Characterization of Biostimulant Mode of Action Using Novel Multi-Trait High-Throughput Screening of Arabidopsis Germination and Rosette Growth

. 2018 ; 9 () : 1327. [epub] 20180913

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30271419

Environmental stresses have a significant effect on agricultural crop productivity worldwide. Exposure of seeds to abiotic stresses, such as salinity among others, results in lower seed viability, reduced germination, and poor seedling establishment. Alternative agronomic practices, e.g., the use of plant biostimulants, have attracted considerable interest from the scientific community and commercial enterprises. Biostimulants, i.e., products of biological origin (including bacteria, fungi, seaweeds, higher plants, or animals) have significant potential for (i) improving physiological processes in plants and (ii) stimulating germination, growth and stress tolerance. However, biostimulants are diverse, and can range from single compounds to complex matrices with different groups of bioactive components that have only been partly characterized. Due to the complex mixtures of biologically active compounds present in biostimulants, efficient methods for characterizing their potential mode of action are needed. In this study, we report the development of a novel complex approach to biological activity testing, based on multi-trait high-throughput screening (MTHTS) of Arabidopsis characteristics. These include the in vitro germination rate, early seedling establishment capacity, growth capacity under stress and stress response. The method is suitable for identifying new biostimulants and characterizing their mode of action. Representatives of compatible solutes such as amino acids and polyamines known to be present in many of the biostimulant irrespective of their origin, i.e., well-established biostimulants that enhance stress tolerance and crop productivity, were used for the assay optimization and validation. The selected compounds were applied through seed priming over a broad concentration range and the effect was investigated simultaneously under control, moderate stress and severe salt stress conditions. The new MTHTS approach represents a powerful tool in the field of biostimulant research and development and offers direct classification of the biostimulants mode of action into three categories: (1) plant growth promotors/inhibitors, (2) stress alleviators, and (3) combined action.

Zobrazit více v PubMed

Calvo P., Nelson L., Kloepper J. W. (2014). Agricultural uses of plant biostimulants. DOI

Chen K., Arora R. (2013). Priming memory invokes seed stress-tolerance. DOI

Colla G., Rouphael Y., Canaguier R., Svecova E., Cardarelli M. (2014). Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. PubMed DOI PMC

Craigie J. S. (2011). Seaweed extract stimuli in plant science and agriculture. DOI

Cristiano G., Pallozzi E., Conversa G., Tufarelli V., De Lucia B. (2018). Effects of an animal-derived biostimulant on the growth and physiological parameters of potted snapdragon ( PubMed DOI PMC

Dawood M. G., Taie H. A. A., Nassar R. M. A., Abdelhamid M. T., Schmidhalter U. (2014). The changes induced in the physiological, biochemical and anatomical characteristics of DOI

De Diego N., Fürst T., Humplík J. F., Ugena L., Podlešáková K., Spíchal L. (2017). An automated method for high-throughput screening of PubMed DOI PMC

De Diego N., Saiz-Fernandez I., Rodriguez J. L., Perez-Alfocea F., Sampedro M. C., Barrio R. J., et al. (2015). Metabolites and hormones are involved in the intraspecific variability of drought hardening in radiata pine. PubMed DOI

Deivanai S., Xavier R., Vinod V., Timalata K., Lim O. F. (2011). Role of exogenous proline in ameliorating salt stress at early stage in two rice cultivars.

du Jardin P. (2015). Plant biostimulants: definition, concept, main categories and regulation. DOI

Durand N., Briand X., Meyer C. (2003). The effect of marine bioactive substances (N PRO) and exogenous cytokinins on nitrate reductase activity in DOI

Faragó D., Sass L., Valkai I., Andrási N., Szabados L. (2018). PlantSize offers an affordable, non-destructive method to measure plant size and color in vitro. PubMed DOI PMC

Garcia-Gonzalez J., Sommerfeld M. (2016). Biofertilizer and biostimulant properties of the microalga PubMed DOI PMC

Gitelson A. A., Kaufman Y. J., Stark R., Rundquist D. (2002). Novel algorithms for remote estimation of vegetation fraction. DOI

Granier C., Granier C., Aguirrezabal L., Aguirrezabal L., Chenu K., Chenu K., et al. (2006). PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water de cit in. PubMed DOI

Hunt E. R., Doraiswamy P. C., McMurtrey J. E., Daughtry C. S. T., Perry E. M., Akhmedov B. (2013). A visible band index for remote sensing leaf chlorophyll content at the canopy scale. DOI

Ibrahim E. A. (2016). Seed priming to alleviate salinity stress in germinating seeds. PubMed DOI

Kaveh H., Nemati H., Farsi I. M., Vatandoost Jartoodeh S. (2011). How salinity affect germination and emergence of tomato lines.

Li J., Hu L., Zhang L., Pan X., Hu X. (2015). Exogenous spermidine is enhancing tomato tolerance to salinity-alkalinity stress by regulating chloroplast antioxidant system and chlorophyll metabolism. PubMed DOI PMC

Mahdavi B. (2013). Seed germination and growth responses of Isabgol (

Medeiros M. J. L., Silva M. M. A., Granja M. M. C., Souza e Silva Júnior G., Camara T. R., Willadino L., et al. (2015). Effect of exogenous proline in two sugarcane genotypes grown DOI

Murashige T., Skoog F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. DOI

Perry E. M., Roberts D. A. (2008). Sensitivity of narrow-band and broad-band indices for assessing nitrogen availability and water stress in an annual crop. DOI

Pichyangkura R., Chadchawan S. (2015). Biostimulant activity of chitosan in horticulture. DOI

Podlešáková K., Ugena L., Spíchal L., Doležal K., De Diego N. (2018). Phytohormones and polyamines regulate plant stress responses by altering GABA pathway. PubMed DOI

Pouvreau J.-B., Gaudin Z., Auger B., Lechat M.-M., Gauthier M., Delavault P., et al. (2013). A high-throughput seed germination assay for root parasitic plants. PubMed DOI PMC

Povero G., Mejia J. F., Di Tommaso D., Piaggesi A., Warrior P. (2016). A systematic approach to discover and characterize natural plant biostimulants. PubMed DOI PMC

Rahaman M. M., Ahsan M. A., Gillani Z., Chen M. (2017). Digital biomass accumulation using high-throughput plant phenotype data analysis. PubMed DOI PMC

Rodriguez-Furlán C., Miranda G., Reggiardo M., Hicks G. R., Norambuena L. (2016). High throughput selection of novel plant growth regulators: assessing the translatability of small bioactive molecules from PubMed DOI

Roychoudhury A., Basu S., Sengupta D. N. (2011). Amelioration of salinity stress by exogenously applied spermidine or spermine in three varieties of indica rice differing in their level of salt tolerance. PubMed DOI

Sabagh A., El Islam M. S., Ueda A., Saneoka H., Barutçular C. (2015). Increasing reproductive stage tolerance to salinity stress in soybean.

Savvides A., Ali S., Tester M., Fotopoulos V. (2016). Chemical priming of plants against multiple abiotic stresses: mission possible? PubMed DOI

Sharma H. S. S., Fleming C., Selby C., Rao J. R., Martin T. (2014). Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. DOI

Sharma H. S. S., Selby C., Carmichael E., McRoberts C., Rao J. R., Ambrosino P., et al. (2016). Physicochemical analyses of plant biostimulant formulations and characterisation of commercial products by instrumental techniques. DOI

Shekari F., Danalo A. A., Mustafavi S. H. (2015). Exogenous polyamines improve seed germination of borage under salt stress via involvement in antioxidant defenses.

Shu S., Yuan L. Y., Guo S. R., Sun J., Liu C. J. (2012). Effects of exogenous spermidine on photosynthesis, xanthophyll cycle and endogenous polyamines in cucumber seedlings exposed to salinity. DOI

Shu S., Yuan Y., Chen J., Sun J., Zhang W., Tang Y., et al. (2015). The role of putrescine in the regulation of proteins and fatty acids of thylakoid membranes under salt stress. PubMed DOI PMC

Silva A. T., Ligterink W., Hilhorst H. W. M. (2017). Metabolite profiling and associated gene expression reveal two metabolic shifts during the seed-to-seedling transition in PubMed DOI PMC

Talat A., Nawaz K., Hussian K., Bhatti K. H., Siddiqi E. H., Khalid A., et al. (2013). Foliar application of proline for salt tolerance of two wheat ( DOI

Tanabata T., Shibaya T., Hori K., Ebana K., Yano M. (2012). SmartGrain: high-throughput phenotyping software for measuring seed shape through image analysis. PubMed DOI PMC

Teh C. Y., Shaharuddin N. A., Ho C. L., Mahmood M. (2016). Exogenous proline significantly affects the plant growth and nitrogen assimilation enzymes activities in rice (Oryza sativa) under salt stress. DOI

Thiam M., Champion A., Diouf D., Mame Ourèye S. Y. (2013). NaCl effects on in vitro germination and growth of some senegalese cowpea ( PubMed DOI PMC

Van Oosten M. J., Pepe O., De Pascale S., Silletti S., Maggio A. (2017). The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. DOI

Yakhin O. I., Lubyanov A. A., Yakhin I. A., Brown P. H. (2016). Biostimulants in plant science: a global perspective. PubMed DOI PMC

Zeng D., Luo X., Tu R. (2012). Application of bioactive coatings based on chitosan for soybean seed protection. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Sulfonation of IAA in Urtica eliminates its DR5 auxin activity

. 2024 Dec 20 ; 44 (1) : 8. [epub] 20241220

The loss-of-function of AtNATA2 enhances AtADC2-dependent putrescine biosynthesis and priming, improving growth and salinity tolerance in Arabidopsis

. 2024 Nov-Dec ; 176 (6) : e14603.

Presence and future of plant phenotyping approaches in biostimulant research and development

. 2022 Sep 03 ; 73 (15) : 5199-5212.

Addressing the contribution of small molecule-based biostimulants to the biofortification of maize in a water restriction scenario

. 2022 ; 13 () : 944066. [epub] 20220831

Biostimulants as an Alternative to Improve the Wine Quality from Vitis vinifera (cv. Tempranillo) in La Rioja

. 2022 Jun 16 ; 11 (12) : . [epub] 20220616

Priming with Small Molecule-Based Biostimulants to Improve Abiotic Stress Tolerance in Arabidopsis thaliana

. 2022 May 11 ; 11 (10) : . [epub] 20220511

Seed Priming With Protein Hydrolysates Improves Arabidopsis Growth and Stress Tolerance to Abiotic Stresses

. 2021 ; 12 () : 626301. [epub] 20210608

Integration of Phenomics and Metabolomics Datasets Reveals Different Mode of Action of Biostimulants Based on Protein Hydrolysates in Lactuca sativa L. and Solanum lycopersicum L. Under Salinity

. 2021 ; 12 () : 808711. [epub] 20220203

Hormopriming to Mitigate Abiotic Stress Effects: A Case Study of N 9-Substituted Cytokinin Derivatives With a Fluorinated Carbohydrate Moiety

. 2020 ; 11 () : 599228. [epub] 20201210

Understanding the Biostimulant Action of Vegetal-Derived Protein Hydrolysates by High-Throughput Plant Phenotyping and Metabolomics: A Case Study on Tomato

. 2019 ; 10 () : 47. [epub] 20190208

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...