Determination of Amino Acids' pKa: Importance of Cavity Scaling within Implicit Solvation Models and Choice of DFT Functionals
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
38345944
PubMed Central
PMC10895671
DOI
10.1021/acs.jpcb.3c07007
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Protonation states of molecules significantly influence the thermodynamics and kinetics of chemical reactions. This is especially important in biochemical processes, where appropriate protonation states of amino acids control the exo/endoergicity of practically all biochemical cycles. This paper is focused on appraisal of the impact of DFT functionals and PCM solvation models on the accuracy of pKa evaluations for all proteinogenic amino acids. Eight functionals (B3LYP, PBE0, revPBE0, M06-2X, M11, M11-L, TPSSh, and ωB97X-D) and four basis sets are considered, together with four kinds of implicit solvation models when additional attention is paid to a cavity construction. An influence of nonelectrostatic contributions and Wertz's corrections on Gibbs free energy is investigated together with accuracy of provided proton solvation energy. The best model is based on the M06-2X/6-311++G**/D-PCM/UAKS computational level. The fitting procedure is utilized to improve the accuracy of the evaluated models. All of these results are also compared with values obtained from the COSMOtherm program and CCSD(T) calculations. Results for cysteine and histidine are discussed individually, as they can be found in different protonation states at neutral pH.
Zobrazit více v PubMed
Lide D. R.CRC Handbook of Chemistry and Physics; 7–1 Properties of Amino Acids. 88th ed.; CRC Press: 2007; Vol. 7–1Properties of Amino Acids, p 2640.
COSMOtherm, Version C3.0, Release 16.01; COSMOlogic GmbH & Co. KG, Leverkusen, Germany, 2015.: 2015.
Dutra F. R.; Silva C. d. S.; Custodio R. On the Accuracy of the Direct Method to Calculate pKa from Electronic Structure Calculations. J. Phys. Chem. A 2021, 125, 65–73. 10.1021/acs.jpca.0c08283. PubMed DOI PMC
Sun W.; Kinsel G. R.; Marynick D. S. Computational estimates of the gas-phase basicity and proton affinity of glutamic acid. J. Phys. Chem. A 1999, 103 (20), 4113–4117. 10.1021/jp9908101. DOI
Smith B. J.; Radom L. An evaluation of the peerformance of density functional theory, MP2, MP4, F4, G2 (MP2) and G2 procedures in predicting gas-phase proton affinities. Chem. Phys. Lett. 1994, 231 (4–6), 345–351. 10.1016/0009-2614(94)01273-3. DOI
Casasnovas R.; Fernández D.; Ortega-Castro J.; Frau J.; Donoso J.; Muñoz F. Avoiding gas-phase calculations in theoretical pK a predictions. Theor. Chem. Acc. 2011, 130 (1), 1–13. 10.1007/s00214-011-0945-5. DOI
Michera L.; Nekadova M.; Burda J. V. Reactions of cisplatin and glycine in solution with constant pH: a computational study. Phys. Chem. Chem. Phys. 2012, 14, 12571–12579. 10.1039/c2cp41016h. PubMed DOI
Liptak M. D.; Shields G. C. Accurate p K a calculations for carboxylic acids using complete basis set and Gaussian-n models combined with CPCM continuum solvation methods. J. Am. Chem. Soc. 2001, 123 (30), 7314–7319. 10.1021/ja010534f. PubMed DOI
Rebollar-Zepeda A. M.; Galano A. First principles calculations of pKa values of amines in aqueous solution: Application to neurotransmitters. Int. J. Quantum Chem. 2012, 112 (21), 3449–3460. 10.1002/qua.24048. DOI
Alongi K. S.; Shields G. C. Theoretical calculations of acid dissociation constants: A review article. Ann. Rep. Comput. Chem. 2010, 6, 113–138. 10.1016/S1574-1400(10)06008-1. DOI
Ho J.; Coote M. L. A universal approach for continuum solvent pK a calculations: are we there yet?. Theor. Chem. Acc. 2010, 125 (1–2), 3–21. 10.1007/s00214-009-0667-0. DOI
Adamo C.; Barone V. Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: The mPW and mPW1PW models. J. Chem. Phys. 1998, 108, 664–675. 10.1063/1.475428. DOI
Ho J.; Klamt A.; Coote M. L. Comment on the correct use of continuum solvent models. J. Phys. Chem. A 2010, 114 (51), 13442–13444. 10.1021/jp107136j. PubMed DOI
Eckert F.; Klamt A. Accurate prediction of basicity in aqueous solution with COSMO-RS. J. Comput. Chem. 2006, 27 (1), 11–19. 10.1002/jcc.20309. PubMed DOI
Zimmermann T.; Burda J. V. Charge-scaled cavities in polarizable continuum model: Determination of acid dissociation constants for platinum-amino acid complexes. J. Chem. Phys. 2009, 131, 135101.10.1063/1.3236842. PubMed DOI
Bradáč O.; Zimmermann T.; Burda J. V. Comparison of the electronic properties, and thermodynamic and kinetic parameters of the aquation of selected platinum(II) derivatives with their anticancer IC50 indexes. J. Mol. Model. 2008, 14 (8), 705–716. 10.1007/s00894-008-0285-0. PubMed DOI
Zimmermann T.; Burda J. V. Reaction of cisplatin with cysteine and methionine at constant pH. Dalton Trans. 2010, 39, 1295–1301. 10.1039/B913803J. PubMed DOI
Zimmermann T.; Šebesta F.; Burda J. B. A new grand-canonical potential for the thermodynamic description of the reactions in solutions with constant pH. J. Mol. Liq. 2021, 335, 11597910.1016/j.molliq.2021.115979. DOI
Kelly C. P.; Cramer C. J.; Truhlar D. G. Adding Explicit Solvent Molecules to Continuum Solvent Calculations for the Calculation of Aqueous Acid Dissociation Constants. J. Phys. Chem. A 2006, 110 (7), 2493–2499. 10.1021/jp055336f. PubMed DOI PMC
Pearson R. G. Ionization potentials and electron affinities in aqueous solution. J. Am. Chem. Soc. 1986, 108 (20), 6109–6114. 10.1021/ja00280a002. DOI
Zhan C.-G.; Dixon D. A. Absolute hydration free energy of the proton from first-principles electronic structure calculations. J. Phys. Chem. A 2001, 105 (51), 11534–11540. 10.1021/jp012536s. DOI
Tissandier M. D.; Cowen K. A.; Feng W. Y.; Gundlach E.; Cohen M. H.; Earhart A. D.; Coe J. V.; Tuttle T. R. The Proton’s Absolute Aqueous Enthalpy and Gibbs Free Energy of Solvation from Cluster-Ion Solvation Data. J. Phys. Chem. A 1998, 102 (40), 7787–7794. 10.1021/jp982638r. DOI
da Silva G.; Kennedy E. M.; Dlugogorski B. Z. Ab Initio Procedure for Aqueous-Phase pKa Calculation: The Acidity of Nitrous Acid. J. Phys. Chem. A 2006, 110 (39), 11371–11376. 10.1021/jp0639243. PubMed DOI
Namazian M.; Kalantary-Fotooh F.; Noorbala M. R.; Searles D. J.; Coote M. L. Mo̷ller–Plesset perturbation theory calculations of the pK a values for a range of carboxylic acids. J. Mol. Struct. THEOCHEM 2006, 758 (2), 275–278. 10.1016/j.theochem.2005.10.024. DOI
da Silva C. O.; da Silva E. C.; Nascimento M. A. Comment on ‘Thermodynamic cycles and the calculation of pK a’[Chem.. Phys. Lett. 367 (2003) 145]. Chem. Phys. Lett. 2003, 381 (1), 244–245. 10.1016/j.cplett.2003.08.083. DOI
Gupta M.; da Silva E. F.; Svendsen H. F. Explicit Solvation Shell Model and Continuum Solvation Models for Solvation Energy and p K a Determination of Amino Acids. J. Chem. Theory Comput.h 2013, 9 (11), 5021–5037. 10.1021/ct400459y. PubMed DOI
Pliego J. R. Thermodynamic cycles and the calculation of pKa. Chem. Phys. Lett. 2003, 367 (1–2), 145–149. 10.1016/S0009-2614(02)01686-X. DOI
Pliego J. R. Reply to comment on:‘Thermodynamic cycles and the calculation of pK a’[Chem. Phys. Lett. 367 (2003) 145]. Chem. Phys. Lett. 2003, 381 (1), 246–247. 10.1016/j.cplett.2003.08.116. DOI
Schüürmann G.; Cossi M.; Barone V.; Tomasi J. Prediction of the p K a of carboxylic acids using the ab initio continuum-solvation model PCM-UAHF. J. Phys. Chem. A 1998, 102 (33), 6706–6712. 10.1021/jp981922f. DOI
Tossell J. Calculation of the 13 C NMR shieldings of the C0 2 complexes of aluminosilicates. Geochim. cosmochim. acta 1995, 59 (7), 1299–1305. 10.1016/0016-7037(95)00044-Z. DOI
Govender K. K.; Cukrowski I. Density functional theory in prediction of four stepwise protonation constants for nitrilotripropanoic acid (NTPA). J. Phys. Chem. A 2009, 113 (15), 3639–3647. 10.1021/jp811044b. PubMed DOI
Lopez X.; Schaefer M.; Dejaegere A.; Karplus M. Theoretical evaluation of p K a in phosphoranes: Implications for phosphate ester hydrolysis. J. Am. Chem. Soc. 2002, 124 (18), 5010–5018. 10.1021/ja011373i. PubMed DOI
Ho J.; Coote M. L. p K a Calculation of Some Biologically Important Carbon Acids-An Assessment of Contemporary Theoretical Procedures. J. Chem. Theory Comput.h 2009, 5 (2), 295–306. 10.1021/ct800335v. PubMed DOI
Sastre S.; Casasnovas R.; Muñoz F.; Frau J. Isodesmic reaction for accurate theoretical p K a calculations of amino acids and peptides. Phys. Chem. Chem. Phys. 2016, 18 (16), 11202–11212. 10.1039/C5CP07053H. PubMed DOI
Ho J. Are thermodynamic cycles necessary for continuum solvent calculation of p K as and reduction potentials?. Phys. Chem. Chem. Phys. 2015, 17 (4), 2859–2868. 10.1039/C4CP04538F. PubMed DOI
Ribeiro R. F.; Marenich A. V.; Cramer C. J.; Truhlar D. G. Use of solution-phase vibrational frequencies in continuum models for the free energy of solvation. J. Phys. Chem. B 2011, 115 (49), 14556–14562. 10.1021/jp205508z. PubMed DOI
Hudáky P.; Perczel A. Conformation dependence of p K a: Ab initio and DFT investigation of histidine. J. Phys. Chem. A 2004, 108 (29), 6195–6205. 10.1021/jp048964q. DOI
Canle M.; Ramos D. R.; Santaballa J. A DFT study on the microscopic ionization of cysteine in water. Chem. Phys. Lett. 2006, 417 (1), 28–33. 10.1016/j.cplett.2005.09.086. DOI
Becke A. D. Density Functional thermochemistry. III. The role of exact exchange. J. Phys. Chem. 1993, 98, 5648–5652. 10.1063/1.464913. DOI
Lee C.; Yang W.; Parr R. G. Development of the Cole-Salvetti correlation energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. 10.1103/PhysRevB.37.785. PubMed DOI
Stephens P. J.; Devlin F. J.; Chabalowski C. F.; Frisch M. J. Ab initio calculations of vibrational absorption and circular-dichroism spectra using density-functional force-fields. J. Phys. Chem. 1994, 98 (45), 11623–11627. 10.1021/j100096a001. DOI
Vosko S. H.; Wilk L.; Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin-density calculations - a critical analysis. Canad. J. Phys. 1980, 58 (8), 1200–1211. 10.1139/p80-159. DOI
Chai J.-D.; Head-Gordon M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10 (44), 6615–6620. 10.1039/b810189b. PubMed DOI
Perdew J. P.; Burke K.; Ernzerhof M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77 (18), 3865.10.1103/PhysRevLett.77.3865. PubMed DOI
Ernzerhof M.; Perdew J. P. Generalized gradient approximation to the angle- and system-averaged exchange hole. J. Chem. Phys. 1998, 109, 3313–3320. 10.1063/1.476928. DOI
Adamo C.; Barone V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110 (13), 6158–6170. 10.1063/1.478522. DOI
Tao J.; Perdew J. P.; Staroverov V. N.; Scuseria G. E. Climbing the Density Functional Ladder: Nonempirical Generalized Gradient Approximation Designed for Molecules and Solids. Phys. Rev. Lett. 2003, 91 (14), 14640110.1103/PhysRevLett.91.146401. PubMed DOI
Zhao Y.; Truhlar D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120 (1–3), 215–241. 10.1007/s00214-007-0310-x. DOI
Peverati R.; Truhlar D. G. Improving the accuracy of hybrid meta-GGA density functionals by range separation. J. Phys.Chem. Lett. 2011, 2 (21), 2810–2817. 10.1021/jz201170d. DOI
Peverati R.; Truhlar D. G. M11-L: A local density functional that provides improved accuracy for electronic structure calculations in chemistry and physics. J. Phys.Chem. Lett. 2012, 3 (1), 117–124. 10.1021/jz201525m. DOI
Wertz D. H. Relationship between the Gas-Phase Entropies of Molecules and Their Entropies of Solvation in Water and 1-Octanol. J. Am.chem. Soc. 1980, 102, 5316–5322. 10.1021/ja00536a033. DOI
Cheng M.-J.; Nielsen R. J.; Goddard W. A. Iii A homolytic oxy-functionalization mechanism: intermolecular hydrocarbyl migration from M-R to vanadate oxo. Chem. Commun. 2014, 50 (75), 10994–10996. 10.1039/C4CC03067B. PubMed DOI
Scalmani G.; Frisch M. J. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J. Chem. Phys. 2010, 132 (11), 15.10.1063/1.3359469. PubMed DOI
Cossi M.; Rega N.; Scalmani G.; Barone V. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J. Comput. Chem. 2003, 24 (6), 669–681. 10.1002/jcc.10189. PubMed DOI
Miertus S.; Scrocco E.; Tomasi J. Electrostatic Interaction of a Solute with a Continuum - a Direct Utilization of Abinitio Molecular Potentials for the Prevision of Solvent Effects. Chem. Phys. 1981, 55 (1), 117–129. 10.1016/0301-0104(81)85090-2. DOI
Barone V.; Cossi M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J. Phys.Chem. A 1998, 102 (11), 1995–2001. 10.1021/jp9716997. DOI
Marenich A. V.; Cramer C. J.; Truhlar D. G. Universal solvation model based on solute electron density and a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378–6396. 10.1021/jp810292n. PubMed DOI
Barone V.; Cossi M.; Tomasi J. A new definition of cavities for the computation of solvation free energies by the polarizable continuum model. J. Chem. Phys. 1997, 107 (8), 3210–3221. 10.1063/1.474671. DOI
Eckert F.; Klamt A.. COSMOtherm, Version C3. 0, Release 13.01. COSMOlogic GmbH & Co. KG,.(Leverkusen, Germany., 2013: ) 2013.
Miertus S.; Tomasi J. Approximate Evaluations of the Electrostatic Free-Energy and Internal Energy Changes in Solution Processes. Chem. Phys. 1982, 65 (2), 239–245. 10.1016/0301-0104(82)85072-6. DOI
Zimmermann T.; Chval Z.; Burda J. V. Cisplatin Interaction with Cysteine and Methionine in Aqueous Solution: Computational DFT/PCM Study. J. Phys. Chem. B 2009, 113 (10), 3139–3150. 10.1021/jp807645x. PubMed DOI
Zimmermann T.; Leszczynski J.; Burda J. V. Activation of the cisplatin and transplatin complexes in solution with constant pH and concentration of chloride anions; quantum chemical study. J. Mol. Model. 2011, 17, 2385–2393. 10.1007/s00894-011-1031-6. PubMed DOI
Reed A. E.; Weinstock R. B.; Weinhold F. Natural population analysis. J. Chem. Phys. 1985, 83 (2), 735–746. 10.1063/1.449486. DOI
NBO v 5.9 Program University of Wisconsin, Wisconsin, Madison, Wisconsin 53706, 2001. www.chem.wisc.edu/~nbo5.
Grimme S.; Antony J.; Ehrlich S.; Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132 (15), 154104.10.1063/1.3382344. PubMed DOI
Grimme S.; Ehrlich S.; Goerigk L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. 10.1002/jcc.21759. PubMed DOI
Nelson D. L.; Cox M. M.. Lehninger Principles of Biochemistry; Worth Publishers, 2000.
O’Neil M. J.The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals; Royal Society of Chemistry, 2013.
Fitch C. A.; Platzer G.; Okon M.; Garcia-Moreno E. B.; McIntosh L. P. Arginine: Its pKa value revisited. Protein Sci. 2015, 24 (5), 752–761. 10.1002/pro.2647. PubMed DOI PMC
Klamt A.; Eckert F.; Diedenhofen M.; Beck M. E. First Principles Calculations of Aqueous p K a Values for Organic and Inorganic Acids Using COSMO– RS Reveal an Inconsistency in the Slope of the p K a Scale. J. Phys. Chem. A 2003, 107 (44), 9380–9386. 10.1021/jp034688o. PubMed DOI
Raton B.CRC Handb. Chem. Phys. 84. Aufl.; CRC Press: 2003.
Cossi M.; Rega N.; Scalmani G.; Barone V. Polarizable dielectric model of solvation with inclusion of charge penetration effects. J. Chem. Phys. 2001, 114, 5691–5701. 10.1063/1.1354187. DOI
Klamt A.; Jonas V. Treatment of the outlying charge in continuum solvation models. J. Chem. Phys. 1996, 105 (22), 9972–9981. 10.1063/1.472829. DOI
Pye C. C.; Ziegler T. An implementation of the conductor-like screening model of solvation within the Amsterdam density functional package. Theor. Chem. Acc. 1999, 101 (6), 396–408. 10.1007/s002140050457. DOI
Cancès E.; Mennucci B. The escaped charge problem in solvation continuum models. J. Chem. Phys. 2001, 115, 6130.10.1063/1.1401157. DOI
Ginovska B.; Camaioni D. M.; Dupuis M.; Schwerdtfeger C. A.; Gil Q. Charge-Dependent Cavity Radii for an Accurate Dielectric Continuum Model of Solvation with Emphasis on Ions: Aqueous Solutes with Oxo, Hydroxo, Amino, Methyl, Chloro, Bromo, and Fluoro Functionalities. J. Phys. Chem. A 2008, 112, 10604–10613. 10.1021/jp804092v. PubMed DOI
Ginovska B.; Camaioni D. M.; Dupuis M.; Schwerdtfeger C. A.; Gil Q. Charge-Dependent Cavity Radii for an Accurate Dielectric Continuum Model of Solvation with Emphasis on Ions: Aqueous Solutes with Oxo, Hydroxo, Amino, Methyl, Chloro, Bromo, and Fluoro Functionalities. J. Phys. Chem. A 2008, 112, 10604–10613. 10.1021/jp804092v. PubMed DOI
Singh U. C.; Kollman P. A. An approach to computing electrostatic charges for molecules. J. Comput. Chem. 1984, 5, 129.10.1002/jcc.540050204. DOI
Curutchet C.; Bidon-Chanal A.; Soteras I.; Orozco M.; Luque F. J. MST Continuum Study of the Hydration Free Energies of Monovalent Ionic Species. J. Phys. Chem. B 2005, 109 (8), 3565–3574. 10.1021/jp047197s. PubMed DOI
Orozco M.; Luque F. J. Optimization of the cavity size for ab initio MST-SCRF calculations of monovalent ions. Chem. Phys. 1994, 182, 237–248. 10.1016/0301-0104(94)00029-8. DOI