High-Throughput Non-destructive Phenotyping of Traits that Contribute to Salinity Tolerance in Arabidopsis thaliana
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27733855
PubMed Central
PMC5039194
DOI
10.3389/fpls.2016.01414
Knihovny.cz E-zdroje
- Klíčová slova
- Arabidopsis thaliana, color segmentation, high-throughput phenotyping, kinetic chlorophyll fluorescence imaging, salinity tolerance, salt stress, shoot-ion independent tolerance,
- Publikační typ
- časopisecké články MeSH
Reproducible and efficient high-throughput phenotyping approaches, combined with advances in genome sequencing, are facilitating the discovery of genes affecting plant performance. Salinity tolerance is a desirable trait that can be achieved through breeding, where most have aimed at selecting for plants that perform effective ion exclusion from the shoots. To determine overall plant performance under salt stress, it is helpful to investigate several plant traits collectively in one experimental setup. Hence, we developed a quantitative phenotyping protocol using a high-throughput phenotyping system, with RGB and chlorophyll fluorescence (ChlF) imaging, which captures the growth, morphology, color and photosynthetic performance of Arabidopsis thaliana plants in response to salt stress. We optimized our salt treatment by controlling the soil-water content prior to introducing salt stress. We investigated these traits over time in two accessions in soil at 150, 100, or 50 mM NaCl to find that the plants subjected to 100 mM NaCl showed the most prominent responses in the absence of symptoms of severe stress. In these plants, salt stress induced significant changes in rosette area and morphology, but less prominent changes in rosette coloring and photosystem II efficiency. Clustering of ChlF traits with plant growth of nine accessions maintained at 100 mM NaCl revealed that in the early stage of salt stress, salinity tolerance correlated with non-photochemical quenching processes and during the later stage, plant performance correlated with quantum yield. This integrative approach allows the simultaneous analysis of several phenotypic traits. In combination with various genetic resources, the phenotyping protocol described here is expected to increase our understanding of plant performance and stress responses, ultimately identifying genes that improve plant performance in salt stress conditions.
Zobrazit více v PubMed
Baker N. R. (2008). Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 59 89–113. 10.1146/annurev.arplant.59.032607.092759 PubMed DOI
Baker N. R., Rosenqvist E. (2004). Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 55 1607–1621. 10.1093/jxb/erh196 PubMed DOI
Ben Abdallah S., Aung B., Amyot L., Lalin I., Lachaal M., Karray-Bouraoui N., et al. (2016). Salt stress (NaCl) affects plant growth and branch pathways of carotenoid and flavonoid biosyntheses in Solanum nigrum. Acta Physiol. Plant. 38:72 10.1007/s11738-016-2096-8 DOI
Berger B., de Regt B., Tester M. (2012). Trait dissection of salinity tolerance with plant phenomics. Methods Mol. Biol. 913 399–413. 10.1007/978-1-61779-986-0_27 PubMed DOI
Bresson J., Vasseur F., Dauzat M., Koch G., Granier C., Vile D. (2015). Quantifying spatial heterogeneity of chlorophyll fluorescence during plant growth and in response to water stress. Plant Methods 11:23 10.1186/s13007-015-0067-5 PubMed DOI PMC
Brestic M., Zivcak M. (2013). “PSII fluorescence techniques for measurement of drought and high temperature stress signal in crop plants: protocols and applications,” in Molecular Stress Physiology of Plants, eds Rout R. G., Das B. A. (New Delhi: Springer; ), 87–131.
Bridge L. J., Franklin K. A., Homer M. E. (2013). Impact of plant shoot architecture on leaf cooling: a coupled heat and mass transfer model. J. R. Soc. Interface 10:20130326 10.1098/rsif.2013.0326 PubMed DOI PMC
Brown T. B., Cheng R., Sirault X. R., Rungrat T., Murray K. D., Trtilek M., et al. (2014). Traitcapture: genomic and environment modelling of plant phenomic data. Curr. Opin. Plant Biol. 18 73–79. 10.1016/j.pbi.2014.02.002 PubMed DOI
Cabot C., Sibole J. V., Barcelo J., Poschenrieder C. (2014). Lessons from crop plants struggling with salinity. Plant Sci. 226 2–13. 10.1016/j.plantsci.2014.04.013 PubMed DOI
Campbell M. T., Knecht A. C., Berger B., Brien C. J., Wang D., Walia H. (2015). Integrating image-based phenomics and association analysis to dissect the genetic architecture of temporal salinity responses in rice. Plant Physiol. 168 1476–1489. 10.1104/pp.15.00450 PubMed DOI PMC
Chaves M. M., Flexas J., Pinheiro C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann. Bot. 103 551–560. 10.1093/Aob/Mcn125 PubMed DOI PMC
Chen T. W., Kahlen K., Stutzel H. (2015). Disentangling the contributions of osmotic and ionic effects of salinity on stomatal, mesophyll, biochemical and light limitations to photosynthesis. Plant Cell Environ. 38 1528–1542. 10.1111/pce.12504 PubMed DOI
Dhondt S., Wuyts N., Inze D. (2013). Cell to whole-plant phenotyping: the best is yet to come. Trends Plant Sci. 18 433–444. 10.1016/J.Tplants.2013.04.008 PubMed DOI
Fricke W., Akhiyarova G., Wei W. X., Alexandersson E., Miller A., Kjellbom P. O., et al. (2006). The short-term growth response to salt of the developing barley leaf. J. Exp. Bot. 57 1079–1095. 10.1093/Jxb/Erj095 PubMed DOI
Ghanem M. E., Marrou H., Sinclair T. R. (2015). Physiological phenotyping of plants for crop improvement. Trends Plant Sci. 20 139–144. 10.1016/j.tplants.2014.11.006 PubMed DOI
Godfray H. C., Beddington J. R., Crute I. R., Haddad L., Lawrence D., Muir J. F., et al. (2010). Food security: the challenge of feeding 9 billion people. Science 327 812–818. 10.1126/science.1185383 PubMed DOI
Hairmansis A., Berger B., Tester M., Roy S. J. (2014). Image-based phenotyping for non-destructive screening of different salinity tolerance traits in rice. Rice 7:16 10.1186/s12284-014-0016-3 PubMed DOI PMC
Hannah M. A., Wiese D., Freund S., Fiehn O., Heyer A. G., Hincha D. K. (2006). Natural genetic variation of freezing tolerance in Arabidopsis. Plant Physiol. 142 98–112. 10.1104/pp.106.081141 PubMed DOI PMC
Henley W. J. (1993). Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. J. Phycol. 29 729–739. 10.1111/j.0022-3646.1993.00729.x DOI
Humplik J. F., Lazar D., Husickova A., Spichal L. (2015). Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses - a review. Plant Methods 11:29 10.1186/s13007-015-0072-8 PubMed DOI PMC
James R. A., Munns R., Von Caemmerer S., Trejo C., Miller C., Condon T. (2006). Photosynthetic capacity is related to the cellular and subcellular partitioning of Na, K and Cl in salt-affected barley and durum wheat. Plant Cell and Environment 29 2185–2197. 10.1111/J.1365-3040.2006.01592.X PubMed DOI
Jansen M., Gilmer F., Biskup B., Nagel K. A., Rascher U., Fischbach A., et al. (2009). Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via GROWSCREEN FLUORO allows detection of stress tolerance in Arabidopsis thaliana and other rosette plants. Funct. Plant Biol. 36 902–914. 10.1071/Fp09095 PubMed DOI
Junker A., Muraya M. M., Weigelt-Fischer K., Arana-Ceballos F., Klukas C., Melchinger A. E., et al. (2015). Optimizing experimental procedures for quantitative evaluation of crop plant performance in high throughput phenotyping systems. Front. Plant Sci. 5:770 10.3389/fpls.2014.00770 PubMed DOI PMC
Lazar D. (2015). Parameters of photosynthetic energy partitioning. J. Plant Physiol. 175 131–147. 10.1016/j.jplph.2014.10.021 PubMed DOI
Longenberger P. S., Smith C. W., Duke S. E., McMichael B. L. (2009). Evaluation of chlorophyll fluorescence as a tool for the identification of drought tolerance in upland cotton. Euphytica 166 25–33. 10.1007/s10681-008-9820-4 DOI
Ma S. S., Gong Q. Q., Bohnert H. J. (2006). Dissecting salt stress pathways. J. Exp. Bot. 57 1097–1107. 10.1093/Jxb/Erj098 PubMed DOI
Maxwell K., Johnson G. N. (2000). Chlorophyll fluorescence - a practical guide. J. Exp. Bot. 51 659–668. 10.1093/jexbot/51.345.659 PubMed DOI
Mishra K. B., Iannacone R., Petrozza A., Mishra A., Armentano N., La Vecchia G., et al. (2012). Engineered drought tolerance in tomato plants is reflected in chlorophyll fluorescence emission. Plant Sci. 182 79–86. 10.1016/j.plantsci.2011.03.022 PubMed DOI
Munns R., James R. A., Sirault X. R., Furbank R. T., Jones H. G. (2010). New phenotyping methods for screening wheat and barley for beneficial responses to water deficit. J. Exp. Bot. 61 3499–3507. 10.1093/jxb/erq199 PubMed DOI
Munns R., Tester M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59 651–681. 10.1146/annurev.arplant.59.032607.092911 PubMed DOI
Muranaka S., Shimizu K., Kato M. (2002). A salt-tolerant cultivar of wheat maintains photosynthetic activity by suppressing sodium uptake. Photosynthetica 40 509–515. 10.1023/A:1024335515473 DOI
Murchie E. H., Lawson T. (2013). Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. J. Exp. Bot. 64 3983–3998. 10.1093/jxb/ert208 PubMed DOI
Oxborough K. (2004). Imaging of chlorophyll a fluorescence: theoretical and practical aspects of an emerging technique for the monitoring of photosynthetic performance. J. Exp. Bot. 55 1195–1205. 10.1093/jxb/erh145 PubMed DOI
Oxborough K., Baker N. R. (1997). Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components - calculation of qP and Fv’/Fm’ without measuring Fo’. Photosynth. Res. 54 135–142. 10.1023/A:1005936823310 DOI
Rajendran K., Tester M., Roy S. J. (2009). Quantifying the three main components of salinity tolerance in cereals. Plant Cell Environ. 32 237–249. 10.1111/J.1365-3040.2008.01916.X PubMed DOI
Rascher U., Liebig M., Luttge U. (2000). Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant Cell and Environ. 23 1397–1405. 10.1046/j.1365-3040.2000.00650.x DOI
Roy S. J., Negrao S., Tester M. (2014). Salt resistant crop plants. Curr. Opin. Biotechnol. 26 115–124. 10.1016/j.copbio.2013.12.004 PubMed DOI
Sirault X. R. R., James R. A., Furbank R. T. (2009). A new screening method for osmotic component of salinity tolerance in cereals using infrared thermography. Funct. Plant Biol. 36 970–977. 10.1071/Fp09182 PubMed DOI
Stephan A. B., Schroeder J. I. (2014). Plant salt stress status is transmitted systemically via propagating calcium waves. Proc. Natl. Acad. Sci. U.S.A. 111 6126–6127. 10.1073/Pnas.1404895111 PubMed DOI PMC
Stepien P., Johnson G. N. (2009). Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: role of the plastid terminal oxidase as an alternative electron sink. Plant Physiol. 149 1154–1165. 10.1104/Pp.108.132407 PubMed DOI PMC
Tester M., Langridge P. (2010). Breeding technologies to increase crop production in a changing world. Science 327 818–822. 10.1126/science.1183700 PubMed DOI
Tilman D., Balzer C., Hill J., Befort B. L. (2011). Global food demand and the sustainable intensification of agriculture. Proc. Natl. Acad. Sci. U.S.A. 108 20260–20264. 10.1073/Pnas.1116437108 PubMed DOI PMC
Van Oosten M. J., Sharkhuu A., Batelli G., Bressan R. A., Maggio A. (2013). The Arabidopsis thaliana mutant air1 implicates SOS3 in the regulation of anthocyanins under salt stress. Plant Mol. Biol. 83 405–415. 10.1007/s11103-013-0099-z PubMed DOI
Zhang X., Hause R. J., Jr., Borevitz J. O. (2012). Natural genetic variation for growth and development revealed by high-throughput phenotyping in Arabidopsis thaliana. G3 (Bethesda) 2 29–34. 10.1534/g3.111.001487 PubMed DOI PMC