Seed Priming With Protein Hydrolysates Improves Arabidopsis Growth and Stress Tolerance to Abiotic Stresses
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34168660
PubMed Central
PMC8218911
DOI
10.3389/fpls.2021.626301
Knihovny.cz E-zdroje
- Klíčová slova
- high-throughput phenotyping, multi- well plates, plant biostimulant characterization index, protein hydrolysates, salinity, secondary metabolism, seed priming,
- Publikační typ
- časopisecké články MeSH
The use of plant biostimulants contributes to more sustainable and environmentally friendly farming techniques and offers a sustainable alternative to mitigate the adverse effects of stress. Protein hydrolysate-based biostimulants have been described to promote plant growth and reduce the negative effect of abiotic stresses in different crops. However, limited information is available about their mechanism of action, how plants perceive their application, and which metabolic pathways are activating. Here we used a multi-trait high-throughput screening approach based on simple RGB imaging and combined with untargeted metabolomics to screen and unravel the mode of action/mechanism of protein hydrolysates in Arabidopsis plants grown in optimal and in salt-stress conditions (0, 75, or 150 mM NaCl). Eleven protein hydrolysates from different protein sources were used as priming agents in Arabidopsis seeds in three different concentrations (0.001, 0.01, or 0.1 μl ml-1). Growth and development-related traits as early seedling establishment, growth response under stress and photosynthetic performance of the plants were dynamically scored throughout and at the end of the growth period. To effectively classify the functional properties of the 11 products a Plant Biostimulant Characterization (PBC) index was used, which helped to characterize the activity of a protein hydrolysate based on its ability to promote plant growth and mitigate stress, and to categorize the products as plant growth promoters, growth inhibitors and/or stress alleviator. Out of 11 products, two were identified as highly effective growth regulators and stress alleviators because they showed a PBC index always above 0.51. Using the untargeted metabolomics approach, we showed that plants primed with these best performing biostimulants had reduced contents of stress-related molecules (such as flavonoids and terpenoids, and some degradation/conjugation compounds of phytohormones such as cytokinins, auxins, gibberellins, etc.), which alleviated the salt stress response-related growth inhibition.
Department for Sustainable Food Process DiSTAS Università Cattolica del Sacro Cuore Piacenza Italy
Department of Agricultural Sciences University of Naples Federico 2 Naples Italy
Department of Agriculture and Forest Sciences University of Tuscia Viterbo Italy
Zobrazit více v PubMed
Adhikari N. D., Simko I., Mou B. (2019). Phenomic and physiological analysis of salinity effects on lettuce. PubMed DOI PMC
Ahammed G. J., Li X., Liu A., Chen S. (2020). Brassinosteroids in plant tolerance to abiotic stress. DOI
Awlia M., Nigro A., Fajkus J., Schmoeckel S. M., Negrão S., Santelia D., et al. (2016). High-throughput non-destructive phenotyping of traits that contribute to salinity tolerance in PubMed DOI PMC
Baker N. R., Rosenqvist E. (2004). Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. PubMed DOI
Brestic M., Zivcak M. (2013). “PSII fluorescence techniques for measurement of drought and high temperature stress signal in crop plants: protocols and applications,” in DOI
Briglia N., Petrozza A., Hoeberichts F. A., Verhoef N., Povero G. (2019). Investigating the impact of biostimulants on the row crops corn and soybean using high-efficiency phenotyping and next generation sequencing. DOI
Brown P., Saa S. (2015). Biostimulants in agriculture. PubMed DOI PMC
Bryksová M., Hybenová A., Hernándiz A. E., Novák O., Pencík A., Spíchal L., et al. (2020). Hormopriming to mitigate abiotic stress effects: a case study of N9-substituted cytokinin derivatives with a fluorinated carbohydrate moiety. PubMed DOI PMC
Bulgari R., Franzoni G., Ferrante A. (2019). Biostimulants application in horticultural crops under abiotic stress conditions. DOI
Bulgari R., Morgutti S., Cocetta G., Negrini N., Farris S., Calcante A., et al. (2017). Evaluation of borage extracts as potential biostimulant using a phenomic. agronomic, physiological, and biochemical approach. PubMed DOI PMC
Carillo P., Ciarmiello L. F., Woodrow P., Corrado G., Chiaiese P., Rouphael Y. (2020). Enhancing sustainability by improving plant salt tolerance through macro- and micro-algal biostimulants. PubMed DOI PMC
Caspi R., Dreher K., Karp P. D. (2013). The challenge of classifying and representing metabolic pathways. PubMed DOI PMC
Ceccarelli A. V., Miras-Moreno B., Buffagni V., Senizza B., Pii Y., Cardarelli M., et al. (2021). Foliar application of different vegetal-derived protein hydrolysates distinctively modulates tomato root development and metabolism. PubMed DOI PMC
Cerdán M., Sánchez-Sánchez A., Oliver M., Juárez M., Sánchez-Andreu J. J. (2009). Effect of foliar and root applications of amino acids on iron uptake by tomato plants. DOI
Colantoni A., Recchia L., Bernabei G., Cardarelli M., Rouphael Y., Colla G. (2017). Analyzing the environmental impact of chemically-produced protein hydrolysate from leather waste vs. enzymatically-produced protein hydrolysate from legume grains. DOI
Colla G., Rouphael Y. (2015). Biostimulants in agriculture. DOI
Colla G., Hoagland L., Ruzzi M., Cardarelli M., Bonini P., Canaguier R., et al. (2017). Biostimulant action of protein hydrolysates: unraveling their effects on plant physiology and microbiome. PubMed DOI PMC
Colla G., Nardi S., Cardarelli M., Ertani A., Lucini L., Canaguier R., et al. (2015). Protein hydrolysates as biostimulants in horticulture. DOI
Colla G., Rouphael Y., Canaguier R., Svecova E., Cardarelli M. (2014). Biostimulant action of a plant-derived protein hydrolysate produced through enzymatic hydrolysis. PubMed PMC
Colla G., Rouphael Y., Leonardi C., Bie Z. (2010). Role of grafting in vegetable crops grown under saline conditions. DOI
Conrath U. (2011). Molecular aspects of defence priming. PubMed DOI
Crowther J. M., Cross P. J., Oliver M. R., Leeman M. M., Bartl A. J., Weatherhead A. W., et al. (2019). Structure–function analyses of two plant meso-diaminopimelate decarboxylase isoforms reveal that active-site gating provides stereochemical control. PubMed DOI PMC
Cuin T. A., Shabala S. (2007). Amino acids regulate salinity-induced potassium efflux in barley root epidermis. PubMed DOI
D’Amelia V., Aversano R., Chiaiese P., Carputo D. (2018). The antioxidant properties of plant flavonoids: their exploitation by molecular plant breeding. DOI
Dalal A., Bourstein R., Haish N., Shenhar I., Wallach R., Moshelion M. (2019). Dynamic physiological phenotyping of drought-stressed pepper plants treated with “productivity-enhancing” and “survivability-enhancing” biostimulants. PubMed DOI PMC
De Diego N., Fürst T., Humplík J. F., Ugena L., Podlešáková K., Spíchal L. (2017). An automated method for high-throughput screening of Arabidopsis rosette growth in multi-well plates and its validation in stress conditions. PubMed DOI PMC
Di Mola I., Ottaiano L., Cozzolino E., Senatore M., Giordano M., El-Nakhel C., et al. (2019). Plant-Based biostimulants influence the agronomical, physiological, and qualitative responses of baby rocket leaves under diverse nitrogen conditions. PubMed DOI PMC
du Jardin P. (2015). Plant biostimulants: definition, concept, main categories and regulation. DOI
Dudits D., Török K., Cseri A., Paul K., Nagy A. V., Nagy B., et al. (2016). Response of organ structure and physiology to autotetraploidization in early development of energy willow (Salix viminalis). PubMed DOI PMC
Ertani A., Cavani L., Pizzeghello D., Brandellero E., Altissimo A., Ciavatta C., et al. (2009). Biostimulant activities of two protein hydrolysates on the growth and nitrogen metabolism in maize seedlings. DOI
Ertani A., Francioso O., Tinti A., Schiavon M., Pizzeghello D., Nardi S. (2018). Evaluation of seaweed extracts from Laminaria and PubMed DOI PMC
Henley W. J. (1993). Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. DOI
Ibrahim H. A., Abdellatif Y. M. (2016). Effect of maltose and trehalose on growth, yield and some biochemical components of wheat plant under water stress. DOI
Ito Y., Nakanomyo I., Motose H., Iwamoto K., Sawa S., Dohmae N., et al. (2006). Dodeca-CLE peptides as suppressors of plant stem cell differentiation. PubMed DOI
Jisha K. C., Vijayakumari K., Puthur J. T. (2012). Seed priming for abiotic stress tolerance: an overview. DOI
Julkowska M. M., Saade S., Agarwal G., Gao G., Pailles Y., Morton M., et al. (2019). MVApp—multivariate analysis application for streamlined data analysis and curation. PubMed DOI PMC
Kondo T., Sawa S., Kinoshita A., Mizuno S., Kakimoto T., Fukuda H., et al. (2006). A plant peptide encoded by CLV3 identified by in situ MALDI-TOF MS analysis. PubMed DOI
Lucini L., Rouphael Y., Cardarelli M., Bonini P., Baffi C., Colla G. (2018). A vegetal biopolymer-based biostimulant promoted root growth in melon while triggering brassinosteroids and stress-related compounds. PubMed DOI PMC
Lucini L., Rouphael Y., Cardarelli M., Canaguier R., Kumar P., Colla G. (2015). The effect of a plant-derived biostimulant on metabolic profiling and crop performance of lettuce grown under saline conditions. DOI
Luziatelli F., Ficca A. G., Colla G., Baldassarre, Švecová E., Ruzzi M. (2019). Foliar application of vegetal-derived bioactive compounds stimulates the growth of benefcial bacteria and enhances microbiome biodiversity in lettuce. PubMed PMC
Machado R., Serralheiro R. (2017). Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. DOI
Mahdavi B. (2013). Seed germination and growth responses of Isabgol (Plantago ovata Forsk) to chitosan and salinity.
Murashige T., Skoog F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. DOI
Muscolo A., Sidari M., da Silva J. A. T. (2013). Biological effects of water- soluble soil phenol and soil humic extracts on plant systems. DOI
Ng J. L. P., Hassan S., Truong T. T., Hocart C. H., Laffont C., Frugier F., et al. (2015). Flavonoids and auxin transport inhibitors rescue symbiotic nodulation in the medicago truncatula cytokinin perceptionm mutant cre1. PubMed DOI PMC
Paparella S., Araújo S., Rossi G., Wijayasinghe M., Carbonera D., Balestrazzi A. (2015). Seed priming: state of the art and new perspectives. PubMed DOI
Paul K., Sorrentino M., Lucini L., Rouphael Y., Cardarelli M., Bonini P., et al. (2019a). A combined phenotypic and metabolomic approach for elucidating the biostimulant action of a plant-derived protein hydrolysate on tomato grown under limited water availability. PubMed PMC
Paul K., Sorrentino M., Lucini L., Rouphael Y., Cardarelli M., Bonini P., et al. (2019b). Understanding the biostimulant action of vegetal-derived protein hydrolysates by high-throughput plant phenotyping and metabolomics: a case study on tomato. PubMed PMC
Pichyangkura R., Chadchawan S. (2015). Biostimulant activity of chitosan in horticulture. DOI
Povero G., Mejia J. F., Di Tommaso D., Piaggesi A., Warrior P. (2016). A Systematic approach to discover and characterize natural plant biostimulants. PubMed PMC
Prerostova S., Dobrev P. I., Gaudinova A., Knirsch V., Körber N., Pieruschka R., et al. (2018). Cytokinins: their impact on molecular and growth responses to drought stress and recovery in Arabidopsis. PubMed PMC
Rahaman M. M., Chen D., Gillani Z., Klukas C., Chen M. (2015). Advanced phenotyping and phenotype data analysis for the study of plant growth and development. PubMed PMC
Rascher U., Liebig M., Luttge U. (2000). Evaluation of instant light- response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. DOI
Rouphael Y., Colla G. (2018). Synergistic biostimulatory action: designing the next generation of plant biostimulants for sustainable agriculture. PubMed PMC
Rouphael Y., Cardarelli M., Bonini P., Colla G. (2017). Synergistic action of a microbial-based biostimulant and a plant derived-protein hydrolysate enhances lettuce tolerance to alkalinity and salinity. PubMed PMC
Rouphael Y., Colla G., Bernardo L., Kane D., Trevisan M., Lucini L. (2016). Zinc excess triggered polyamines accumulation in lettuce root metabolome, as compared to osmotic stress under high salinity. PubMed PMC
Rouphael Y., Spíchal L., Panzarová K., Casa R., Colla G. (2018). High-throughput plant phenotyping for developing novel biostimulants: from lab to field or from field to lab? PubMed PMC
Rousseau C., Belin E., Bove E., Rousseau D., Fabre F., Berruyer R., et al. (2013). High throughput quantitative phenotyping of plant resistance using chlorophyll fluorescence image analysis. PubMed DOI PMC
Salek R. M., Neumann S., Schober D., Hummel J., Billiau K., Kopka J., et al. (2015). Coordination of standards in MetabOlomicS (COSMOS): facilitating integrated metabolomics data access. PubMed DOI PMC
Senizza B., Zhang L., Miras-Moreno B., Righetti L., Zengin G., Ak G., et al. (2020). The strength of the nutrient solution modulates the functional profile of hydroponically grown lettuce in a genotype-dependent manner. PubMed DOI PMC
Sestili F., Rouphael Y., Cardarelli M., Pucci A., Bonini P., Canaguier R., et al. (2018). Protein hydrolysate stimulates growth in tomato coupled with N-dependent gene expression involved in N assimilation. PubMed PMC
Shahbaz M., Ashraf M. (2013). Improving salinity tolerance in cereals. DOI
Shannon M. C., Grieve C. M. (1999). Tolerance of vegetable crops to salinity. DOI
Sharma A., Shahzad B., Rehman A., Bhardwaj R., Landi M., Zheng B. (2019a). Response of phenylpropanoid pathway and the role of polyphenols in Pplants under abiotic stress. PubMed DOI PMC
Sharma A., Yuan H., Kumar V., Ramarakrishnan M., Kohli S. K., Kaur R., et al. (2019b). Castasterone attenuates insecticide induced phytotoxicity in mustard. PubMed DOI
Sharma H. S. S., Fleming C., Selby C., Rao J. R., Martin T. (2014). Plant biostimulants: a review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. DOI
Simko I., Hayes R. J., Furbank R. T. (2016). Non-destructive phenotyping of lettuce pants in early stages of development with optical sensors. PubMed PMC
Thalmann M., Santelia D. (2017). Starch as a determinant of plant fitness under abiotic stress. PubMed DOI
Tschiersch H., Junker A., Meyer R. C., Altmann T. (2017). Establishment of integrated protocols for automated high throughput kinetic chlorophyll fluorescence analyses. PubMed PMC
Tzin V., Galili G. (2010). New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. PubMed DOI
Ugena L., Hýlová A., Podlešáková K., Humplík J. F., Doležal K., De Diego N., et al. (2018). Characterization of biostimulant mode of action using novel multi-trait high-throughput screening of Arabidopsis germination and rosette growth. PubMed PMC
Van Oosten M. J., Pepe O., De Pascale S., Silletti S., Maggio A. (2017). The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants.
Vidya Vardhini B. (2017). Modifications of morphological and anatomical characteristics of plants by application of brassinosteroids under various abiotic stress conditions—A review. DOI
Viégas R. A., Silveira A. R. L., Junior J. E., Queiroz M. J., Fausto M. (2001). Effect of NaCl salinity on growth and inorganic solute accumulation in young cashew plants. DOI
Vojta P., Kokáš F., Husièková A., Gruz J., Bergougnoux V., Marchetti C. F., et al. (2016). Whole transcriptome analysis of transgenic barley with altered cytokinin homeostasis and increased tolerance to drought stress. PubMed DOI
Wang X., Wang L., Shangguan Z. (2016). Leaf gas exchange and fluorescence of two winter wheat varieties in response to drought stress and nitrogen supply. PubMed DOI PMC
Weiner J., Thomas S. C. (1986). Size variability and competition in plant monocultures. DOI
Wu Y., Li Q., Jin R., Chen W., Liu X., Kong F., et al. (2018). Effect of low-nitrogen stress on photosynthesis and chlorophyll fluorescence characteristics of maize cultivars with different low- nitrogen tolerances.
Xu C., Mou B. (2017). Drench application of fish-derived protein hydrolysates affects lettuce growth, chlorophyll content, and gas exchange. DOI
Xu L., Geelen D. (2018). Developing biostimulants from agro-food and industrial by-products. PubMed PMC
Yakhin O. I., Lubyanov A. A., Yakhin I. A., Brown P. H. (2017). Biostimulants in plant science: a global perspective. PubMed PMC
Yamaguchi T., Blumwald E. (2005). Developing salt-tolerant crop plants: challenges and opportunities. PubMed DOI
Presence and future of plant phenotyping approaches in biostimulant research and development
Plant hormone cytokinin at the crossroads of stress priming and control of photosynthesis