Seed Priming With Protein Hydrolysates Improves Arabidopsis Growth and Stress Tolerance to Abiotic Stresses

. 2021 ; 12 () : 626301. [epub] 20210608

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34168660

The use of plant biostimulants contributes to more sustainable and environmentally friendly farming techniques and offers a sustainable alternative to mitigate the adverse effects of stress. Protein hydrolysate-based biostimulants have been described to promote plant growth and reduce the negative effect of abiotic stresses in different crops. However, limited information is available about their mechanism of action, how plants perceive their application, and which metabolic pathways are activating. Here we used a multi-trait high-throughput screening approach based on simple RGB imaging and combined with untargeted metabolomics to screen and unravel the mode of action/mechanism of protein hydrolysates in Arabidopsis plants grown in optimal and in salt-stress conditions (0, 75, or 150 mM NaCl). Eleven protein hydrolysates from different protein sources were used as priming agents in Arabidopsis seeds in three different concentrations (0.001, 0.01, or 0.1 μl ml-1). Growth and development-related traits as early seedling establishment, growth response under stress and photosynthetic performance of the plants were dynamically scored throughout and at the end of the growth period. To effectively classify the functional properties of the 11 products a Plant Biostimulant Characterization (PBC) index was used, which helped to characterize the activity of a protein hydrolysate based on its ability to promote plant growth and mitigate stress, and to categorize the products as plant growth promoters, growth inhibitors and/or stress alleviator. Out of 11 products, two were identified as highly effective growth regulators and stress alleviators because they showed a PBC index always above 0.51. Using the untargeted metabolomics approach, we showed that plants primed with these best performing biostimulants had reduced contents of stress-related molecules (such as flavonoids and terpenoids, and some degradation/conjugation compounds of phytohormones such as cytokinins, auxins, gibberellins, etc.), which alleviated the salt stress response-related growth inhibition.

Zobrazit více v PubMed

Adhikari N. D., Simko I., Mou B. (2019). Phenomic and physiological analysis of salinity effects on lettuce. Sensors 19:4814. 10.3390/s19214814 PubMed DOI PMC

Ahammed G. J., Li X., Liu A., Chen S. (2020). Brassinosteroids in plant tolerance to abiotic stress. J. Plant Growth Reg. 39 1451–1464. 10.1007/s00344-020-10098-0 DOI

Awlia M., Nigro A., Fajkus J., Schmoeckel S. M., Negrão S., Santelia D., et al. (2016). High-throughput non-destructive phenotyping of traits that contribute to salinity tolerance in Arabidopsis thaliana. Front. Plant Sci. 7:1414. 10.3389/fpls.2016.01414 PubMed DOI PMC

Baker N. R., Rosenqvist E. (2004). Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 55 1607–1621. 10.1093/jxb/erh196 PubMed DOI

Brestic M., Zivcak M. (2013). “PSII fluorescence techniques for measurement of drought and high temperature stress signal in crop plants: protocols and applications,” in Molecular Stress Physiology of Plants, eds Rout G. R., Das A. B. (Berlin: Springer; ). 10.1007/978-81-322-0807-5_4 DOI

Briglia N., Petrozza A., Hoeberichts F. A., Verhoef N., Povero G. (2019). Investigating the impact of biostimulants on the row crops corn and soybean using high-efficiency phenotyping and next generation sequencing. Agronomy 9:761. 10.3390/agronomy9110761 DOI

Brown P., Saa S. (2015). Biostimulants in agriculture. Front. Plant Sci. 6:671. 10.3389/fpls.2015.00671 PubMed DOI PMC

Bryksová M., Hybenová A., Hernándiz A. E., Novák O., Pencík A., Spíchal L., et al. (2020). Hormopriming to mitigate abiotic stress effects: a case study of N9-substituted cytokinin derivatives with a fluorinated carbohydrate moiety. Front. Plant Sci. 11:599228. 10.3389/fpls.2020.599228 PubMed DOI PMC

Bulgari R., Franzoni G., Ferrante A. (2019). Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 9:306. 10.3390/agronomy9060306 DOI

Bulgari R., Morgutti S., Cocetta G., Negrini N., Farris S., Calcante A., et al. (2017). Evaluation of borage extracts as potential biostimulant using a phenomic. agronomic, physiological, and biochemical approach. Front. Plant Sci. 8:935. 10.3389/fpls.2017.00935 PubMed DOI PMC

Carillo P., Ciarmiello L. F., Woodrow P., Corrado G., Chiaiese P., Rouphael Y. (2020). Enhancing sustainability by improving plant salt tolerance through macro- and micro-algal biostimulants. Biology 9:253. 10.3390/biology9090253 PubMed DOI PMC

Caspi R., Dreher K., Karp P. D. (2013). The challenge of classifying and representing metabolic pathways. FEMS Microbiol. Lett. 345 85–93. 10.1111/1574-6968.12194 PubMed DOI PMC

Ceccarelli A. V., Miras-Moreno B., Buffagni V., Senizza B., Pii Y., Cardarelli M., et al. (2021). Foliar application of different vegetal-derived protein hydrolysates distinctively modulates tomato root development and metabolism. Plants 10:326. 10.3390/plants10020326 PubMed DOI PMC

Cerdán M., Sánchez-Sánchez A., Oliver M., Juárez M., Sánchez-Andreu J. J. (2009). Effect of foliar and root applications of amino acids on iron uptake by tomato plants. Acta Hortic. 830 481–488. 10.17660/actahortic.2009.830.68 DOI

Colantoni A., Recchia L., Bernabei G., Cardarelli M., Rouphael Y., Colla G. (2017). Analyzing the environmental impact of chemically-produced protein hydrolysate from leather waste vs. enzymatically-produced protein hydrolysate from legume grains. Agriculture 7:62. 10.3390/agriculture7080062 DOI

Colla G., Rouphael Y. (2015). Biostimulants in agriculture. Sci. Hortic. 196 1–2. 10.1016/j.scienta.2015.10.044 PubMed DOI

Colla G., Hoagland L., Ruzzi M., Cardarelli M., Bonini P., Canaguier R., et al. (2017). Biostimulant action of protein hydrolysates: unraveling their effects on plant physiology and microbiome. Front. Plant Sci. 8:2202. 10.3389/fpls.2017.02202 PubMed DOI PMC

Colla G., Nardi S., Cardarelli M., Ertani A., Lucini L., Canaguier R., et al. (2015). Protein hydrolysates as biostimulants in horticulture. Sci. Hortic. 196 28–38. 10.1016/j.scienta.2015.08.037 DOI

Colla G., Rouphael Y., Canaguier R., Svecova E., Cardarelli M. (2014). Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. Front. Plant Sci. 5:448. PubMed PMC

Colla G., Rouphael Y., Leonardi C., Bie Z. (2010). Role of grafting in vegetable crops grown under saline conditions. Sci. Hortic. 127 147–155. 10.1016/j.scienta.2010.08.004 DOI

Conrath U. (2011). Molecular aspects of defence priming. Trends Plant Sci. 16 524–531. 10.1016/j.tplants.2011.06.004 PubMed DOI

Crowther J. M., Cross P. J., Oliver M. R., Leeman M. M., Bartl A. J., Weatherhead A. W., et al. (2019). Structure–function analyses of two plant meso-diaminopimelate decarboxylase isoforms reveal that active-site gating provides stereochemical control. J. Biol. Chem. 294 8505–8515. 10.1074/jbc.ra118.006825 PubMed DOI PMC

Cuin T. A., Shabala S. (2007). Amino acids regulate salinity-induced potassium efflux in barley root epidermis. Planta 25 753–761. 10.1007/s00425-006-0386-x PubMed DOI

D’Amelia V., Aversano R., Chiaiese P., Carputo D. (2018). The antioxidant properties of plant flavonoids: their exploitation by molecular plant breeding. Phytochem. Rev. 17 611–625. 10.1007/s11101-018-9568-y DOI

Dalal A., Bourstein R., Haish N., Shenhar I., Wallach R., Moshelion M. (2019). Dynamic physiological phenotyping of drought-stressed pepper plants treated with “productivity-enhancing” and “survivability-enhancing” biostimulants. Front. Plant Sci. 10:905. 10.3389/fpls.2019.00905 PubMed DOI PMC

De Diego N., Fürst T., Humplík J. F., Ugena L., Podlešáková K., Spíchal L. (2017). An automated method for high-throughput screening of Arabidopsis rosette growth in multi-well plates and its validation in stress conditions. Front. Plant Sci. 8:1702. 10.3389/fpls.2017.01702 PubMed DOI PMC

Di Mola I., Ottaiano L., Cozzolino E., Senatore M., Giordano M., El-Nakhel C., et al. (2019). Plant-Based biostimulants influence the agronomical, physiological, and qualitative responses of baby rocket leaves under diverse nitrogen conditions. Plants 8:522. 10.3390/plants8110522 PubMed DOI PMC

du Jardin P. (2015). Plant biostimulants: definition, concept, main categories and regulation. Sci. Hortic. 196 3–14. 10.1016/j.scienta.2015.09.021 DOI

Dudits D., Török K., Cseri A., Paul K., Nagy A. V., Nagy B., et al. (2016). Response of organ structure and physiology to autotetraploidization in early development of energy willow (Salix viminalis). Plant Physiol. 170, 1504–1523. 10.1104/pp.15.01679 PubMed DOI PMC

Ertani A., Cavani L., Pizzeghello D., Brandellero E., Altissimo A., Ciavatta C., et al. (2009). Biostimulant activities of two protein hydrolysates on the growth and nitrogen metabolism in maize seedlings. J. Plant. Nutr. Soil Sci. 172 237–244. 10.1002/jpln.200800174 DOI

Ertani A., Francioso O., Tinti A., Schiavon M., Pizzeghello D., Nardi S. (2018). Evaluation of seaweed extracts from Laminaria and Ascophyllum nodosum spp. as biostimulants in Zea mays L. using a combination of chemical, biochemical and morphological approaches. Front. Plant Sci. 9:428. 10.3389/fpls.2018.00428 PubMed DOI PMC

Henley W. J. (1993). Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. J. Phycol. 29 729–739. 10.1111/j.0022-3646.1993.00729.x DOI

Ibrahim H. A., Abdellatif Y. M. (2016). Effect of maltose and trehalose on growth, yield and some biochemical components of wheat plant under water stress. Ann. Agric. Sci. 61 267–274. 10.1016/j.aoas.2016.05.002 DOI

Ito Y., Nakanomyo I., Motose H., Iwamoto K., Sawa S., Dohmae N., et al. (2006). Dodeca-CLE peptides as suppressors of plant stem cell differentiation. Science 313 842–845. 10.1126/science.1128436 PubMed DOI

Jisha K. C., Vijayakumari K., Puthur J. T. (2012). Seed priming for abiotic stress tolerance: an overview. Acta Physiol. Plant 35 1381–1396. 10.1007/s11738-012-1186-5 DOI

Julkowska M. M., Saade S., Agarwal G., Gao G., Pailles Y., Morton M., et al. (2019). MVApp—multivariate analysis application for streamlined data analysis and curation. Plant Physiol. 180 1261–1276. 10.1104/pp.19.00235 PubMed DOI PMC

Kondo T., Sawa S., Kinoshita A., Mizuno S., Kakimoto T., Fukuda H., et al. (2006). A plant peptide encoded by CLV3 identified by in situ MALDI-TOF MS analysis. Science 313 845–848. 10.1126/science.1128439 PubMed DOI

Lucini L., Rouphael Y., Cardarelli M., Bonini P., Baffi C., Colla G. (2018). A vegetal biopolymer-based biostimulant promoted root growth in melon while triggering brassinosteroids and stress-related compounds. Front. Plant Sci. 9:472. 10.3389/fpls.2018.00472 PubMed DOI PMC

Lucini L., Rouphael Y., Cardarelli M., Canaguier R., Kumar P., Colla G. (2015). The effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions. Sci. Hortic. 182 124–133. 10.1016/j.scienta.2014.11.022 DOI

Luziatelli F., Ficca A. G., Colla G., Baldassarre, Švecová E., Ruzzi M. (2019). Foliar application of vegetal-derived bioactive compounds stimulates the growth of benefcial bacteria and enhances microbiome biodiversity in lettuce. Front. Plant Sci. 10:60. PubMed PMC

Machado R., Serralheiro R. (2017). Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulture 3:30. 10.3390/horticulturae3020030 DOI

Mahdavi B. (2013). Seed germination and growth responses of Isabgol (Plantago ovata Forsk) to chitosan and salinity. Int. J. Agric. Crop Sci. 5 1084–1088.

Murashige T., Skoog F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15 473–497. 10.1111/j.1399-3054.1962.tb08052.x DOI

Muscolo A., Sidari M., da Silva J. A. T. (2013). Biological effects of water- soluble soil phenol and soil humic extracts on plant systems. Acta Physiol. Plant 35 309–320. 10.1007/s11738-012-1065-0 DOI

Ng J. L. P., Hassan S., Truong T. T., Hocart C. H., Laffont C., Frugier F., et al. (2015). Flavonoids and auxin transport inhibitors rescue symbiotic nodulation in the medicago truncatula cytokinin perceptionm mutant cre1. Plant Cell 27 2210–2226. 10.1105/tpc.15.00231 PubMed DOI PMC

Paparella S., Araújo S., Rossi G., Wijayasinghe M., Carbonera D., Balestrazzi A. (2015). Seed priming: state of the art and new perspectives. Plant Cell Rep. 34 1281–1293. 10.1007/s00299-015-1784-y PubMed DOI

Paul K., Sorrentino M., Lucini L., Rouphael Y., Cardarelli M., Bonini P., et al. (2019a). A combined phenotypic and metabolomic approach for elucidating the biostimulant action of a plant-derived protein hydrolysate on tomato grown under limited water availability. Front. Plant Sci. 10:493. PubMed PMC

Paul K., Sorrentino M., Lucini L., Rouphael Y., Cardarelli M., Bonini P., et al. (2019b). Understanding the biostimulant action of vegetal-derived protein hydrolysates by high-throughput plant phenotyping and metabolomics: a case study on tomato. Front. Plant Sci. 10:47. PubMed PMC

Pichyangkura R., Chadchawan S. (2015). Biostimulant activity of chitosan in horticulture. Sci. Hortic. 196 49–65. 10.1016/j.scienta.2015.09.031 DOI

Povero G., Mejia J. F., Di Tommaso D., Piaggesi A., Warrior P. (2016). A Systematic approach to discover and characterize natural plant biostimulants. Front. Plant Sci. 7:435. PubMed PMC

Prerostova S., Dobrev P. I., Gaudinova A., Knirsch V., Körber N., Pieruschka R., et al. (2018). Cytokinins: their impact on molecular and growth responses to drought stress and recovery in Arabidopsis. Front. Plant Sci. 9:655. PubMed PMC

Rahaman M. M., Chen D., Gillani Z., Klukas C., Chen M. (2015). Advanced phenotyping and phenotype data analysis for the study of plant growth and development. Front. Plant Sci. 6:619. PubMed PMC

Rascher U., Liebig M., Luttge U. (2000). Evaluation of instant light- response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant Cell Environ. 23 1397–1405. 10.1046/j.1365-3040.2000.00650.x DOI

Rouphael Y., Colla G. (2018). Synergistic biostimulatory action: designing the next generation of plant biostimulants for sustainable agriculture. Front. Plant Sci. 9:1655. PubMed PMC

Rouphael Y., Cardarelli M., Bonini P., Colla G. (2017). Synergistic action of a microbial-based biostimulant and a plant derived-protein hydrolysate enhances lettuce tolerance to alkalinity and salinity. Front. Plant Sci. 8:131. PubMed PMC

Rouphael Y., Colla G., Bernardo L., Kane D., Trevisan M., Lucini L. (2016). Zinc excess triggered polyamines accumulation in lettuce root metabolome, as compared to osmotic stress under high salinity. Front Plant Sci. 7:842. PubMed PMC

Rouphael Y., Spíchal L., Panzarová K., Casa R., Colla G. (2018). High-throughput plant phenotyping for developing novel biostimulants: from lab to field or from field to lab? Front. Plant Sci. 9:1197. PubMed PMC

Rousseau C., Belin E., Bove E., Rousseau D., Fabre F., Berruyer R., et al. (2013). High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis. Plant Methods 9:17. 10.1186/1746-4811-9-17 PubMed DOI PMC

Salek R. M., Neumann S., Schober D., Hummel J., Billiau K., Kopka J., et al. (2015). Coordination of standards in MetabOlomicS (COSMOS): facilitating integrated metabolomics data access. Metabolomics 11 1587–1597. 10.1007/s11306-015-0810-y PubMed DOI PMC

Senizza B., Zhang L., Miras-Moreno B., Righetti L., Zengin G., Ak G., et al. (2020). The strength of the nutrient solution modulates the functional profile of hydroponically grown lettuce in a genotype-dependent manner. Foods 9:1156. 10.3390/foods9091156 PubMed DOI PMC

Sestili F., Rouphael Y., Cardarelli M., Pucci A., Bonini P., Canaguier R., et al. (2018). Protein hydrolysate stimulates growth in tomato coupled with N-dependent gene expression involved in N assimilation. Front. Plant Sci. 9:1233. PubMed PMC

Shahbaz M., Ashraf M. (2013). Improving salinity tolerance in cereals. Critical Rev. Plant Sci. 32 237–249. 10.1080/07352689.2013.758544 DOI

Shannon M. C., Grieve C. M. (1999). Tolerance of vegetable crops to salinity. Sci. Hortic. 78 5–38. 10.1016/s0304-4238(98)00189-7 DOI

Sharma A., Shahzad B., Rehman A., Bhardwaj R., Landi M., Zheng B. (2019a). Response of phenylpropanoid pathway and the role of polyphenols in Pplants under abiotic stress. Molecules 24:2452. 10.3390/molecules24132452 PubMed DOI PMC

Sharma A., Yuan H., Kumar V., Ramarakrishnan M., Kohli S. K., Kaur R., et al. (2019b). Castasterone attenuates insecticide induced phytotoxicity in mustard. Ecotoxicol. Environ. Saf. 179 50–61. 10.1016/j.ecoenv.2019.03.120 PubMed DOI

Sharma H. S. S., Fleming C., Selby C., Rao J. R., Martin T. (2014). Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J. Appl. Phycol. 26 465–490. 10.1007/s10811-013-0101-9 DOI

Simko I., Hayes R. J., Furbank R. T. (2016). Non-destructive phenotyping of lettuce pants in early stages of development with optical sensors. Front. Plant Sci. 7:1985. PubMed PMC

Thalmann M., Santelia D. (2017). Starch as a determinant of plant fitness under abiotic stress. New Phytol. 214 943–951. 10.1111/nph.14491 PubMed DOI

Tschiersch H., Junker A., Meyer R. C., Altmann T. (2017). Establishment of integrated protocols for automated high throughput kinetic chlorophyll fluorescence analyses. Plant Methods 13:54. PubMed PMC

Tzin V., Galili G. (2010). New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Mol. Plants 3 956–972. 10.1093/mp/ssq048 PubMed DOI

Ugena L., Hýlová A., Podlešáková K., Humplík J. F., Doležal K., De Diego N., et al. (2018). Characterization of biostimulant mode of action using novel multi-trait high-throughput screening of Arabidopsis germination and rosette growth. Front. Plant Sci. 9:1327. PubMed PMC

Van Oosten M. J., Pepe O., De Pascale S., Silletti S., Maggio A. (2017). The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. Agric. 4:5.

Vidya Vardhini B. (2017). Modifications of morphological and anatomical characteristics of plants by application of brassinosteroids under various abiotic stress conditions—A review. Plant. Gene. 11, 70–89. 10.1016/j.plgene.2017.06.005 DOI

Viégas R. A., Silveira A. R. L., Junior J. E., Queiroz M. J., Fausto M. (2001). Effect of NaCl salinity on growth and inorganic solute accumulation in young cashew plants. Braz. J. Agric. Eng. 5 216–222. 10.1590/s1415-43662001000200007 DOI

Vojta P., Kokáš F., Husièková A., Gruz J., Bergougnoux V., Marchetti C. F., et al. (2016). Whole transcriptome analysis of transgenic barley with altered cytokinin homeostasis and increased tolerance to drought stress. New Biotechnol. 33 676–691. 10.1016/j.nbt.2016.01.010 PubMed DOI

Wang X., Wang L., Shangguan Z. (2016). Leaf gas exchange and fluorescence of two winter wheat varieties in response to drought stress and nitrogen supply. PLoS One 11:e0165733. 10.1371/journal.pone.0165733 PubMed DOI PMC

Weiner J., Thomas S. C. (1986). Size variability and competition in plant monocultures. Oikos 47 211–222. 10.2307/3566048 DOI

Wu Y., Li Q., Jin R., Chen W., Liu X., Kong F., et al. (2018). Effect of low-nitrogen stress on photosynthesis and chlorophyll fluorescence characteristics of maize cultivars with different low- nitrogen tolerances. J. Integr. Agric. 17 60345–60347.

Xu C., Mou B. (2017). Drench application of fish-derived protein hydrolysates affects lettuce growth, chlorophyll content, and gas exchange. HortTechnology 27 539–543. 10.21273/horttech03723-17 DOI

Xu L., Geelen D. (2018). Developing biostimulants from agro-food and industrial by-products. Front. Plant Sci. 9:1567. PubMed PMC

Yakhin O. I., Lubyanov A. A., Yakhin I. A., Brown P. H. (2017). Biostimulants in plant science: a global perspective. Front. Plant Sci. 7:2049. PubMed PMC

Yamaguchi T., Blumwald E. (2005). Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci. 10 615–620. 10.1016/j.tplants.2005.10.002 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...