Acinetobacter variabilis sp. nov. (formerly DNA group 15 sensu Tjernberg & Ursing), isolated from humans and animals
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural
PubMed
25510976
PubMed Central
PMC4811646
DOI
10.1099/ijs.0.000028
Knihovny.cz E-zdroje
- MeSH
- Acinetobacter klasifikace genetika izolace a purifikace MeSH
- bakteriální geny MeSH
- DNA bakterií genetika MeSH
- fylogeneze * MeSH
- hybridizace nukleových kyselin MeSH
- lidé MeSH
- molekulární sekvence - údaje MeSH
- RNA ribozomální 16S genetika MeSH
- sekvenční analýza DNA MeSH
- spektrometrie hmotnostní - ionizace laserem za účasti matrice MeSH
- techniky typizace bakterií MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- DNA bakterií MeSH
- RNA ribozomální 16S MeSH
We aimed to define the taxonomic status of 16 strains which were phenetically congruent with Acinetobacter DNA group 15 described by Tjernberg & Ursing in 1989. The strains were isolated from a variety of human and animal specimens in geographically distant places over the last three decades. Taxonomic analysis was based on an Acinetobacter-targeted, genus-wide approach that included the comparative sequence analysis of housekeeping, protein-coding genes, whole-cell profiling based on matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS), an array of in-house physiological and metabolic tests, and whole-genome comparative analysis. Based on analyses of the rpoB and gyrB genes, the 16 strains formed respective, strongly supported clusters clearly separated from the other species of the genus Acinetobacter. The distinctness of the group at the species level was indicated by average nucleotide identity values of ≤82 % between the whole genome sequences of two of the 16 strains (NIPH 2171(T) and NIPH 899) and those of the known species. In addition, the coherence of the group was also supported by MALDI-TOF MS. All 16 strains were non-haemolytic and non-gelatinase-producing, grown at 41 °C and utilized a rather limited number of carbon sources. Virtually every strain displayed a unique combination of metabolic and physiological features. We conclude that the 16 strains represent a distinct species of the genus Acinetobacter, for which the name Acinetobacter variabilis sp. nov. is proposed to reflect its marked phenotypic heterogeneity. The type strain is NIPH 2171(T) ( = CIP 110486(T) = CCUG 26390(T) = CCM 8555(T)).
Zobrazit více v PubMed
Baumann P., Doudoroff M., Stanier R. Y. (1968). A study of the Moraxella group. II. Oxidative-negative species (genus Acinetobacter). J Bacteriol 95, 1520–1541. PubMed PMC
Bouvet P. J. M., Grimont P. A. D. (1986). Taxonomy of the genus Acinetobacter with the recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and emended descriptions of Acinetobacter calcoaceticus and Acinetobacter lwoffii. Int J Syst Bacteriol 36, 228–240. 10.1099/00207713-36-2-228 DOI
Bouvet P. J. M., Jeanjean S. (1989). Delineation of new proteolytic genomic species in the genus Acinetobacter. Res Microbiol 140, 291–299. PubMed
Juni E. (1972). Interspecies transformation of Acinetobacter: genetic evidence for a ubiquitous genus. J Bacteriol 112, 917–931. PubMed PMC
Kämpfer P. (1993). Grouping of Acinetobacter genomic species by cellular fatty acid composition. Med Microbiol Lett 2, 394–400.
Krizova L., Maixnerova M., Sedo O., Nemec A. (2014). Acinetobacter bohemicus sp. nov. widespread in natural soil and water ecosystems in the Czech Republic. Syst Appl Microbiol 37, 467–473. 10.1016/j.syapm.2014.07.001 PubMed DOI
Nemec A., Dijkshoorn L., Ježek P. (2000). Recognition of two novel phenons of the genus Acinetobacter among non-glucose-acidifying isolates from human specimens. J Clin Microbiol 38, 3937–3941. PubMed PMC
Nemec A., Musílek M., Maixnerová M., De Baere T., van der Reijden T. J. K., Vaneechoutte M., Dijkshoorn L. (2009). Acinetobacter beijerinckii sp. nov. and Acinetobacter gyllenbergii sp. nov., haemolytic organisms isolated from humans. Int J Syst Evol Microbiol 59, 118–124. 10.1099/ijs.0.001230-0 PubMed DOI
Nemec A., Krizova L., Maixnerova M., van der Reijden T. J. K., Deschaght P., Passet V., Vaneechoutte M., Brisse S., Dijkshoorn L. (2011). Genotypic and phenotypic characterization of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex with the proposal of Acinetobacter pittii sp. nov. (formerly Acinetobacter genomic species 3) and Acinetobacter nosocomialis sp. nov. (formerly Acinetobacter genomic species 13TU). Res Microbiol 162, 393–404. 10.1016/j.resmic.2011.02.006 PubMed DOI
Poirel L., Berçot B., Millemann Y., Bonnin R. A., Pannaux G., Nordmann P. (2012). Carbapenemase-producing Acinetobacter spp. in Cattle, France. Emerg Infect Dis 18, 523–525. 10.3201/eid1803.111330 PubMed DOI PMC
Richter M., Rosselló-Móra R. (2009). Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci U S A 106, 19126–19131. 10.1073/pnas.0906412106 PubMed DOI PMC
Smet A., Cools P., Krizova L., Maixnerova M., Sedo O., Haesebrouck F., Kempf M., Nemec A., Vaneechoutte M. (2014). Acinetobacter gandensis sp. nov. isolated from horse and cattle. Int J Syst Evol Microbiol 64, 4007–4015. 10.1099/ijs.0.068791-0 PubMed DOI
Tjernberg I., Ursing J. (1989). Clinical strains of Acinetobacter classified by DNA-DNA hybridization. APMIS 97, 595–605. 10.1111/j.1699-0463.1989.tb00449.x PubMed DOI
Touchon M., Cury J., Yoon E.-J., Krizova L., Cerqueira G. C., Murphy C., Feldgarden M., Wortman J., Clermont D., et al. (2014). The genomic diversification of the whole Acinetobacter genus: origins, mechanisms, and consequences. Genome Biol Evol 6, 2866–2882. 10.1093/gbe/evu225 PubMed DOI PMC
van den Broek P. J., van der Reijden T. J. K., van Strijen E., Helmig-Schurter A. V., Bernards A. T., Dijkshoorn L. (2009). Endemic and epidemic Acinetobacter species in a university hospital: an 8-year survey. J Clin Microbiol 47, 3593–3599. 10.1128/JCM.00967-09 PubMed DOI PMC
BioProject
PRJNA183623
GENBANK
KM821015, KM821016, KM821017, KM821018, KM821019, KM821020, KM821021, KM821022, KM821023, KM821024, KM821025, KM821026, KM821027, KM821028, KM821029, KM821030, KM821031, KM821032, KM821033, KM821034, KM821035, KM821036, KM821037, KM821038, KM821039, KM821040, KM821041, KM821042, KM821043, KM821044, KM821045, KM821046, KP278590