A Novel Image-Based Screening Method to Study Water-Deficit Response and Recovery of Barley Populations Using Canopy Dynamics Phenotyping and Simple Metabolite Profiling
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31681365
PubMed Central
PMC6804369
DOI
10.3389/fpls.2019.01252
Knihovny.cz E-zdroje
- Klíčová slova
- Hordeum vulgare, amino acids, antioxidative enzymes, blue (RGB) imaging, canopy height, fluorescence, green, indoor phenotyping, polyamines, red,
- Publikační typ
- časopisecké články MeSH
Plant phenotyping platforms offer automated, fast scoring of traits that simplify the selection of varieties that are more competitive under stress conditions. However, indoor phenotyping methods are frequently based on the analysis of plant growth in individual pots. We present a reproducible indoor phenotyping method for screening young barley populations under water stress conditions and after subsequent rewatering. The method is based on a simple read-out of data using RGB imaging, projected canopy height, as a useful feature for indirectly following the kinetics of growth and water loss in a population of barley. A total of 47 variables including 15 traits and 32 biochemical metabolites measured (morphometric parameters, chlorophyll fluorescence imaging, quantification of stress-related metabolites; amino acids and polyamines, and enzymatic activities) were used to validate the method. The study allowed the identification of metabolites related to water stress response and recovery. Specifically, we found that cadaverine (Cad), 1,3-aminopropane (DAP), tryptamine (Tryp), and tyramine (Tyra) were the major contributors to the water stress response, whereas Cad, DAP, and Tyra, but not Tryp, remained at higher levels in the stressed plants even after rewatering. In this work, we designed, optimized and validated a non-invasive image-based method for automated screening of potential water stress tolerance genotypes in barley populations. We demonstrated the applicability of the method using transgenic barley lines with different sensitivity to drought stress showing that combining canopy height and the metabolite profile we can discriminate tolerant from sensitive genotypes. We showed that the projected canopy height a sensitive trait that truly reflects other invasively studied morphological, physiological, and metabolic traits and that our presented methodological setup can be easily applicable for large-scale screenings in low-cost systems equipped with a simple RGB camera. We believe that our approach will contribute to accelerate the study and understanding of the plant water stress response and recovery capacity in crops, such as barley.
Zobrazit více v PubMed
Aebi H. (1984). Catalase in vitro . Methods Enzymol. 105, 121–126. 10.1016/S0076-6879(84)05016-3 PubMed DOI
Ahmed I. M., Dai H., Zheng W., Cao F., Zhang G., Sun D., et al. (2013). Genotypic differences in physiological characteristics in the tolerance to drought and salinity combined stress between Tibetan wild and cultivated barley. Plant Physiol. Biochem. 63, 49–60. 10.1016/j.plaphy.2012.11.004 PubMed DOI
Akashi K., Miyake C., Yokota A. (2001). Citrulline, a novel compatible solute in drought-tolerant wild watermelon leaves, is an efficient hydroxyl radical scavenger. FEBS Lett. 508, 438–442. 10.1016/S0014-5793(01)03123-4 PubMed DOI
Araus J. L., Cairns J. E. (2014). Field high-throughput phenotyping: the new crop breeding frontier. Trends Plant Sci. 19, 52–61. 10.1016/j.tplants.2013.09.008 PubMed DOI
Awlia M., Nigro A., Fajkus J., Schmoeckel S. M., Negrão S., Santelia D., et al. (2016). High-throughput non-destructive phenotyping of traits that contribute to salinity tolerance in Arabidopsis thaliana . Front. Plant Sci. 7, 1–15. 10.3389/fpls.2016.01414 PubMed DOI PMC
Aziz A., Martin-Tanguy J., Larher F. (1998). Stress-induced changes in polyamine and tyramine levels can regulate proline accumulation in tomato leaf discs treated with sodium chloride. Physiol. Plant. 104, 195–202. 10.1034/j.1399-3054.1998.1040207.x DOI
Aziz A., Martin-Tanguy J., Larher F. (1999). Salt stress-induced proline accumulation and changes in tyramine and polyamine levels are linked to ionic adjustment in tomato leaf discs. Plant Sci. 145, 83–91. 10.1016/S0168-9452(99)00071-0 DOI
Berger B., Parent B., Tester M. (2010). High-throughput shoot imaging to study drought responses. J. Exp. Bot. 61, 3519–3528. 10.1093/jxb/erq201 PubMed DOI
Bitrián M., Zarza X., Altabella T., Tiburcio A. F., Alcázar R. (2012). Polyamines under abiotic stress: metabolic crossroads and hormonal crosstalks in plants. Metabolites 2, 516–528. 10.3390/metabo2030516 PubMed DOI PMC
Bradford M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254. 10.1016/0003-2697(76)90527-3 PubMed DOI
Cabrera-Bosquet L., Fournier C., Brichet N., Welcker C., Suard B., Tardieu F. (2016). High-throughput estimation of incident light, light interception and radiation-use efficiency of thousands of plants in a phenotyping platform. New Phytol. 212, 269–281. 10.1111/nph.14027 PubMed DOI
Chen D., Neumann K., Friedel S., Kilian B., Chen M., Altmann T., et al. (2014). Dissecting the phenotypic components of crop plant growth and drought responses based on high-throughput image analysis. Plant Cell Online 26 (12), 4636–4655. 10.1105/tpc.114.129601 PubMed DOI PMC
De Diego N., Fürst T., Humplík J. F., Ugena L., Podlešáková K., Spíchal L. (2017). An automated method for high-throughput screening of Arabidopsis rosette growth in multi-well plates and its validation in stress conditions. Front. Plant Sci. 8, 1–16. 10.3389/fpls.2017.01702 PubMed DOI PMC
De Diego N., Saiz-Fernández I., Rodríguez J. L., Pérez-Alfocea P., Sampedro M. C., Barrio R. J., et al. (2015). Metabolites and hormones are involved in the intraspecific variability of drought hardening in radiata pine. J. Plant Physiol. 188, 64–71. 10.1016/j.jplph.2015.08.006 PubMed DOI
De Diego N., Sampedro M. C., Barrio R. J., Saiz-Fernandez I., Moncalean P., Lacuesta M. (2013). Solute accumulation and elastic modulus changes in six radiata pine breeds exposed to drought. Tree Physiol. 33, 69–80. 10.1093/treephys/tps125 PubMed DOI
Earth Observation and Research Branch Team (2011). Crop identification and BBCH staging manual: SMAP-12 field campaign. Canada: Agriculture and Agri-Food.
Filek M., Labanowska M., Kościelniak J., Biesaga-Kościelniak J., Kurdziel M., Szarejko I., et al. (2015). Characterization of barley leaf tolerance to drought stress by chlorophyll fluorescence and electron paramagnetic resonance studies. J. Agron. Crop Sci. 201, 228–240. 10.1111/jac.12063 DOI
Forster B. P., Ellis R. P., Thomas W. T. B., Newton A. C., Tuberosa R., This D., et al. (2000). The development and application of molecular markers for abiotic stress tolerance in barley. J. Exp. Bot. 51, 19–27. 10.1093/jxb/51.342.19 PubMed DOI
Gallé A., Flexas J. (2010). “Gas-exchange and chlorophyll fluorescence measurements in grapevine leaves in the field,” in Methodologies and Results in Grapevine Research. Eds. Delrot S., Medrano H., Or E., Bavaresco L., Grando S. (Springer Netherlands: Dordrecht: ), 107–121. 10.1007/978-90-481-9283-0_8 DOI
Ghanem M. E., Marrou H., Sinclair T. R. (2015). Physiological phenotyping of plants for crop improvement. Trends Plant Sci. 20, 139–144. 10.1016/j.tplants.2014.11.006 PubMed DOI
Granier C., Aguirrezabal L., Chenu K., Cookson S. J., Dauzat M., Hamard P., et al. (2006). PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit. New Phytol. 169, 623–635. 10.1111/j.1469-8137.2005.01609.x PubMed DOI
Gray N., Plumb R. (2016). A validated assay for the quantification of amino acids in mammalian urine. Waters, 1–8.
Großkinsky D. K., Svensgaard J., Christensen S., Roitsch T. (2015). Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap. J. Exp. Bot. 66, 5429–5440. 10.1093/jxb/erv345 PubMed DOI
Harwood W. A. (2012). Advances and remaining challenges in the transformation of barley and wheat. J. Exp. Bot. 63, 1791–1798. 10.1093/jxb/err380 PubMed DOI
Hayashi K., Fujita Y., Ashizawa T., Suzuki F., Nagamura Y., Hayano-saito Y. (2016). Serotonin attenuates biotic stress and leads to lesion browning caused by a hypersensitive response to Magnaporthe oryzae penetration in rice. Plant J. 85 (1), 46–56. 10.1111/tpj.13083 PubMed DOI
Holubová K., Hensel G., Vojta P., Tarkowski P., Gene H. (2018). Modification of barley plant productivity through regulation of cytokinin content by reverse-genetics approaches preparation of constructs for silencing. Front. Plant Sci. 9, 1–18. 10.3389/fpls.2018.01676 PubMed DOI PMC
Honsdorf N., March T. J., Berger B., Tester M., Pillen K. (2014). High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines. PLoS One 9 (5), e97047. 10.1371/journal.pone.0097047 PubMed DOI PMC
Hsu Y. T., Kao C. H. (2007). Heat shock-mediated H2O2 accumulation and protection against Cd toxicity in rice seedlings. Plant Soil 300, 137–147. 10.1007/s11104-007-9396-0 DOI
Humplík J. F., Lazár D., Husičková A., Spíchal L. (2015). Automated phenotyping of plant shoots using imaging methods for analysis of plant stress responses—a review. Plant Methods 11, 29. 10.1186/s13007-015-0072-8 PubMed DOI PMC
Jammes F., Leonhardt N., Tran D., Bousserouel H., Véry A. A., Renou J. P., et al. (2014). Acetylated 1,3-diaminopropane antagonizes abscisic acid-mediated stomatal closing in Arabidopsis . Plant J. 79, 322–333. 10.1111/tpj.12564 PubMed DOI
Jancewicz A. L., Gibbs N. M., Masson P. H. (2016). Cadaverine’s functional role in plant development and environmental response. Front. Plant Sci. 7, 1–8. 10.3389/fpls.2016.00870 PubMed DOI PMC
Junker A., Muraya M. M., Weigelt-Fischer K., Arana-Ceballos F., Klukas C., Melchinger A. E., et al. (2015). Optimizing experimental procedures for quantitative evaluation of crop plant performance in high throughput phenotyping systems. Front. Plant Sci. 5, 1–21. 10.3389/fpls.2014.00770 PubMed DOI PMC
Lehmann T., Pollmann S. (2009). Gene expression and characterization of a stress-induced tyrosine decarboxylase from Arabidopsis thaliana . FEBS Lett. 583, 1895–1900. 10.1016/j.febslet.2009.05.017 PubMed DOI
Li R., Guo P., Baum M., Grando S., Ceccarelli S. (2006). Evaluation of chlorophyll content and fluorescence parameters as indicators of drought tolerance in barley. Agric. Sci. China 5, 751–757. 10.1016/S1671-2927(06)60120-X DOI
Liu J.-H., Wang W., Wu H., Gong X., Moriguchi T. (2015). Polyamines function in stress tolerance: from synthesis to regulation. Front. Plant Sci. 6, 1–10. 10.3389/fpls.2015.00827 PubMed DOI PMC
Miyagawa H., Toda H., Tsurushima T., Ueno T., Miyagawa H., Toda H., et al. (2014). Accumulation of tryptamine in barley leaves irradiated with UV light accumulation of tryptamine in barley leaves irradiated with UV light. Biosc. Biotechnol. Biochem. 8451, 1723–1725. 10.1271/bbb.58.1723 DOI
Muscolo A., Junker A., Klukas C., Weigelt-Fischer K., Riewe D., Altmann T. (2015). Phenotypic and metabolic responses to drought and salinity of four contrasting lentil accessions. J. Exp. Bot. 66, 5467–5480. 10.1093/jxb/erv208 PubMed DOI PMC
Neumann K., Klukas C., Friedel S., Rischbeck P., Chen D., Entzian A., et al. (2015). Dissecting spatiotemporal biomass accumulation in barley under different water regimes using high-throughput image analysis. Plant Cell Environ. 38 (10), 1980–1996. 10.1111/pce.12516 PubMed DOI
Nosalewicz A., Siecińska J., Śmiech M., Nosalewicz M., Wiącek D., Pecio A., et al. (2016). Transgenerational effects of temporal drought stress on spring barley morphology and functioning. Environ. Exp. Bot. 131, 120–127. 10.1016/j.envexpbot.2016.07.006 DOI
Pandey S., Fartyal D., Agarwal A., Shukla T., James D., Kaul T., et al. (2017). Abiotic stress tolerance in plants: myriad roles of ascorbate peroxidase. Front. Plant Sci. 8, 1–13. 10.3389/fpls.2017.00581 PubMed DOI PMC
Podlešáková K., Ugena L., Spíchal L., Doležal K., De Diego N. (2019). Phytohormones and polyamines regulate plant stress responses by altering GABA pathway. N. Biotechnol. 48, 53–65. 10.1016/j.nbt.2018.07.003 PubMed DOI
Poorter H., Fiorani F., Pieruschka R., Wojciechowski T., van der Putten W. H., Kleyer M., et al. (2016). Pampered inside, pestered outside? Differences and similarities between plants growing in controlled conditions and in the field. New Phytol. 212, 838–855. 10.1111/nph.14243 PubMed DOI
Prochazkova D., Sairam R. K., Srivastava G. C., Singh D. V. (2001). Oxidative stress and antioxidant activity as the basis of senescence in maize leaves. Plant Sci. 161, 765–771. 10.1016/S0168-9452(01)00462-9 DOI
Reddy A. R., Chaitanya K. V., Vivekanandan M. (2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 161, 1189–1202. 10.1016/j.jplph.2004.01.013 PubMed DOI
Saade S., Negrão S., Plett D., Garnett T., Tester M. (2018). The Barley Genome. Stein N, Muehlbauer GJ, editors. Cham: Springer International Publishing. 10.1007/978-3-319-92528-8 DOI
Singh T. N., Aspinall D., Paleg L. G. (1972). Proline accumulation and varietal adaptability to drought in Barley: a potential metabolic measure of drought resistance. Nature 236, 188–189. 10.1038/newbio236188a0 PubMed DOI
Taibi G., Schiavo M. R., Gueli M. C., Rindina P. C., Muratore R., Nicotra C. M. A. (2000). Rapid and simultaneous high-performance liquid chromatography assay of polyamines and monoacetylpolyamines in biological specimens. J. Chromatogr. B. 745, 431–437. 10.1016/S0378-4347(00)00314-5 PubMed DOI
Thomas W. T. B., Powell W., Wood W. (1984). The chromosomal location of the dwarfing gene present in the spring barley variety golden promise. Heredity (Edinb.) 53, 177–183. 10.1038/hdy.1984.73 DOI
Tomar P. C., Lakra N., Mishra S. N. (2013). Cadaverine: A lysine catabolite involved in plant growth and development. Plant Signal Behav. 8. 10.4161/psb.25850 PubMed DOI PMC
Urano K., Kurihara Y., Seki M., Shinozaki K. (2010). Omics” analyses of regulatory networks in plant abiotic stress responses. Curr. Opin. Plant Biol. 13, 132–138. 10.1016/j.pbi.2009.12.006 PubMed DOI
Wang W., Vinocur B., Altman A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218, 1–14. 10.1007/s00425-003-1105-5 PubMed DOI
Wang X., Wang L., Shangguan Z. (2016). Leaf gas exchange and fluorescence of two winter wheat varieties in response to drought stress and nitrogen supply. PLoS One 11, 1–15. 10.1371/journal.pone.0165733 PubMed DOI PMC
Wang Y., Zeng X., Xu Q., Mei X., Yuan H., Jiabu D. (2019). Studies metabolite profiling in two contrasting Tibetan hulless barley cultivars revealed the core salt-responsive metabolome and key salt-tolerance biomarkers. AoB Plants, 1–14. 10.1093/aobpla/plz021 PubMed DOI PMC
Xu C. C., Jeon Y. A., Lee C. H. (1999). Relative contributions of photochemical and non-photochemical routes to excitation energy dissipation in rice and barley illuminated at a chilling temperature. Physiol. Plant. 107, 447–453. 10.1034/j.1399-3054.1999.100411.x DOI
Zhang S.-H., Xu X.-F., Sun Y.-M., Zhang J.-L., Li C.-Z. (2018). Influence of drought hardening on the resistance physiology of potato seedlings under drought stress. J. Integr. Agric. 17, 336–347. 10.1016/S2095-3119(17)61758-1 DOI
Comprehensive LC-MS/MS analysis of nitrogen-related plant metabolites