Addressing the contribution of small molecule-based biostimulants to the biofortification of maize in a water restriction scenario

. 2022 ; 13 () : 944066. [epub] 20220831

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36119580

Biostimulants have become an asset for agriculture since they are a greener alternative to traditionally used plant protection products. Also, they have gained the farmers' acceptance due to their effect on enhancing the plant's natural defense system against abiotic stresses. Besides commercially available complex products, small molecule-based biostimulants are useful for industry and research. Among them, polyamines (PAs) are well-studied natural compounds that can elicit numerous positive responses in drought-stressed plants. However, the studies are merely focused on the vegetative development of the plant. Therefore, we aimed to evaluate how drenching with putrescine (Put) and spermidine (Spd) modified the maize production and the yield quality parameters. First, a dosage optimization was performed, and then the best PA concentrations were applied by drenching the maize plants grown under well-watered (WW) conditions or water deficit (WD). Different mechanisms of action were observed for Put and Spd regarding maize production, including when both PAs similarly improved the water balance of the plants. The application of Put enhanced the quality and quantity of the yield under WW and Spd under WD. Regarding the nutritional quality of the grains, both PAs increased the carbohydrates content, whereas the contribution to the protein content changed by the interaction between compound and growth conditions. The mineral content of the grains was also greatly affected by the water condition and the PA application, with the most relevant results observed when Spd was applied, ending with flour richer in Zn, Cu, and Ca minerals that are considered important for human health. We showed that the exogenous PA application could be a highly efficient biofortification approach. Our findings open a new exciting use to be studied deep in the biostimulant research.

Zobrazit více v PubMed

Abbas M., Abdel-Lattif H., Shahba M. (2021). Ameliorative effects of calcium sprays on yield and grain nutritional composition of maize (Zea mays l.) cultivars under drought stress. Agriculture 11:285. 10.3390/agriculture11040285 DOI

Agliassa C., Mannino G., Molino D., Cavalletto S., Contartese V., Bertea C. M., et al. (2021). A new protein hydrolysate-based biostimulant applied by fertigation promotes relief from drought stress in Capsicum annuum L. Plant Physiol. Biochem. 166 1076–1086. 10.1016/j.plaphy.2021.07.015 PubMed DOI

Altooq N., Humood A., Alajaimi A., Alenezi A. F., Janahi M., AlHaj O., et al. (2022). The role of micronutrients in the management of COIVD-19 and optimizing vaccine efficacy. Hum. Nutr. Metabol. 27:200141. 10.1016/j.hnm.2022.200141 PubMed DOI PMC

Anjum S. A., Ashraf U., Tanveer M., Khan I., Hussain S., Shahzad B., et al. (2017). Drought induced changes in growth, osmolyte accumulation and antioxidant metabolism of three maize hybrids. Front. Plant Sci. 8:69. 10.3389/fpls.2017.00069 PubMed DOI PMC

Aqaei P., Weisany W., Diyanat M., Razmi J., Struik P. C. (2020). Response of maize (Zea mays L.) to potassium nano-silica application under drought stress. J. Plant Nutr. 43 1205–1216. 10.1080/01904167.2020.1727508 DOI

Avila R. G., Silva E. M., Magalhães P. C., Alvarenga A. A., Lavinsky A. O. (2017). Drought changes yield and organic and mineral composition of grains of four maize genotypes. Acad. J. Agri. Res. 5 243–250.

Barrs H., Weatherley P. (1962). A Re-Examination of the relative turgidity technique for estimating water deficits in leaves. Aust. J. Biol. Sci. 15 413–428. 10.1071/bi9620413 DOI

Barutcular C., Dizlek H., El-Sabagh A., Sahin T., Elsabagh M., Islam S. (2016). Nutritional quality of maize in response to drought stress during grain-filling stages in mediterranean climate condition. J. Exp. Biol. Agri. Sci. 4 644–652. 10.18006/2016.4(issue6).644.652 DOI

Battacharyya D., Babgohari M. Z., Rathor P., Prithiviraj B. (2015). Seaweed extracts as biostimulants in horticulture. Sci. Horticu. 196 39–48. 10.1016/j.scienta.2015.09.012 DOI

Ben Mrid R., Benmrid B., Hafsa J., Boukcim H., Sobeh M., Yasri A. (2021). Secondary metabolites as biostimulant and bioprotectant agents: a review. Sci. Total Environ. 777:146204. 10.1016/j.scitotenv.2021.146204 DOI

Blum A. (1996). “Crop responses to drought and the interpretation of adaptation,” in Drought Tolerance in Higher Plants: Genetical, Physiological and Molecular Biological Analysis, (Netherlands: Springer; ), 57–70. 10.1007/978-94-017-1299-6_8 DOI

Borrás L., Curá J. A., Otegui M. E. (2002). Maize kernel composition and post-flowering source-sink ratio. Crop Sci. 42 781–790. 10.2135/cropsci2002.7810 DOI

Bulgari R., Cocetta G., Trivellini A., Vernieri P., Ferrante A. (2015). Biostimulants and crop responses: a review. Biol. Agri. Hort. 31 1–17. 10.1080/01448765.2014.964649 DOI

Bulgari R., Franzoni G., Ferrante A. (2019). Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 9 306. 10.3390/agronomy9060306 DOI

Cao D. D., Hu J., Zhu S. J., Hu W. M., Knapp A. (2010). Relationship between changes in endogenous polyamines and seed quality during development of sh2 sweet corn (Zea mays L.) seed. Sci. Hort. 123 301–307. 10.1016/j.scienta.2009.10.006 DOI

Chaudhary D. P., Kumar S., Yadav O. P. (2014). “Nutritive value of maize: Improvements, applications and constraints,” in Maize: Nutrition Dynamics and Novel Uses, (Berlin: Springer India; ), 3–17. 10.1007/978-81-322-1623-0_1 DOI

Chen D., Shao Q., Yin L., Younis A., Zheng B. (2019a). Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Front. Plant Sci. 9:1945. 10.3389/fpls.2018.01945 PubMed DOI PMC

Chen D., Shao Q., Yin L., Younis A., Zheng B. (2019b). Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Front. Plant Sci. 9:1945. PubMed PMC

Choudhary S., Wani K. I., Naeem M., Khan M. M. A., Aftab T. (2022). Cellular responses, osmotic adjustments, and role of osmolytes in providing salt stress resilience in higher plants: polyamines and nitric oxide crosstalk. J. Plant Growth Regul. 10.1007/s00344-022-10584-7 [Epub ahead of print]. DOI

Darwish E., Hanafy Ahmed A., Hamoda S., Alobaidy M. (2013). Effect of putrescine and humic acid on growth, yield and chemical composition of cotton plants grown under saline soil conditions. Environ. Sci. 13 479–497. 10.5829/idosi.aejaes.2013.13.04.1965 DOI

De Diego N., Spíchal L. (2020). “Use of plant metabolites to mitigate stress effects in crops,” in The Chemical Biology of Plant Biostimulants, (Hoboken, NJ: John Wiley & Sons, Ltd; ), 261–300. 10.1002/9781119357254.ch11 DOI

du Jardin P. (2015). Plant biostimulants: definition, concept, main categories and regulation. Sci. Hort. 196 3–14. 10.1016/j.scienta.2015.09.021 DOI

Duarte-Sierra A., Tiznado-Hernández M. E., Jha D. K., Janmeja N., Arul J. (2020). Abiotic stress hormesis: an approach to maintain quality, extend storability, and enhance phytochemicals on fresh produce during postharvest. Compr. Rev. Food Sci. Food Saf. 19 3659–3682. 10.1111/1541-4337.12628 PubMed DOI

FAO (2018). Climate Change and Food Security: Risks and Reponses. Watch Letter. Rome, IT: Food and Agriculture Organization.

Farooq M., Wahid A., Lee D. J. (2009). Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Acta Phys. Plant. 31 937–945. 10.1007/s11738-009-0307-2 DOI

Feil B., Moser S. B., Jampatong S., Stamp P. (2005). Mineral composition of the grains of tropical maize varieties as affected by pre-anthesis drought and rate of nitrogen fertilization. Crop Sci. 45 516–523. 10.2135/cropsci2005.0516 DOI

Feng H. Y., Wang Z. M., Kong F. N., Zhang M. J., Zhou S. L. (2011). Roles of carbohydrate supply and ethylene, polyamines in maize kernel set. J. Integr. Plant Biol. 53 388–398. 10.1111/j.1744-7909.2011.01039.x PubMed DOI

García-García A. L., García-Machado F. J., Borges A. A., Morales-Sierra S., Boto A., Jiménez-Arias D. (2020). Pure organic active compounds against abiotic stress: a biostimulant overview. Front. Plant Sci. 11:575829. 10.3389/fpls.2020.575829 PubMed DOI PMC

Garg M., Sharma N., Sharma S., Kapoor P., Kumar A., Chunduri V., et al. (2018). Biofortified crops generated by breeding, agronomy, and transgenic approaches are improving lives of millions of people around the world. Front. Nutr. 5:12. 10.3389/fnut.2018.00012 PubMed DOI PMC

da Ge T., Sui F. G., Nie S., Sun N. B., Xiao H., Tong C. L. (2010). Differential responses of yield and selected nutritional compositions to drought stress in summer maize grains. J. Plant Nutr. 33 1811–1818. 10.1080/01904167.2010.503829 DOI

Gebremedhn Y., Berhanu A. (2013). The role of seed priming in improving seed germination and seedling growth of maize (Zea mays L.) under salt stress at laboratory conditions. Afr. J. Biotechnol. 12 6484–6490. 10.5897/ajb2013.13102 DOI

González-Hernández A. I., Scalschi L., Vicedo B., Marcos-Barbero E. L., Morcuende R., Camañes G. (2022). Putrescine: a key metabolite involved in plant development, tolerance and resistance responses to stress. Intl. J. Mol. Sci. 23:2971. 10.3390/ijms23062971 PubMed DOI PMC

Gupta S., Agarwal V. P., Gupta N. K. (2012). Efficacy of putrescine and benzyladenine on photosynthesis and productivity in relation to drought tolerance in wheat (Triticum aestivum L.). Physiol. Mol. Biol. Plants 18 331–336. 10.1007/s12298-012-0123-9 PubMed DOI PMC

Gupta S., Gupta N. (2011). Field efficacy of exogenously applied putrescine in wheat (Triticum aestivum) under water-stress conditions. Indian J. Agri. Sci. 81 516–519.

Harrigan G. G., Stork L. A. G., Riordan S. G., Ridley W. P., MacIsaac S., Halls S. C., et al. (2007). Metabolite analyses of grain from maize hybrids grown in the United States under drought and watered conditions during the 2002 field season. J. Agri. Food Chem. 55 6169–6176. 10.1021/jf070493s PubMed DOI

Hassan F. A. S., Ali E. F., Alamer K. H. (2018). Exogenous application of polyamines alleviates water stress-induced oxidative stress of Rosa damascena Miller var. trigintipetala Dieck. South Afr. J. Bot. 116 96–102. 10.1016/j.sajb.2018.02.399 DOI

Hoagland D. R., Arnon D. I. (1938). The Water-Culture Method for Growing Plants Without Soil. California: University of California.

Hoebler C., Karinthi A., Chiron H., Champ M., Barry J. L. (1999). Bioavailability of starch in bread rich in amylose: metabolic responses in healthy subjects and starch structure. Eur. J. Clin. Nutr. 53 360–366. 10.1038/sj.ejcn.1600718 PubMed DOI

Hoffmann W. A., Poorter H. (2002). Avoiding bias in calculations of relative growth rate. Ann. Bot. 90 37–42. 10.1093/aob/mcf140 PubMed DOI PMC

Huma B., Hussain M., Ning C., Yuesuo Y. (2019). Human benefits from maize. Sch. J. Appl. Sci. Res. 2 4–7.

Hussain S., Maqsood M., Ijaz M., Ul-Allah S., Sattar A., Sher A., et al. (2020). Combined application of potassium and zinc improves water relations, stay green, irrigation water use efficiency, and grain quality of maize under drought stress. J. Plant Nutr. 43 2214–2225. 10.1080/01904167.2020.1765181 DOI

Islam M. J., Uddin M. J., Hossain M. A., Henry R., Begum K., Sohel A. T., et al. (2022). Exogenous putrescine attenuates the negative impact of drought stress by modulating physio-biochemical traits and gene expression in sugar beet (Beta vulgaris L.). PLoS One 17:e0262099. 10.1371/journal.pone.0262099 PubMed DOI PMC

Jiménez-Arias D., García-Machado F. J., Morales-Sierra S., Luis J. C., Suarez E., Hernández M., et al. (2019). Lettuce plants treated with L-pyroglutamic acid increase yield under water deficit stress. Environ. Exp. Bot. 158 215–222. 10.1016/j.envexpbot.2018.10.034 DOI

Jiménez-Arias D., Morales-Sierra S., Borges A. A., Herrera A. J., Luis J. C. (2022). New biostimulants screening method for crop seedlings under water deficit stress. Agronomy 12:728. 10.3390/agronomy12030728 DOI

Jing J. G., Guo S. Y., Li Y. F., Li W. H. (2019). Effects of polyamines on agronomic traits and photosynthetic physiology of wheat under high temperature stress. Photosynthetica 57 912–920. 10.32615/ps.2019.104 DOI

Kim S. G., Lee J. S., Bae H. H., Kim J. T., Son B. Y., Kim S. L., et al. (2019). Physiological and proteomic analyses of Korean F1 maize (Zea mays L.) hybrids under water-deficit stress during flowering. Appl. Biol. Chem. 62 1–9. 10.1186/s13765-019-0438-0 DOI

Kirk P. L. (1950). Kjeldahl method for total nitrogen. Anal. Chem. 22 354–358. 10.1021/ac60038a038 DOI

Kiziloglu F. M., Sahin U., Kuslu Y., Tunc T. (2009). Determining water-yield relationship, water use efficiency, crop and pan coefficients for silage maize in a semiarid region. Irrig. Sci. 27 129–137. 10.1007/s00271-008-0127-y DOI

Köhne J. S. (1989). Comparison of growth regulators paclobutrazol and uniconazole on avocado. South African Avocado Growers”. Assoc. Yearb. 1989 38–39.

Kuglitsch F. G., Reichstein M., Beer C., Carrara A., Ceulemans R. (2008). Characterisation of ecosystem water-use efficiency of european forests from eddy covariance measurements. Biogeosci. Dis. 5 4481–4519. 10.5194/bgd-5-4481-2008 DOI

Kutman U. B., Yildiz B., Ozturk L., Cakmak I. (2010). Biofortification of durum wheat with zinc through soil and foliar applications of nitrogen. Cereal Chem. 87 1–9. 10.1094/CCHEM-87-1-0001 DOI

Landry J., Moureaux T. (1980). Distribution and amino acid composition of protein groups located in different histological parts of maize grain. J. Agri. Food Chem. 28 1186–1191. 10.1021/jf60232a042 PubMed DOI

Li G., Liang Z., Li Y., Liao Y., Liu Y. (2020). Exogenous spermidine regulates starch synthesis and the antioxidant system to promote wheat grain filling under drought stress. Acta Phys. Plant. 42 1–14. 10.1007/s11738-020-03100-5 DOI

Li J. S., Vasal S. K. (2015). Maize: quality Protein Maize. Encycl. Food Grains 4 420–424. 10.1016/B978-0-12-394437-5.00223-0 DOI

Li L., Gu W., Li C., Li W., Li C., Li J., et al. (2018). Exogenous spermidine improves drought tolerance in maize by enhancing the antioxidant defence system and regulating endogenous polyamine metabolism. Crop Pasture Sci. 69 1076–1091. 10.1071/CP18271 DOI

Li Z., Zhou H., Peng Y., Zhang X., Ma X., Huang L., et al. (2015). Exogenously applied spermidine improves drought tolerance in creeping bentgrass associated with changes in antioxidant defense, endogenous polyamines and phytohormones. Plant Growth Regul. 76 71–82. 10.1007/s10725-014-9978-9 DOI

Liang Y.-L., Lur H.-S. (2002). Conjugated and free polyamine levels in normal and aborting maize kernels. Crop Sci. 42 1217–1224. 10.2135/cropsci2002.1217 DOI

Liu C. J., Wang H. R., Wang L., Han Y. Y., Hao J. H., Fan S. X. (2018). “Effects of different types of polyamine on growth, physiological and biochemical nature of lettuce under drought stress,” in Proceedings of IOP Conference Series: Earth and Environmental Science, (Bristol, EN: IOP Publishing; ), 012010. 10.1088/1755-1315/185/1/012010 DOI

Liu D. Y., Liu Y. M., Zhang W., Chen X. P., Zou C. Q. (2019). Zinc uptake, translocation, and remobilization in winter wheat as affected by soil application of zn fertilizer. Front. Plant Sci. 10:426. 10.3389/fpls.2019.00426 PubMed DOI PMC

Liu Y., Liang H., Lv X., Liu D., Wen X., Liao Y. (2016). Effect of polyamines on the grain filling of wheat under drought stress. Plant Phys. Biochem. 100 113–129. 10.1016/j.plaphy.2016.01.003 PubMed DOI

Loy D. D., Lundy E. L. (2018). “Nutritional properties and feeding value of corn and its coproducts,” in Corn: Chemistry and Technology, 3rd Edn, (Saint Paul, MA: AACC International Press; ), 633–659. 10.1016/B978-0-12-811971-6.00023-1 DOI

Lu D., Cai X., Zhao J., Shen X., Lu W. (2015). Effects of drought after pollination on grain yield and quality of fresh waxy maize. J.Sci. Food Agri. 95 210–215. 10.1002/jsfa.6709 PubMed DOI

Maiti R., Pramanik K. (2013). Vegetable seed priming?: a low cost, simple and powerful techniques for farmers‘ livelihood. Intl. J. Bio Res. Stress Manag. 4 475–481.

Marcińska I., Dziurka K., Waligórski P., Janowiak F., Skrzypek E., Warchoł M., et al. (2020). Exogenous polyamines only indirectly induce stress tolerance in wheat growing in hydroponic culture under polyethylene glycol-induced osmotic stress. Life 10 1–20. 10.3390/life10080151 PubMed DOI PMC

Menkir A. (2008). Genetic variation for grain mineral content in tropical-adapted maize inbred lines. Food Chem. 110 454–464. 10.1016/j.foodchem.2008.02.025 PubMed DOI

Mostafa H. A. M., Hassanein R. A., Khalil S. I., El-Khawas S. A., El-Bassiouny H. M. S., Abd El-Monem A. A. (2010). Effect of arginine or putrescine on growth, yield and yield components of late sowing wheat. J. Appl. Sci. Res. 6 177–183.

Ndayiragije A., Lutts S. (2007). Long term exogenous putrescine application improves grain yield of a salt-sensitive rice cultivar exposed to NaCl. Plant Soil 291 225–238. 10.1007/s11104-006-9188-y DOI

Orhun G. E., Onsekiz Ç, Üniversitesi M., Orhun G. E. (2013). Maize for Life. Intl. J. Food Sci. Nutr. Eng. 3 13–16. 10.5923/j.food.20130302.01 PubMed DOI

Pál M., Majláth I., Németh E., Hamow K. Á, Szalai G., Rudnóy S., et al. (2018). The effects of putrescine are partly overlapping with osmotic stress processes in wheat. Plant Sci. 268 67–76. 10.1016/j.plantsci.2017.12.011 PubMed DOI

Parkunan V., Johnson C. S., Eisenback J. D. (2011). Influence of acibenzolar- S-Methyl and mixture of Bacillus species on grwoth and vigor of cultivated tobacco. Tob. Sci. 48 7–14. 10.3381/10-010.1 DOI

Paul K., Sorrentino M., Lucini L., Rouphael Y., Cardarelli M., Bonini P., et al. (2019). A combined phenotypic and metabolomic approach for elucidating the biostimulant action of a plant-derived protein hydrolysate on tomato grown under limited water availability. Front. Plant Sci. 10:493. 10.3389/fpls.2019.00493 PubMed DOI PMC

Podlešáková K., Ugena L., Spíchal L., Doležal K., De Diego N. (2019). Phytohormones and polyamines regulate plant stress responses by altering GABA pathway. New Biotechnol. 48 53–65. 10.1016/j.nbt.2018.07.003 PubMed DOI

Rajput V. D., Minkina T., Suskova S., Mandzhieva S., Tsitsuashvili V., Chapligin V., et al. (2018). Effects of Copper Nanoparticles (CuO NPs) on Crop Plants: a Mini Review. BioNanoSci. 8 36–42. 10.1007/s12668-017-0466-3 DOI

Ramazan S., Nazir I., Yousuf W., John R. (2022). Environmental stress tolerance in maize (Zea mays): role of polyamine metabolism. Funct. Plant Biol. 10.1071/FP21324 [Epub ahead of print]. PubMed DOI

Rao N. K. S., Laxman R. H., Shivashankara K. S. (2016). “Physiological and morphological responses of horticultural crops to abiotic stresses,” in Abiotic Stress Physiology of Horticultural Crops, (Berlin: Springer; ), 3–18. 10.1007/978-81-322-2725-0_1 DOI

Saleethong P., Sanitchon J., Kong, -Ngern K., Theerakulpisut P. (2013). Effects of exogenous spermidine (Spd) on yield, yield-related parameters and mineral composition of rice (Oryza sativa L. ssp.’ indica’) grains under salt stress. Aust. J. Crop Sci. 7 1293–1301. 10.3316/informit.619809711947641 DOI

Savvides A., Ali S., Tester M., Fotopoulos V. (2016). Chemical priming of plants against multiple abiotic stresses: mission possible? Trends Plant Sci. 21 329–340. 10.1016/j.tplants.2015.11.003 PubMed DOI

Seleem E. A., Ibrahim H. M. S., Taha Z. K. (2021). Exogenous application of ascorbic acid and putrescine: a natural eco-friendly potential for alleviating NaCl stress in barley (Hordeum vulgare). Emirates J. Food Agri. 33, 657–670. 10.9755/ejfa.2021.v33.i8.2742 DOI

Shahrajabian M. H., Chaski C., Polyzos N., Petropoulos S. A. (2021). Biostimulants application: a low input cropping management tool for sustainable farming of vegetables. Biomolecules 11:698. 10.3390/biom11050698 PubMed DOI PMC

Sorrentino M., De Diego N., Ugena L., Spíchal L., Lucini L., Miras-Moreno B., et al. (2021). Seed priming with protein hydrolysates improves Arabidopsis growth and stress tolerance to abiotic stresses. Front. Plant Sci. 12:626301. 10.3389/fpls.2021.626301 PubMed DOI PMC

Ugena L., Hýlová A., Podlešáková K., Humplík J. F., Doležal K., Diego N., et al. (2018). Characterization of biostimulant mode of action using novel multi-trait high-throughput screening of arabidopsis germination and rosette growth. Front. Plant Sci. 9:1327. 10.3389/fpls.2018.01327 PubMed DOI PMC

Ullah F., Bano A., Nosheen A. (2012). Effects of plant growth regulators on growth and oil quality of canola (Brassica napus L.) under drought stress. Pakistan J. Bot. 44 1873–1880.

Van Oosten M. J., Pepe O., De Pascale S., Silletti S., Maggio A. (2017). The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agri. 4 1–12. 10.1186/s40538-017-0089-5 DOI

Viets F. G. (1962). Fertilizers and the efficient use of water. Adv. Agron. 14 223–264. 10.1016/S0065-2113(08)60439-3 DOI

White P. J., Broadley M. R. (2009). Biofortification of crops with seven mineral elements often lacking in human diets - Iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 182 49–84. 10.1111/j.1469-8137.2008.02738.x PubMed DOI

XiaoKang L., XiaoXia W., YunCheng L., Yang L. (2016). Effect of exogenous polyamines on mechanism of floret degeneration in wheat. Acta Agron. Sinica 42 1391–1401.

Xu L., Geelen D. (2018). Developing biostimulants from agro-food and industrial by-products. Front. Plant Sci. 871:1567. 10.3389/fpls.2018.01567 PubMed DOI PMC

Xu Y., Qiu M., Li Y., Qian X., Gu J., Yang J. (2016). Polyamines mediate the effect of post-anthesis soil drying on starch granule size distribution in wheat kernels. Crop J. 4 444–458. 10.1016/j.cj.2016.05.004 DOI

Yakhin O. I., Lubyanov A. A., Yakhin I. A., Brown P. H. (2017). Biostimulants in plant science: a global perspective. Front. Plant Sci. 7:2049. 10.3389/fpls.2016.02049 PubMed DOI PMC

Yang W., Li Y., Yin Y., Qin Z., Zheng M., Chen J., et al. (2017). Involvement of ethylene and polyamines biosynthesis and abdominal phloem tissues characters of wheat caryopsis during grain filling under stress conditions. Sci. Rep. 7:46020. 10.1038/srep46020 PubMed DOI PMC

Yang W., Qin Z., Sun H., Liao X., Gao J., Wang Y., et al. (2020). Yield-related agronomic traits evaluation for hybrid wheat and relations of ethylene and polyamines biosynthesis to filling at the mid-grain filling stage. J. Integr. Agri. 19 2407–2418. 10.1016/S2095-3119(19)62873-X DOI

Yoo J. Y., Cho H. J., Lee J. E. (2022). Lower dietary calcium intake is associated with a higher risk of mortality in Korean adults. J. Acad. Nutr. Diet. S2212–S2672. 10.1016/j.jand.2022.02.012 PubMed DOI

Yu Z., Jia D., Liu T. (2019). Polyamine oxidases play various roles in plant development and abiotic stress tolerance. Plants 8:184. 10.3390/plants8060184 PubMed DOI PMC

Zhang H., Han M., Comas L. H., Dejonge K. C., Gleason S. M., Trout T. J., et al. (2019). Response of maize yield components to growth stage-based deficit irrigation. Agron. J. 111 3244–3252. 10.2134/agronj2019.03.0214 DOI

Zhang H., Li Y., Zhu J. K. (2018). Developing naturally stress-resistant crops for a sustainable agriculture. Nat. Plants 4 989–996. 10.1038/s41477-018-0309-4 PubMed DOI

Zhao X., Tong C., Pang X., Wang Z., Guo Y., Du F., et al. (2012). Functional mapping of ontogeny in flowering plants. Brief Bioinform. 13, 317–328. 10.1093/bib/bbr054 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...