electron affinities in aqueous solution. J. Am. Chem. Soc. 1986, 108 (20), 6109–6114. 10.1021/ja00280a002. DOI

Zhan C.-G.; Dixon D. A. Absolute hydration free energy of the proton from first-principles electronic structure calculations. J. Phys. Chem. A 2001, 105 (51), 11534–11540. 10.1021/jp012536s. DOI

Tissandier M. D.; Cowen K. A.; Feng W. Y.; Gundlach E.; Cohen M. H.; Earhart A. D.; Coe J. V.; Tuttle T. R. The Proton’s Absolute Aqueous Enthalpy and Gibbs Free Energy of Solvation from Cluster-Ion Solvation Data. J. Phys. Chem. A 1998, 102 (40), 7787–7794. 10.1021/jp982638r. DOI

da Silva G.; Kennedy E. M.; Dlugogorski B. Z. Ab Initio Procedure for Aqueous-Phase pKa Calculation: The Acidity of Nitrous Acid. J. Phys. Chem. A 2006, 110 (39), 11371–11376. 10.1021/jp0639243. PubMed DOI

Namazian M.; Kalantary-Fotooh F.; Noorbala M. R.; Searles D. J.; Coote M. L. Mo̷ller–Plesset perturbation theory calculations of the pK a values for a range of carboxylic acids. J. Mol. Struct. THEOCHEM 2006, 758 (2), 275–278. 10.1016/j.theochem.2005.10.024. DOI

da Silva C. O.; da Silva E. C.; Nascimento M. A. Comment on ‘Thermodynamic cycles and the calculation of pK a’[Chem.. Phys. Lett. 367 (2003) 145]. Chem. Phys. Lett. 2003, 381 (1), 244–245. 10.1016/j.cplett.2003.08.083. DOI

Gupta M.; da Silva E. F.; Svendsen H. F. Explicit Solvation Shell Model and Continuum Solvation Models for Solvation Energy and p K a Determination of Amino Acids. J. Chem. Theory Comput.h 2013, 9 (11), 5021–5037. 10.1021/ct400459y. PubMed DOI

Pliego J. R. Thermodynamic cycles and the calculation of pKa. Chem. Phys. Lett. 2003, 367 (1–2), 145–149. 10.1016/S0009-2614(02)01686-X. DOI

Pliego J. R. Reply to comment on:‘Thermodynamic cycles and the calculation of pK a’[Chem. Phys. Lett. 367 (2003) 145]. Chem. Phys. Lett. 2003, 381 (1), 246–247. 10.1016/j.cplett.2003.08.116. DOI

Schüürmann G.; Cossi M.; Barone V.; Tomasi J. Prediction of the p K a of carboxylic acids using the ab initio continuum-solvation model PCM-UAHF. J. Phys. Chem. A 1998, 102 (33), 6706–6712. 10.1021/jp981922f. DOI

Tossell J. Calculation of the 13 C NMR shieldings of the C0 2 complexes of aluminosilicates. Geochim. cosmochim. acta 1995, 59 (7), 1299–1305. 10.1016/0016-7037(95)00044-Z. DOI

Govender K. K.; Cukrowski I. Density functional theory in prediction of four stepwise protonation constants for nitrilotripropanoic acid (NTPA). J. Phys. Chem. A 2009, 113 (15), 3639–3647. 10.1021/jp811044b. PubMed DOI

Lopez X.; Schaefer M.; Dejaegere A.; Karplus M. Theoretical evaluation of p K a in phosphoranes: Implications for phosphate ester hydrolysis. J. Am. Chem. Soc. 2002, 124 (18), 5010–5018. 10.1021/ja011373i. PubMed DOI

Ho J.; Coote M. L. p K a Calculation of Some Biologically Important Carbon Acids-An Assessment of Contemporary Theoretical Procedures. J. Chem. Theory Comput.h 2009, 5 (2), 295–306. 10.1021/ct800335v. PubMed DOI

Sastre S.; Casasnovas R.; Muñoz F.; Frau J. Isodesmic reaction for accurate theoretical p K a calculations of amino acids and peptides. Phys. Chem. Chem. Phys. 2016, 18 (16), 11202–11212. 10.1039/C5CP07053H. PubMed DOI

Ho J. Are thermodynamic cycles necessary for continuum solvent calculation of p K as and reduction potentials?. Phys. Chem. Chem. Phys. 2015, 17 (4), 2859–2868. 10.1039/C4CP04538F. PubMed DOI

Ribeiro R. F.; Marenich A. V.; Cramer C. J.; Truhlar D. G. Use of solution-phase vibrational frequencies in continuum models for the free energy of solvation. J. Phys. Chem. B 2011, 115 (49), 14556–14562. 10.1021/jp205508z. PubMed DOI

Hudáky P.; Perczel A. Conformation dependence of p K a: Ab initio and DFT investigation of histidine. J. Phys. Chem. A 2004, 108 (29), 6195–6205. 10.1021/jp048964q. DOI

Canle M.; Ramos D. R.; Santaballa J. A DFT study on the microscopic ionization of cysteine in water. Chem. Phys. Lett. 2006, 417 (1), 28–33. 10.1016/j.cplett.2005.09.086. DOI

Becke A. D. Density Functional thermochemistry. III. The role of exact exchange. J. Phys. Chem. 1993, 98, 5648–5652. 10.1063/1.464913. DOI

Lee C.; Yang W.; Parr R. G. Development of the Cole-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. 10.1103/PhysRevB.37.785. PubMed DOI

Stephens P. J.; Devlin F. J.; Chabalowski C. F.; Frisch M. J. Ab initio calculations of vibrational absorption and circular-dichroism spectra using density-functional force-fields. J. Phys. Chem. 1994, 98 (45), 11623–11627. 10.1021/j100096a001. DOI

Vosko S. H.; Wilk L.; Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin-density calculations - a critical analysis. Canad. J. Phys. 1980, 58 (8), 1200–1211. 10.1139/p80-159. DOI

Chai J.-D.; Head-Gordon M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10 (44), 6615–6620. 10.1039/b810189b. PubMed DOI

Perdew J. P.; Burke K.; Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77 (18), 3865.10.1103/PhysRevLett.77.3865. PubMed DOI

Ernzerhof M.; Perdew J. P. Generalized gradient approximation to the angle- and system-averaged exchange hole. J. Chem. Phys. 1998, 109, 3313–3320. 10.1063/1.476928. DOI

Adamo C.; Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110 (13), 6158–6170. 10.1063/1.478522. DOI

Tao J.; Perdew J. P.; Staroverov V. N.; Scuseria G. E. Climbing the Density Functional Ladder: Nonempirical Generalized Gradient Approximation Designed for Molecules and Solids. Phys. Rev. Lett. 2003, 91 (14), 14640110.1103/PhysRevLett.91.146401. PubMed DOI

Zhao Y.; Truhlar D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120 (1–3), 215–241. 10.1007/s00214-007-0310-x. DOI

Peverati R.; Truhlar D. G. Improving the accuracy of hybrid meta-GGA density functionals by range separation. J. Phys.Chem. Lett. 2011, 2 (21), 2810–2817. 10.1021/jz201170d. DOI

Peverati R.; Truhlar D. G. M11-L: A local density functional that provides improved accuracy for electronic structure calculations in chemistry and physics. J. Phys.Chem. Lett. 2012, 3 (1), 117–124. 10.1021/jz201525m. DOI

Wertz D. H. Relationship between the Gas-Phase Entropies of Molecules and Their Entropies of Solvation in Water and 1-Octanol. J. Am.chem. Soc. 1980, 102, 5316–5322. 10.1021/ja00536a033. DOI

Cheng M.-J.; Nielsen R. J.; Goddard W. A. Iii A homolytic oxy-functionalization mechanism: intermolecular hydrocarbyl migration from M-R to vanadate oxo. Chem. Commun. 2014, 50 (75), 10994–10996. 10.1039/C4CC03067B. PubMed DOI

Scalmani G.; Frisch M. J. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J. Chem. Phys. 2010, 132 (11), 15.10.1063/1.3359469. PubMed DOI

Cossi M.; Rega N.; Scalmani G.; Barone V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 2003, 24 (6), 669–681. 10.1002/jcc.10189. PubMed DOI

Miertus S.; Scrocco E.; Tomasi J. Electrostatic Interaction of a Solute with a Continuum - a Direct Utilization of Abinitio Molecular Potentials for the Prevision of Solvent Effects. Chem. Phys. 1981, 55 (1), 117–129. 10.1016/0301-0104(81)85090-2. DOI

Barone V.; Cossi M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys.Chem. A 1998, 102 (11), 1995–2001. 10.1021/jp9716997. DOI

Marenich A. V.; Cramer C. J.; Truhlar D. G. Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378–6396. 10.1021/jp810292n. PubMed DOI

Barone V.; Cossi M.; Tomasi J. A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. J. Chem. Phys. 1997, 107 (8), 3210–3221. 10.1063/1.474671. DOI

Eckert F.; Klamt A.. COSMOtherm, Version C3. 0, Release 13.01. COSMOlogic GmbH & Co. KG,.(Leverkusen, Germany., 2013: ) 2013.

Miertus S.; Tomasi J. Approximate Evaluations of the Electrostatic Free-Energy and Internal Energy Changes in Solution Processes. Chem. Phys. 1982, 65 (2), 239–245. 10.1016/0301-0104(82)85072-6. DOI

Zimmermann T.; Chval Z.; Burda J. V. Cisplatin Interaction with Cysteine and Methionine in Aqueous Solution: Computational DFT/PCM Study. J. Phys. Chem. B 2009, 113 (10), 3139–3150. 10.1021/jp807645x. PubMed DOI

Zimmermann T.; Leszczynski J.; Burda J. V. Activation of the cisplatin and transplatin complexes in solution with constant pH and concentration of chloride anions; quantum chemical study. J. Mol. Model. 2011, 17, 2385–2393. 10.1007/s00894-011-1031-6. PubMed DOI

Reed A. E.; Weinstock R. B.; Weinhold F. Natural population analysis. J. Chem. Phys. 1985, 83 (2), 735–746. 10.1063/1.449486. DOI

NBO v 5.9 Program University of Wisconsin, Wisconsin, Madison, Wisconsin 53706, 2001. www.chem.wisc.edu/~nbo5.

Grimme S.; Antony J.; Ehrlich S.; Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132 (15), 154104.10.1063/1.3382344. PubMed DOI

Grimme S.; Ehrlich S.; Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. 10.1002/jcc.21759. PubMed DOI

Nelson D. L.; Cox M. M.. Lehninger Principles of Biochemistry; Worth Publishers, 2000.

O’Neil M. J.The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals; Royal Society of Chemistry, 2013.

Fitch C. A.; Platzer G.; Okon M.; Garcia-Moreno E. B.; McIntosh L. P. Arginine: Its pKa value revisited. Protein Sci. 2015, 24 (5), 752–761. 10.1002/pro.2647. PubMed DOI PMC

Klamt A.; Eckert F.; Diedenhofen M.; Beck M. E. First Principles Calculations of Aqueous p K a Values for Organic and Inorganic Acids Using COSMO– RS Reveal an Inconsistency in the Slope of the p K a Scale. J. Phys. Chem. A 2003, 107 (44), 9380–9386. 10.1021/jp034688o. PubMed DOI

Raton B.CRC Handb. Chem. Phys. 84. Aufl.; CRC Press: 2003.

Cossi M.; Rega N.; Scalmani G.; Barone V. Polarizable dielectric model of solvation with inclusion of charge penetration effects. J. Chem. Phys. 2001, 114, 5691–5701. 10.1063/1.1354187. DOI

Klamt A.; Jonas V. Treatment of the outlying charge in continuum solvation models. J. Chem. Phys. 1996, 105 (22), 9972–9981. 10.1063/1.472829. DOI

Pye C. C.; Ziegler T. An implementation of the conductor-like screening model of solvation within the Amsterdam density functional package. Theor. Chem. Acc. 1999, 101 (6), 396–408. 10.1007/s002140050457. DOI

Cancès E.; Mennucci B. The escaped charge problem in solvation continuum models. J. Chem. Phys. 2001, 115, 6130.10.1063/1.1401157. DOI

Ginovska B.; Camaioni D. M.; Dupuis M.; Schwerdtfeger C. A.; Gil Q. Charge-Dependent Cavity Radii for an Accurate Dielectric Continuum Model of Solvation with Emphasis on Ions: Aqueous Solutes with Oxo, Hydroxo, Amino, Methyl, Chloro, Bromo, and Fluoro Functionalities. J. Phys. Chem. A 2008, 112, 10604–10613. 10.1021/jp804092v. PubMed DOI

Ginovska B.; Camaioni D. M.; Dupuis M.; Schwerdtfeger C. A.; Gil Q. Charge-Dependent Cavity Radii for an Accurate Dielectric Continuum Model of Solvation with Emphasis on Ions: Aqueous Solutes with Oxo, Hydroxo, Amino, Methyl, Chloro, Bromo, and Fluoro Functionalities. J. Phys. Chem. A 2008, 112, 10604–10613. 10.1021/jp804092v. PubMed DOI

Singh U. C.; Kollman P. A. An approach to computing electrostatic charges for molecules. J. Comput. Chem. 1984, 5, 129.10.1002/jcc.540050204. DOI

Curutchet C.; Bidon-Chanal A.; Soteras I.; Orozco M.; Luque F. J. MST Continuum Study of the Hydration Free Energies of Monovalent Ionic Species. J. Phys. Chem. B 2005, 109 (8), 3565–3574. 10.1021/jp047197s. PubMed DOI

Orozco M.; Luque F. J. Optimization of the cavity size for ab initio MST-SCRF calculations of monovalent ions. Chem. Phys. 1994, 182, 237–248. 10.1016/0301-0104(94)00029-8. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...